JPH06349772A - Manufacture of transparent conductive thin film - Google Patents

Manufacture of transparent conductive thin film

Info

Publication number
JPH06349772A
JPH06349772A JP13422793A JP13422793A JPH06349772A JP H06349772 A JPH06349772 A JP H06349772A JP 13422793 A JP13422793 A JP 13422793A JP 13422793 A JP13422793 A JP 13422793A JP H06349772 A JPH06349772 A JP H06349772A
Authority
JP
Japan
Prior art keywords
film
thin film
transparent conductive
tin
conductive thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13422793A
Other languages
Japanese (ja)
Inventor
Masao Misonoo
雅郎 御園生
Masakiyo Sotoike
正清 外池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP13422793A priority Critical patent/JPH06349772A/en
Publication of JPH06349772A publication Critical patent/JPH06349772A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the strength of a film sufficiently without deteriorating the electrical resistance of the film. CONSTITUTION:In order to form a transparent conductive thin film whose main component is tin oxide by a thermal decomposition method, a compound containing at least zirconium (Zr) is added to raw material solution composed of tin compound and organic solvent so as to have the atomic ratio of Zr to tin 0.001-0.1. The solution is carried onto a high temperature substrate in drips and a thin film is formed by thermal decomposition near the surface of the substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、透明導電性薄膜の製造
方法に関するものであり、より詳しくは熱分解法を用い
てガラス等、透明基体上に酸化錫薄膜を形成するにあた
り、原料液にZrを含む化合物を添加する透明導電性薄
膜の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a transparent conductive thin film, and more specifically, to form a tin oxide thin film on a transparent substrate such as glass by using a thermal decomposition method. The present invention relates to a method for producing a transparent conductive thin film in which a compound containing Zr is added.

【0002】[0002]

【従来の技術】ガラスに透明導電性薄膜を設けた導電ガ
ラスは、各種ディスプレー・薄膜太陽電池等の電極、ま
た透明タッチセンサー、透明帯電防止体、透明電磁波遮
蔽体等様々な分野で応用が図られている。用途によって
は、透明導電性薄膜が通常使用空間に露出するため、高
い耐摩耗性、耐薬品性(耐酸、耐アルカリ性)を要求さ
れるものがある。この種の材料としては、半金属的な挙
動を示す酸化物材料が好んで使用され、代表的なものと
しては酸化錫、酸化インジウム錫等が挙げられる。導電
ガラスはもっぱらガラス上に上記の被膜材料をコーティ
ングすることで得られている。
2. Description of the Related Art Conductive glass provided with a transparent conductive thin film on glass has applications in various fields such as electrodes for various displays and thin film solar cells, transparent touch sensors, transparent antistatic bodies, transparent electromagnetic wave shields, etc. Has been. Depending on the application, since the transparent conductive thin film is normally exposed to the space for use, high abrasion resistance and chemical resistance (acid resistance, alkali resistance) are required. As a material of this kind, an oxide material exhibiting a semi-metallic behavior is preferably used, and typical examples thereof include tin oxide and indium tin oxide. Conductive glass is obtained exclusively by coating the above coating material on glass.

【0003】透明導電膜を基体上に形成する方法として
は真空蒸着法、スパッタ法等があるが、これらは真空設
備を伴うために工業的にはコストが高くなる欠点を有す
る。
As a method for forming the transparent conductive film on the substrate, there are a vacuum vapor deposition method, a sputtering method and the like, but these have a drawback that the cost is industrially high because they are accompanied by vacuum equipment.

【0004】これに対し、冷間で原料化合物を含有した
溶液を塗布後、高温度で焼成することによって酸化物薄
膜を得るいわゆる冷間塗布法や、予め加熱された基体上
に蒸気または液滴状化合物を接触させ表面反応を利用し
薄膜を形成するスプレー法・CVD法等では大がかりな
設備が不要であり、コスト・生産性の面で有利である。
これらの方法では、原料価格の点でアンチモンやフッ素
をドープした酸化錫薄膜が好んで採用されていた。例え
ばアバス(Abass) らは塩化第二錫とフッ化アンモニュウ
ムを水、メタノール、塩酸の混合溶媒に溶解させた溶液
を400℃に加温したガラス基板上に噴霧してフッ素ド
ープ酸化錫被膜を得ている(Phys. Stat.Sol. (a) 100 6
33-637(1987))。同じく、特公昭53-25331号には(C4
9 2Sn(CH3 CO2 2 等の錫化合物とCF3
COOH等のフッ素化合物とCH3 OH等の溶剤からな
る溶液を高温の板ガラスに噴霧してフッ素ドープ酸化物
被膜を形成する方法が記載されている。
On the other hand, a so-called cold coating method in which a solution containing a raw material compound is cold coated and then baked at a high temperature to obtain an oxide thin film, or vapor or droplets are formed on a preheated substrate. No large-scale equipment is required in the spray method, the CVD method, etc., in which a thin compound is brought into contact with the surface to form a thin film, which is advantageous in terms of cost and productivity.
In these methods, a tin oxide thin film doped with antimony or fluorine was preferably used in terms of raw material cost. For example, Abass et al. Obtained a fluorine-doped tin oxide film by spraying a solution of stannic chloride and ammonium fluoride dissolved in a mixed solvent of water, methanol and hydrochloric acid on a glass substrate heated to 400 ° C. (Phys. Stat.Sol. (A) 100 6
33-637 (1987)). Also, the JP-B 53-25331 (C 4
H 9 ) 2 Sn (CH 3 CO 2 ) 2 and other tin compounds and CF 3
A method of forming a fluorine-doped oxide film by spraying a solution composed of a fluorine compound such as COOH and a solvent such as CH 3 OH on a high temperature plate glass is described.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、導電ガ
ラスにおける膜の機械的強度に対する要求は日々に増し
ており、これを満足させるのは容易でない。例えば、透
明導電膜として代表的なITO膜では、優れた電気特性
を示すのであるが、膜の耐摩耗性・耐薬品性は極めて弱
い。
However, the demand for the mechanical strength of the film in the conductive glass is increasing day by day, and it is not easy to satisfy this requirement. For example, an ITO film, which is a typical transparent conductive film, exhibits excellent electrical characteristics, but the film has very weak abrasion resistance and chemical resistance.

【0006】一方酸化錫膜では膜の硬度・耐薬品性がI
TO膜に比して優れているが、これまで専ら採用されて
きた様な冷間塗布法により酸化錫膜を得る方法では、十
分な耐摩耗性能は得られない。そこで、この方法におい
て塗布液中にケイ素(Si)、Zrの様な原料を加え、
SiO2 あるいはZrO2 を膜中に混入させることや、
あるいはこれを表面保護層として利用する等の考えが提
案されているが、これらの方法では、十分低い抵抗値を
得ることが困難であった。また、いわゆるCVD法、ス
プレー法では冷間塗布法に比べ、そもそも高温状態で膜
形成が進行し、緻密かつ良好な結晶性を有する膜が得ら
れるので、耐摩耗性能が高く電気的特性も優れているの
であるが、実際にはこれでも用途によっては電気的特性
は十分でも耐摩耗性能の点で問題となることがしばしば
であった。
On the other hand, in a tin oxide film, the hardness and chemical resistance of the film are I
Although it is superior to the TO film, sufficient abrasion resistance cannot be obtained by the method of obtaining the tin oxide film by the cold coating method which has been exclusively used up to now. Therefore, in this method, raw materials such as silicon (Si) and Zr are added to the coating solution,
Mixing SiO 2 or ZrO 2 into the film,
Alternatively, the idea of using this as a surface protective layer has been proposed, but it has been difficult to obtain a sufficiently low resistance value by these methods. In addition, the so-called CVD method and the spray method, in comparison with the cold coating method, allow the film formation to proceed at a higher temperature in the first place, so that a film having a dense and good crystallinity can be obtained, so that the abrasion resistance is high and the electrical characteristics are excellent. However, in practice, even though the electrical characteristics are sufficient depending on the application, it often causes a problem in terms of wear resistance.

【0007】本発明は上記の問題点を解決し、膜の電気
抵抗を損なうことなく、膜の強度を十分なものに高めら
れる透明導電性薄膜の製造方法を提供することを目的と
する。
An object of the present invention is to solve the above problems and to provide a method for producing a transparent conductive thin film capable of enhancing the strength of the film to a sufficient level without impairing the electric resistance of the film.

【0008】[0008]

【課題を解決するための手段】本発明の上記目的は、次
の構成により達成される。
The above object of the present invention can be achieved by the following constitutions.

【0009】すなわち、熱分解法において酸化錫を主成
分とする透明導電性薄膜を形成するにあたり、錫化合物
と有機溶媒からなる原料液に少なくともジルコニウム
(Zr)を含む化合物を対錫原子比で0.001〜0.
1添加し、これを高温の基体上に液滴状態で搬送させ、
基体表面近傍での熱分解により膜形成を行なう透明導電
性薄膜の製造方法である。
That is, when forming a transparent conductive thin film containing tin oxide as a main component in the thermal decomposition method, a compound containing at least zirconium (Zr) in a raw material liquid consisting of a tin compound and an organic solvent is contained in an atomic ratio of tin to 0. 0.001 to 0.
1 was added, and this was transported onto the hot substrate in a droplet state,
This is a method for producing a transparent conductive thin film in which a film is formed by thermal decomposition near the surface of a substrate.

【0010】ここで、該Zrを含む化合物がZrのβ−
ジケトン塩であってもよい。
Here, the compound containing Zr is β- of Zr.
It may be a diketone salt.

【0011】また、該原料液に含フッ素化合物が対錫原
子比で0.1〜10添加されていることが好ましい。
Further, it is preferable that the fluorine-containing compound is added to the raw material liquid in an atomic ratio to tin of 0.1 to 10.

【0012】酸化錫の具体的成膜手段としては、スプレ
ー法・CVD法等がある。熱分解法では、熱分解性を有
する錫化合物が主原料となり、具体的にはSnCl4
(Cn 2n+14 Sn(ただしn=1〜4)、C4 9
SnCl3 、(CH3 2 SnCl2 、(C4 9 2
Sn(OCOCH3 2 、(C8 172 Sn(OCO
CH3 2 等を使用するのが一般的である。また、電気
的特性を向上させるためにフッ素がしばしば膜に添加さ
れるが、この原料としてはHF、CCl2 2、CHC
lF2 、CH3 CHF2 、CF3 Br、CF3 COO
H、NH4 F等が知られている。これらの原料の蒸気を
酸素等の酸化性ガスと共に加熱したガラスに接触させて
膜を得るか、またはアルコール、ベンゼン、トルエン等
の有機溶媒に溶解して加熱されたガラスに噴霧して膜を
得る。
As a concrete film forming means of tin oxide, there are a spray method, a CVD method and the like. In the thermal decomposition method, a thermally decomposable tin compound is the main raw material, and specifically, SnCl 4 ,
(C n H 2n + 1) 4 Sn ( provided that n = 1~4), C 4 H 9
SnCl 3 , (CH 3 ) 2 SnCl 2 , (C 4 H 9 ) 2
Sn (OCOCH 3 ) 2 , (C 8 H 17 ) 2 Sn (OCO
CH 3 ) 2 and the like are generally used. Fluorine is often added to the film in order to improve the electrical characteristics, and the raw material for this is HF, CCl 2 F 2 , CHC.
IF 2 , CH 3 CHF 2 , CF 3 Br, CF 3 COO
H, NH 4 F and the like are known. The vapor of these raw materials is brought into contact with a glass heated with an oxidizing gas such as oxygen to obtain a film, or dissolved in an organic solvent such as alcohol, benzene or toluene and sprayed on the heated glass to obtain a film. .

【0013】Zr化合物原料としては、他の原料および
使用する有機溶媒との相溶性の点で特定は難しいが、例
えばSnCl4 等の塩素含有錫原料系では塩化ジルコニ
ウム、オキシ塩化ジルコニウム等、また(Cn 2n+1
4 Sn(ただしn=1〜4)、(C4 9 2 Sn(O
COCH3 2 、(C8 172 Sn(OCOCH3
2 等の原料に対しては、Zrのβ−ジケトン塩(例えば
ジルコニウムアセチルアセトナート等)が使用できる。
Although it is difficult to specify the Zr compound raw material in terms of compatibility with other raw materials and the organic solvent used, for example, in a chlorine-containing tin raw material system such as SnCl 4, zirconium chloride, zirconium oxychloride, etc. C n H 2n + 1 )
4 Sn (where n = 1 to 4), (C 4 H 9 ) 2 Sn (O
COCH 3 ) 2 , (C 8 H 17 ) 2 Sn (OCOCH 3 )
A β-diketone salt of Zr (eg, zirconium acetylacetonate) can be used for the raw materials such as 2 .

【0014】以上の様な原料の組合せで、その組成を選
んで予め加熱したガラスに液滴状態で噴霧すれば、熱分
解反応を介してジルコニウムが添加された酸化錫薄膜が
得られる。ジルコニウム酸化物は電気的に絶縁性であ
り、膜中(または原料液中)Zr濃度が高くなるにつれ
て膜の電気抵抗は次第に悪化(上昇)する。その一方、
実施例に記述した様な方法で膜の機械的強度(耐摩耗
性)を試験すると、明らかにある濃度まではZr添加と
共に耐摩耗性能が向上していることがわかった。
When the composition is selected and sprayed in the form of droplets on preheated glass by the combination of the above raw materials, a tin oxide thin film to which zirconium is added is obtained through a thermal decomposition reaction. Zirconium oxide is electrically insulating, and the electric resistance of the film gradually deteriorates (increases) as the Zr concentration in the film (or in the raw material liquid) increases. On the other hand,
When the mechanical strength (wear resistance) of the film was tested by the method as described in Examples, it was found that the wear resistance performance was improved with addition of Zr up to a certain concentration.

【0015】添加されるZrの濃度は、液中のZrとS
nの原子比で0.001〜0.1(0.1〜10at
%)、さらに望ましくは0.01〜0.08(1〜8a
t%)の領域であり、これより低すぎては効果が得られ
ないし、高すぎては薄膜の電気抵抗をいたずらに増加さ
せるばかりでなく、膜強度がかえって低下することが本
実施例の中で明らかとなった。
The concentration of Zr added is Zr and S in the liquid.
The atomic ratio of n is 0.001 to 0.1 (0.1 to 10 at).
%), More preferably 0.01 to 0.08 (1 to 8a
t%) region, and if it is lower than this range, the effect cannot be obtained, and if it is too high, not only the electric resistance of the thin film is unnecessarily increased, but also the film strength is rather lowered. It became clear in.

【0016】[0016]

【実施例】以下、本発明の実施例を表および図面に基づ
いて説明する。よく洗浄した100mm角のフロート板
ガラス(3mm厚)を用意し、基板とした。これに以下
の方法で酸化錫膜を施した。以下に示す割合でジブチル
錫ジアセテートとトリフルオロ酢酸、イソプロパノール
を混合し、更にジルコニウム原料としてジルコニウムア
セチルアセトナートを液中Zr/Sn原子比において
0.7から5.7at.%添加した。この液を600℃
に加熱したガラスに噴霧して酸化錫膜を作製した。 (噴霧液) ジブチル錫ジアセテート 50g (約0.14モル
/リツトル ) トリフルオロアセテート 8.3g イソプロパノール 1リツトル 噴霧量および噴霧時間を調節して、250オングストロ
ームの膜厚とし、抵抗値・可視光透過率を測定した。抵
抗値の結果を表1に示す。得られた酸化錫膜付ガラスの
可視光線透過率はZrの添加量には無関係で、いずれも
87.5%であった。また得られた膜の一部を溶解した
後プラズマ発光分析により、膜の中に含有されるZr濃
度をSnに対する原子比で求めた。膜中のZr濃度は原
料液中のZr濃度にほぼ比例しながら増加することがわ
かった。次に、残ったサンプルから50mm×70mm
の小片を切り出し、この膜の耐摩耗性能を調べるため
に、往復摺動試験器を用いて1cm間隔の2点間の電気
抵抗値の変化を測定した。図1に代表的な測定例を図示
する。図1に明らかなように電気抵抗値は往復摺動の回
数と共に増大し、ついには膜が摩耗して抵抗値が無限大
を示す。この時の摺動回数(最大摺動回数)をもって、膜
の耐摩耗性能の特性値とした。これらの膜特性を表1に
まとめた。実施例の範囲ではZrの添加量と共に最大摺
動回数が増大し、耐摩耗性能が向上していくことがわか
った。
Embodiments of the present invention will be described below with reference to the tables and the drawings. A well washed 100 mm square float plate glass (thickness of 3 mm) was prepared as a substrate. A tin oxide film was applied to this by the following method. Dibutyltin diacetate, trifluoroacetic acid, and isopropanol were mixed in the ratios shown below, and zirconium acetylacetonate was further used as a zirconium raw material at a Zr / Sn atomic ratio of 0.7 to 5.7 at. % Added. 600 ℃
A tin oxide film was prepared by spraying the glass heated to the above temperature. (Spray liquid) 50 g of dibutyltin diacetate (about 0.14 mol
/ Little) Trifluoroacetate 8.3 g Isopropanol 1 liter The spray amount and spray time were adjusted to obtain a film thickness of 250 Å, and the resistance value and visible light transmittance were measured. Table 1 shows the result of the resistance value. The visible light transmittance of the obtained glass with a tin oxide film was 87.5% regardless of the added amount of Zr. Further, after dissolving a part of the obtained film, the Zr concentration contained in the film was determined by an atomic ratio to Sn by plasma emission analysis. It was found that the Zr concentration in the film increased in proportion to the Zr concentration in the raw material liquid. Next, 50mm x 70mm from the remaining sample
In order to examine the wear resistance of this film, a change in electric resistance between two points at 1 cm intervals was measured using a reciprocating sliding tester. FIG. 1 shows a typical measurement example. As is apparent from FIG. 1, the electric resistance value increases with the number of times of reciprocal sliding, and finally the film wears to show an infinite resistance value. The number of times of sliding (maximum number of times of sliding) at this time was used as the characteristic value of the wear resistance performance of the film. These membrane properties are summarized in Table 1. It was found that in the range of the examples, the maximum number of sliding times increased with the amount of Zr added, and the wear resistance performance improved.

【0017】[0017]

【表1】 [Table 1]

【0018】比較例1 実施例と同じくガラス基板を用意し、以下に示す割合で
ジブチル錫ジアセテートとトリフルオロ酢酸、イソプロ
パノールを混合し、噴霧液とした。ジルコニウム化合物
の添加は行わなかった。この噴霧液を600℃に加熱し
たガラスに噴霧して酸化錫膜を作製した。 (噴霧液) ジブチル錫ジアセテート 50g (約0.14モル
/リツトル ) トリフルオロアセテート 8.3g イソプロパノール 1リツトル 噴霧量を調節して、250オングストロームの膜厚と
し、抵抗値・可視光透過率を比較した。可視光線透過率
は87.5%であった。抵抗値の結果を表1に示す。残
ったサンプルから50mm×70mmの小片を切り出
し、この膜の耐摩耗性能を調べるために、往復摺動試験
器を用いて1cm間隔の2点間の電気抵抗値の変化を測
定し最大摺動回数を得た。結果を表1に示す。ジルコニ
ウムを添加しない場合には、最大摺動回数が低く、膜の
耐摩耗性が悪いことが明らかとなった。 比較例2 実施例と同じくガラス基板を用意し、以下に示す割合で
ジブチル錫ジアセテートとトリフルオロ酢酸、イソプロ
パノールを混合し、更にジルコニウム原料としてジルコ
ニウムアセチルアセトナートを液中Zr/Sn原子比に
おいて11.4at.%添加し噴霧液とした。この液を
600℃に加熱したガラスに噴霧して酸化錫膜を作製し
た。この噴霧液を600℃に加熱したガラスに噴霧して
酸化錫膜を作製した。 (噴霧液) ジブチル錫ジアセテート 50g (約0.14モル
/リツトル ) トリフルオロアセテート 8.3g イソプロパノール 1リツトル 噴霧量を調節して、250オングストロームの膜厚と
し、抵抗値・可視光透過率を比較した。また得られた膜
の一部を溶解した後、プラズマ発光分析により膜の中に
含有されるZr濃度をSnに対する原子比で求めた。可
視光線透過率は87.5%であった。膜中Zr/Sn比
および抵抗値の結果を表1に示す。残ったサンプルから
50mm×70mmの小片を切り出し、この膜の耐摩耗
性能を調べるために、往復摺動試験器を用いて1cm間
隔の2点間の電気抵抗値の変化を測定し最大摺動回数を
得た。摺動回数と電気抵抗値の関係は図1に載せた。ま
た最大摺動回数の結果も表1に示した。ジルコニウムの
添加量が10at.%を超えると、抵抗値が悪化する上
に最大摺動回数は逆に低下し、十分な耐摩耗性の膜が得
られないことが明らかとなった。 比較例3 実施例と同じくガラス基板を用意し、以下の要領で調製
した塗布液を用い、ディッピング法により冷間でガラス
に塗布した。これを大気中500℃,1時間の条件で焼
成し、ジルコニウム添加酸化錫膜を得た。ディッピング
工程における引き上げ速度を変更することにより膜厚を
250オングストロームに調整した。得られた膜の特性
を表1に示す。可視光線透過率は87.5%であった。
比較例3では実施例1〜4とくらべると電気抵抗値が高
く、最大摺動回数も著しく低いことがわかった。 (塗布液) オクチル酸錫 10.0g オクチル酸ジルコニウム 1.0g エタノール 200cc
Comparative Example 1 A glass substrate was prepared in the same manner as in Example, and dibutyltin diacetate, trifluoroacetic acid and isopropanol were mixed in the ratios shown below to prepare a spray liquid. No zirconium compound was added. The tin oxide film was produced by spraying this spray liquid onto glass heated to 600 ° C. (Spray liquid) 50 g of dibutyltin diacetate (about 0.14 mol
/ Little) Trifluoroacetate 8.3 g Isopropanol 1 Little The spray amount was adjusted to obtain a film thickness of 250 Å, and the resistance value and visible light transmittance were compared. The visible light transmittance was 87.5%. Table 1 shows the result of the resistance value. A small piece of 50 mm x 70 mm was cut out from the remaining sample, and in order to examine the wear resistance performance of this film, the change in electrical resistance between two points at 1 cm intervals was measured using a reciprocating sliding tester and the maximum number of sliding cycles was measured. Got The results are shown in Table 1. It was revealed that when zirconium was not added, the maximum number of sliding times was low and the wear resistance of the film was poor. Comparative Example 2 A glass substrate was prepared in the same manner as in Example 1, and dibutyltin diacetate, trifluoroacetic acid and isopropanol were mixed in the ratios shown below, and zirconium acetylacetonate was used as a zirconium raw material at a liquid Zr / Sn atomic ratio of 11 .4 at. % To make a spray liquid. This solution was sprayed on glass heated to 600 ° C. to form a tin oxide film. The tin oxide film was produced by spraying this spray liquid onto glass heated to 600 ° C. (Spray liquid) 50 g of dibutyltin diacetate (about 0.14 mol
/ Little) Trifluoroacetate 8.3 g Isopropanol 1 Little The spray amount was adjusted to obtain a film thickness of 250 Å, and the resistance value and visible light transmittance were compared. Further, after dissolving a part of the obtained film, the Zr concentration contained in the film was determined by an atomic ratio with respect to Sn by plasma emission analysis. The visible light transmittance was 87.5%. The results of the Zr / Sn ratio in the film and the resistance value are shown in Table 1. A small piece of 50 mm x 70 mm was cut out from the remaining sample, and in order to examine the wear resistance performance of this film, the change in electrical resistance between two points at 1 cm intervals was measured using a reciprocating sliding tester and the maximum number of sliding cycles was measured. Got The relationship between the number of times of sliding and the electric resistance value is shown in FIG. The results of the maximum number of slides are also shown in Table 1. The amount of zirconium added is 10 at. When it exceeds%, it has become clear that the resistance value is deteriorated and the maximum number of times of sliding is decreased, and a film having sufficient abrasion resistance cannot be obtained. Comparative Example 3 A glass substrate was prepared in the same manner as in Example, and the coating liquid prepared in the following manner was used to cold-coat the glass by the dipping method. This was baked in air at 500 ° C. for 1 hour to obtain a zirconium-added tin oxide film. The film thickness was adjusted to 250 Å by changing the pulling rate in the dipping process. The characteristics of the obtained film are shown in Table 1. The visible light transmittance was 87.5%.
It was found that in Comparative Example 3, the electrical resistance value was higher and the maximum number of sliding times was significantly lower than those of Examples 1 to 4. (Coating liquid) Tin octylate 10.0 g Zirconium octylate 1.0 g Ethanol 200 cc

【発明の効果】以上の実施例から明らかなように、本発
明に係わる透明導電性薄膜の製造方法は、熱分解法によ
り酸化錫膜を形成するにあたり、原料液中にZr化合物
をSnに対しZrの原子比で0.1から10at.%添
加することにより、膜の電気導電性能を著しく損なうこ
となく耐摩耗性能を向上させることができる。本発明の
実施により得られる膜は、いわゆる冷間塗布法によって
得られる膜より電気抵抗値、耐摩耗性能双方の点で優れ
ていることが明らかとなった。
As is clear from the above examples, in the method for producing a transparent conductive thin film according to the present invention, when a tin oxide film is formed by a thermal decomposition method, a Zr compound is added to Sn in a raw material liquid. The atomic ratio of Zr is 0.1 to 10 at. %, It is possible to improve the abrasion resistance performance without significantly impairing the electric conductivity performance of the film. It has been revealed that the film obtained by the practice of the present invention is superior to the film obtained by the so-called cold coating method in terms of both electric resistance and abrasion resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る電気抵抗値と摺動回数と
の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the electrical resistance value and the number of sliding times according to an example of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 熱分解法において酸化錫を主成分とする
透明導電性薄膜を形成するにあたり、錫化合物と有機溶
媒からなる原料液に少なくともジルコニウム(Zr)を
含む化合物を対錫原子比で0.001〜0.1添加し、
これを高温の基体上に液滴状態で搬送させ、基体表面近
傍での熱分解により膜形成を行なうことを特徴とする透
明導電性薄膜の製造方法。
1. When forming a transparent conductive thin film containing tin oxide as a main component in a thermal decomposition method, a raw material liquid containing a tin compound and an organic solvent contains a compound containing at least zirconium (Zr) in an atomic ratio of tin to 0. 0.001 to 0.1 is added,
A method for producing a transparent conductive thin film, which comprises transporting this in the form of droplets onto a high-temperature substrate and performing thermal decomposition near the surface of the substrate to form a film.
【請求項2】 該Zrを含む化合物がZrのβ−ジケト
ン塩であることを特徴とする請求項1に記載の透明導電
性薄膜の製造方法。
2. The method for producing a transparent conductive thin film according to claim 1, wherein the compound containing Zr is a β-diketone salt of Zr.
【請求項3】 該原料液に含フッ素化合物が対錫原子比
で0.1〜10添加されていることを特徴とする請求項
1に記載の透明導電性薄膜の製造方法。
3. The method for producing a transparent conductive thin film according to claim 1, wherein a fluorine-containing compound is added to the raw material liquid in an atomic ratio of tin to 0.1 to 10.
JP13422793A 1993-06-04 1993-06-04 Manufacture of transparent conductive thin film Pending JPH06349772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13422793A JPH06349772A (en) 1993-06-04 1993-06-04 Manufacture of transparent conductive thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13422793A JPH06349772A (en) 1993-06-04 1993-06-04 Manufacture of transparent conductive thin film

Publications (1)

Publication Number Publication Date
JPH06349772A true JPH06349772A (en) 1994-12-22

Family

ID=15123400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13422793A Pending JPH06349772A (en) 1993-06-04 1993-06-04 Manufacture of transparent conductive thin film

Country Status (1)

Country Link
JP (1) JPH06349772A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100234170B1 (en) * 1996-12-10 2000-01-15 손욱 Composition for transparent conductive layer, manufacturing method of transparent conductive layer using the same and surface conductive articles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100234170B1 (en) * 1996-12-10 2000-01-15 손욱 Composition for transparent conductive layer, manufacturing method of transparent conductive layer using the same and surface conductive articles

Similar Documents

Publication Publication Date Title
JP5138140B2 (en) Method for forming a niobium-doped tin oxide coating on glass
Kaneko et al. Physical properties of antimony‐doped tin oxide thick films
US4990286A (en) Zinc oxyfluoride transparent conductor
US5279851A (en) Method of manufacturing a conductive glass with high strength and wear resistance
US5348805A (en) Formation of a layer of aluminum and tin or titanium oxides on a glass substrate
JPS6332736B2 (en)
JP4541462B2 (en) Method for depositing a metal oxide-based layer on a glass substrate and glass substrate coated thereby
JP3834339B2 (en) Transparent conductive film and method for producing the same
JPH06349772A (en) Manufacture of transparent conductive thin film
JP2530027B2 (en) Liquid coating composition
JP3889221B2 (en) Coating liquid for forming ITO transparent conductive film and method for forming transparent conductive film
JP3201209B2 (en) Architectural glass
JPH0217496B2 (en)
US5106653A (en) Zinc oxide film having improved chemical durability
JP2962386B2 (en) Method for producing transparent conductive tin oxide film
JPH07320541A (en) Transparent conductive film forming composition and manufacture of transparent conductive film
EP1099006B1 (en) Liquid precursor for chemical vapor deposition
JPH0662317B2 (en) Method for producing transparent conductive glass
JP4683525B2 (en) Transparent conductive film and transparent conductive film forming material
JP2979565B2 (en) Protective film forming solution for transparent electrodes
JPH1149990A (en) Coating liquid for forming clear conductive film and method for forming clear conductive film
JPH05178643A (en) Production of transparent conductive thin film
JPH02126520A (en) Formation of transparent conductive film
JPH0781188B2 (en) Method for producing tin oxide film
Ritter Transparent Conductive Coatings