JPH0635681Y2 - Pneumatic tire - Google Patents

Pneumatic tire

Info

Publication number
JPH0635681Y2
JPH0635681Y2 JP1987183297U JP18329787U JPH0635681Y2 JP H0635681 Y2 JPH0635681 Y2 JP H0635681Y2 JP 1987183297 U JP1987183297 U JP 1987183297U JP 18329787 U JP18329787 U JP 18329787U JP H0635681 Y2 JPH0635681 Y2 JP H0635681Y2
Authority
JP
Japan
Prior art keywords
tire
axis
distance
tread
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1987183297U
Other languages
Japanese (ja)
Other versions
JPH0187004U (en
Inventor
朗弘 大津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP1987183297U priority Critical patent/JPH0635681Y2/en
Publication of JPH0187004U publication Critical patent/JPH0187004U/ja
Application granted granted Critical
Publication of JPH0635681Y2 publication Critical patent/JPH0635681Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Tires In General (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案は轍路面において、特に車線変更時、直進走行
時での安定な走行を維持する空気入りタイヤに関する。
[Detailed Description of the Invention] [Industrial field of application] The present invention relates to a pneumatic tire for maintaining stable running on a rutted road surface, particularly when changing lanes and straight ahead.

〔技術手段) 一般に乗用車用タイヤ、軽トラック用タイヤ及び、トラ
ック、バス用タイヤ等各種タイヤはいずれも、トレッド
表面は1種類の円弧もしくは曲率半径の異なる2種類の
円弧で構成されている。例えば、第2図にその断面図が
示される従来タイヤ中にあっては、一方のトレッド端TE
から他方のトレッド端TE′に亘るトレッド表面は曲率半
径RAの円弧で形成されている。この種のトレッド表面を
有するタイヤは、平滑な舗装路面での走行ではトレッド
の均一な接地形状となり良好な操縦安定性、耐摩耗性お
よびコーナリング特性を発揮するが轍、即ち凹凸形状の
ある路面では車線変更の際、あるいは轍内の直進走行の
際、車体がふらつき、ハンドリングの不安定を生ずる問
題がある。そこでトレッドショルダー部をトレッド中央
部よりも曲率半径の小さい円弧で形成したり、トレッド
端部を円弧形状とすることにより、前記轍の走行を安定
にすることが試みられている。しかしこのような方法で
はトレッド中央部とトレッドショルダー部の曲率の変化
する位置で接地圧の段差が形成されることがあり、偏摩
耗を招来する欠点がある。
[Technical Means] Generally, in various tires such as tires for passenger cars, tires for light trucks, and tires for trucks and buses, the tread surface is formed by one kind of arc or two kinds of arcs having different radii of curvature. For example, in the conventional tire whose cross-sectional view is shown in FIG. 2, one of the tread ends TE is
The tread surface extending from the other end of the tread TE ′ is formed by an arc having a radius of curvature RA. Tires with this type of tread surface have a uniform ground contact shape on the tread when running on a smooth paved road surface, and exhibit good steering stability, wear resistance and cornering characteristics, but on ruts, that is, on uneven road surfaces. When changing lanes or traveling straight in a rut, there is a problem that the vehicle body becomes unstable and the handling becomes unstable. Therefore, it has been attempted to stabilize the running of the rut by forming the tread shoulder portion with an arc having a smaller radius of curvature than the central portion of the tread or by forming the tread end portion with an arc shape. However, in such a method, a step of the ground contact pressure may be formed at a position where the curvature of the tread central portion and the tread shoulder portion change, which has a drawback of causing uneven wear.

〔解決すべき問題点〕[Problems to be solved]

この考案は上記問題点を解決するもので、トレッド輪郭
形状、特にトレッドクラウン部からトレッドショルダー
部の輪郭形状を適正化することにより轍内走行に於ける
車体のふらつき、ハンドリングの不安定性を解消した空
気入りタイヤを提案するものである。
This invention solves the above-mentioned problems, and by eliminating the tread contour, especially the tread shoulder to tread shoulder, the fluctuation of the vehicle body during ruts and the instability of handling are eliminated. It proposes a pneumatic tire.

〔技術手段〕[Technical means]

この考案は、タイヤを正規リムに装着し正規内圧を充填
したときのタイヤ子午断面におけるトレッド表面輪郭形
状が、タイヤ赤道面をY軸、このY軸のトレッド表面と
交わる点Bから半径方向内方に距離bだけ隔てた点Oを
原点とし、この原点Oを通りタイヤ回転軸方向に平行に
延びる線をX軸としたときの下式、を満足した曲率
変化が連続する略隋円形状をなすとともに、、式に
おいて、aは、トレッド表面とサイドウォール部表面と
が交わる交点PのX軸方向の距離a1の1.00〜1.09倍、か
つ前記bは、前記交点PのY軸方向の距離以上の長さで
あって、かつaの30〜55%の範囲であることを特徴とす
るタイヤである。
In this invention, the tread surface contour shape in the tire meridional section when the tire is mounted on the regular rim and filled with the regular internal pressure is such that the tire equatorial plane is the Y axis, and the radial direction is inward from the point B intersecting the tread surface of the Y axis. A point O separated by a distance b to the origin, and a line passing through the origin O and extending in parallel to the tire rotation axis direction is the X axis, the following equation is satisfied. At the same time, in the formula, a is 1.00 to 1.09 times the distance a1 in the X-axis direction of the intersection point P where the tread surface and the sidewall surface intersect, and b is the distance in the Y-axis direction of the intersection point P or more. The tire has a length and a range of 30 to 55% of a.

(X2/a2)+(y2/b2)≧1 … (X4/a4)+(y4/b4)≦1 … 〔実施例〕 第1図はこの考案のタイヤの一実施例の断面図を示す。(X 2 / a 2 ) + (y 2 / b 2 ) ≧ 1 (X 4 / a 4 ) + (y 4 / b 4 ) ≦ 1 [Example] FIG. 1 shows one of the tires of the present invention. The sectional view of an example is shown.

図において、トレッド部は、タイヤ子午断面におけるト
レッド表面の輪郭形状が以下の、式を充足する隋円
形状に構成される。、式において、タイヤ赤道面を
Y軸とし、このY軸がトレッド表面と交わる点Bから半
径方向内方に距離bだけで隔てた点Oを原点とし、この
原点Oを通りタイヤ回転軸方向に平行に延びる線をX軸
としている。なお式、はタイヤをJISD4202などの規
格で定まる正規リムにリム組しかつ正規内圧を充填した
ときの値とする。
In the figure, the tread portion is formed in an oval shape satisfying the following expression, in which the contour shape of the tread surface in the meridian section of the tire is satisfied. In the equation, the tire equatorial plane is taken as the Y-axis, and the point O separated from the point B where the Y-axis intersects the tread surface radially inward by the distance b is taken as the origin. The line extending in parallel is the X axis. Note that the formula is a value when the tire is assembled on a regular rim defined by a standard such as JIS D4202 and filled with a regular internal pressure.

ここでa>0 b>0 y>0である。 Here, a> 0 b> 0 y> 0.

又a、bの数値はタイヤのサイズに応じて定まる。さら
に前記値aは、長軸距離、bは短軸距離であり、前記距
離aは、トレッド表面の輪郭線と、サイドウォール部表
面の輪郭線との交点PのX軸上の距離a1に基づいて定め
る。
The numerical values of a and b are determined according to the tire size. Further, the value a is the major axis distance, b is the minor axis distance, and the distance a is based on the distance a1 on the X axis of the intersection point P between the contour line of the tread surface and the contour line of the sidewall portion surface. To determine.

トレッド表面の輪郭線が、X軸と交わる点近傍におい
て、X軸と垂直、即ちY軸と略同方向の垂直部分を有し
てサイドウォール部表面に連なることを許容するときに
は、前記aを距離a1と等しく、即ちa=a1とする。
When the contour line of the tread surface has a vertical portion that is perpendicular to the X axis, that is, a vertical portion in substantially the same direction as the Y axis near the point where the contour line intersects the X axis, and is allowed to continue to the sidewall surface, the distance a is set. It is equal to a1, that is, a = a1.

又X軸に交わる直前においてトレッド表面の輪郭線がX
軸に対して斜めとなる斜め部分を介してサイドウォール
部表面と連ならせるときには、X軸上の距離aをa1より
も大、即ちX軸上に位置する点Aは前記交点Pよりも外
側に位置させる。このことは、サイドウォール表面の輪
郭線とトレッド部表面の輪郭線の交点Pを、点Aよりも
タイヤ軸方向内側とすることであり、そして交点PのX
軸上の距離a1は、aの92〜100%となるように選択され
る。
Also, the contour line of the tread surface is X immediately before the intersection with the X axis.
When connecting to the surface of the sidewall portion through an oblique portion that is oblique to the axis, the distance a on the X axis is greater than a1, that is, the point A located on the X axis is outside the intersection point P. Located in. This means that the intersection point P between the contour line of the sidewall surface and the contour line of the tread portion surface is located inside the point A in the tire axial direction, and X of the intersection point P is X.
The axial distance a1 is chosen to be 92-100% of a.

即ち前記aは距離a1の1/(0.92〜1.00)、即ち1〜1.09
倍程度とする。
That is, a is 1 / (0.92 to 1.00) of the distance a1, that is, 1 to 1.09.
Double the amount.

又Y軸上の距離bについて、斜めではなくてトレッド表
面とサイドウォール表面とが垂直部分を有して連ならせ
るとき、前記距離bは、点DのY軸方向の距離b1に等し
くする。他方、前記のようにトレッド表面の輪郭線が斜
め部分を介してサイドウォール表面に連なるときには、
交点Pを点Aよりも半径方向外側とし、距離b1よりも大
きくする。なおaは通常、タイヤ最大巾Wの35〜50%、
bはaの30〜55%程度となる。従って距離bは、前記交
点PのY軸方向の距離b1以上であって、aの30〜55%程
度の範囲で選択されうる。
Regarding the distance b on the Y-axis, when the tread surface and the sidewall surface are connected to each other with a vertical portion being not oblique, the distance b is made equal to the distance b1 of the point D in the Y-axis direction. On the other hand, as described above, when the contour line of the tread surface is continuous with the sidewall surface through the oblique portion,
The point of intersection P is located radially outside the point A and is larger than the distance b1. Note that a is usually 35 to 50% of the maximum tire width W,
b is about 30 to 55% of a. Therefore, the distance b is not less than the distance b1 of the intersection point P in the Y-axis direction and can be selected in the range of about 30 to 55% of a.

さらに式は、1と等しい場合の隋円形の外側の範囲で
あって、しかも式は、長軸がa、短軸bの4次式隋円
近似形状の内側の範囲とすることを意味し、かつこれら
の2つの範囲内で、トレッド表面は曲率変化による前記
した接地圧の「段差」がなく滑らかに曲率変化が連続す
る略楕円状となる曲線を用いて形成する。これによっ
て、轍乗越性のよいタイヤをうることを見出したのであ
る。
Further, the formula means that the range is the outer side of the Sui circle when it is equal to 1, and the formula is the range inside the fourth-order Sui circle approximated shape with the major axis a and the minor axis b. In addition, within these two ranges, the tread surface is formed by using a curve having a substantially elliptical shape in which the curvature change is continuous without the above-mentioned "step" of the ground contact pressure due to the curvature change. It has been found that this makes it possible to obtain a tire with good rudder riding performance.

なお本考案はラジアル構造、クロスプライ構造のいずれ
の構造にも採用されうるが、特にベルト層に高弾性コー
ド、例えばスチールコード又はアラミド等を用いたラジ
アル構造のタイヤではトレッド部の剛性が高く維持され
ているため、特に轍路面に於けるワンダリング現象に対
する影響が大きく、従って前述のトレッド輪郭形状を採
用することは一層好適である。又前述のラジアル構造の
タイヤではカーカス2とその折り返し部2aの間にビード
コア3上辺からサイドウォール方向に厚さを漸減しての
びるビードエペックス4を配置することが望ましい。こ
のビードエペックス4はJIS硬度75〜95°でその高さh
はタイヤ最大幅位置の高さHの40〜90%の範囲まで延
び、タイヤフレックスゾーンをサイド部を上方区域移行
し前述のトレッドショルダー部輪郭形状とあいまって轍
路面での衝撃を一層緩和できる。
The present invention can be applied to either a radial structure or a cross-ply structure.However, especially in a tire having a radial structure using a highly elastic cord such as steel cord or aramid in the belt layer, the rigidity of the tread portion is kept high. Therefore, the effect on the wandering phenomenon is great especially on the rutted road surface, and therefore it is more preferable to adopt the above-mentioned tread contour shape. Further, in the above-described radial tire, it is desirable to dispose a bead epex 4 between the carcass 2 and the folded-back portion 2a, the thickness of which gradually decreases from the upper side of the bead core 3 in the sidewall direction. This bead epex 4 has a JIS hardness of 75 to 95 ° and a height h
Extends to a range of 40 to 90% of the height H at the maximum width position of the tire, the side portion of the tire flex zone is moved to the upper region, and the impact on the rutted road surface can be further mitigated together with the contour shape of the tread shoulder portion.

〔具体例〕〔Concrete example〕

タイヤサイズ195R14で実施例として第1図の構造、又比
較例として第2図の構造をなしかつ夫々第1表の仕様に
基づくタイヤを試作し、ワンダリングの実車試験および
ラボ試験を実施した。
Tires having a tire size of 195R14 and having the structure shown in FIG. 1 as an example and the structure shown in FIG. 2 as a comparative example and based on the specifications shown in Table 1 were prototyped, and wandering actual vehicle tests and laboratory tests were conducted.

(イ)実車試験条件 試作タイヤを5J×14のリムに装着し、内圧4.5kg*f/cm2
(フロント)及び3.0kg*f/cm2(リア)を夫々充填し、
2トン車フルジャストローを用いて70〜90km/hの速度で
標準的な轍と大轍のある高速道路で試験した試験結果を
第2表に示す。
(B) Actual vehicle test conditions A trial tire was mounted on a 5J x 14 rim, and the internal pressure was 4.5 kg * f / cm 2
(Front) and 3.0kg * f / cm 2 (rear) are filled,
Table 2 shows the test results of two-ton full-juggle straws tested at a speed of 70 to 90 km / h on highways with standard ruts and ruts.

(ロ)ラボ試験 前記試作タイヤを5J×14のリムに装着し、ドラム上でコ
ーナリングパワー(CP)キャンバースラスト(CT)セル
フアライニングトルクパワー(SATP)を測定し、その結
果を第3表に示す。ここでセルフアライニングトルクパ
ワーとは、所定のスリップ角をタイヤに付与した場合、
タイヤがもとの状態(スリップ角0°)に回復しようす
る回復力を意味する。
(B) Lab test The trial tire was mounted on a 5J × 14 rim, cornering power (CP) camber thrust (CT) self-aligning torque power (SATP) was measured on the drum, and the results are shown in Table 3. Here, the self-aligning torque power means that when a predetermined slip angle is applied to the tire,
It means the recovery force for the tire to recover to its original condition (slip angle 0 °).

第3表から明らかなごとくこの考案の実施例はコーナリ
ングパワー(CP)が低く、轍路面でのワンダーリングの
防止に効果的であり、一方キャンバースラスト(CT)及
びセルフアライニングトルクパワーが高く、直進走行お
よびコーナリング走行においても操縦安定性を維持する
ことができる。
As is clear from Table 3, the embodiment of this invention has a low cornering power (CP) and is effective in preventing wandering on a rutted road surface, while the camber thrust (CT) and the self-aligning torque power are high, It is possible to maintain steering stability during straight running and cornering.

又轍路面での実車走行試験においても本考案の実施例は
操縦安定性に優れていることが認められる。
Also, in an actual vehicle running test on a rutted road surface, it is recognized that the embodiment of the present invention has excellent steering stability.

〔考案の効果〕[Effect of device]

叙上のごとくこの考案はトレッド輪郭形状を楕円形状と
したため、トレッドクラウン部からトレッドショルダー
部に円滑に曲率が移行するため、偏摩耗を生ずることな
くしかも轍路面での衝撃を緩和し、ワンダリング現象を
軽減することができる。
As mentioned above, this device has an elliptical tread profile, so that the curvature smoothly transitions from the tread crown to the tread shoulder, so uneven wear does not occur and the impact on the rutted road surface is mitigated, and wandering is performed. The phenomenon can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの考案のタイヤの断面図、第2図は従来タイ
ヤの断面図を示す。
FIG. 1 is a sectional view of a tire of this invention, and FIG. 2 is a sectional view of a conventional tire.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】タイヤを正規リムに装着し正規内圧を充填
したときのタイヤ子午断面におけるトレッド表面輪郭形
状が、タイヤ赤道面をY軸、このY軸のトレッド表面と
交わる点Bから半径方向内方に距離bだけ隔てた点Oを
原点とし、この原点Oを通りタイヤ回転軸方向に平行に
延びる線をX軸としたときの下式、を満足した曲率
変化が連続する略楕円形状をなすとともに、、式に
おいて、aは、トレッド表面とサイドウォール部表面と
が交わる交点PのX軸方向の距離a1の1.00〜1.09倍、か
つ前記bは、前記交点PのY軸方向の距離以上の長さで
あって、かつaの30〜55%の範囲であることを特徴とす
るタイヤ。 (X2/a2)+(y2/b2)≧1 … (X4/a4)+(y4/b4)≦1 …
1. A tread surface contour shape in a tire meridional section when a tire is mounted on a regular rim and filled with a regular internal pressure has a tire equatorial plane as a Y axis, and a radial direction from a point B intersecting the tread surface of the Y axis. When a point O separated by a distance b toward the origin is set as an origin and a line passing through the origin O and extending in parallel to the tire rotation axis direction is defined as the X axis, the following equation is satisfied to form a substantially elliptical shape in which a change in curvature is continuous. At the same time, in the formula, a is 1.00 to 1.09 times the distance a1 in the X-axis direction of the intersection point P where the tread surface and the sidewall surface intersect, and b is the distance in the Y-axis direction of the intersection point P or more. A tire having a length and a range of 30 to 55% of a. (X 2 / a 2) + (y 2 / b 2) ≧ 1 ... (X 4 / a 4) + (y 4 / b 4) ≦ 1 ...
JP1987183297U 1987-11-30 1987-11-30 Pneumatic tire Expired - Lifetime JPH0635681Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987183297U JPH0635681Y2 (en) 1987-11-30 1987-11-30 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987183297U JPH0635681Y2 (en) 1987-11-30 1987-11-30 Pneumatic tire

Publications (2)

Publication Number Publication Date
JPH0187004U JPH0187004U (en) 1989-06-08
JPH0635681Y2 true JPH0635681Y2 (en) 1994-09-21

Family

ID=31474723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987183297U Expired - Lifetime JPH0635681Y2 (en) 1987-11-30 1987-11-30 Pneumatic tire

Country Status (1)

Country Link
JP (1) JPH0635681Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3198070B2 (en) * 1997-04-16 2001-08-13 住友ゴム工業株式会社 Pneumatic tire
JP7135508B2 (en) * 2018-07-03 2022-09-13 横浜ゴム株式会社 Method for manufacturing pneumatic tires

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816905A (en) * 1981-07-21 1983-01-31 Sumitomo Rubber Ind Ltd Radial tire for good feeling of ride
JPS60148702A (en) * 1984-01-13 1985-08-06 Bridgestone Corp Pneumatic tyre of vehicle

Also Published As

Publication number Publication date
JPH0187004U (en) 1989-06-08

Similar Documents

Publication Publication Date Title
AU738228B2 (en) Sacrificial ribs for improved tire wear
JP3240118B2 (en) Pneumatic tire
JP2800943B2 (en) Pneumatic tire
JP4490467B2 (en) Motorcycle tires
JPH08337101A (en) Pneumatic tire
JPS644922B2 (en)
EP2851210B1 (en) Motorcycle tire
JPH01101203A (en) Pneumatic tire
CN114734757A (en) Pneumatic radial tire
JP2006193032A (en) Pneumatic tire
CN102233794B (en) Pneumatic tire
JP2017039408A (en) Automobile tire
JP6825309B2 (en) Tires and tricycles equipped with them
JP2001301425A (en) Pneumatic tire
JP2002103928A (en) Assembly of heavy-load radial tire and rim
JPH0635681Y2 (en) Pneumatic tire
JPH0234404A (en) Heavy duty pneumatic radial tire
JP2573244B2 (en) Radial tire
JP2879699B2 (en) Flat pneumatic tire for heavy loads
JP4290481B2 (en) Pneumatic tire
JP2002316513A (en) Pneumatic radial tire
JPH03200405A (en) Pneumatic tire for heavy load
JP2001018615A (en) Pneumatic tire
JPH10250316A (en) Heavy duty pneumatic tire
JPH0234403A (en) Pneumatic radial tire