JPH06349741A - Formation of thin film - Google Patents

Formation of thin film

Info

Publication number
JPH06349741A
JPH06349741A JP13318693A JP13318693A JPH06349741A JP H06349741 A JPH06349741 A JP H06349741A JP 13318693 A JP13318693 A JP 13318693A JP 13318693 A JP13318693 A JP 13318693A JP H06349741 A JPH06349741 A JP H06349741A
Authority
JP
Japan
Prior art keywords
film
silicon nitride
gas
boron
wafers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13318693A
Other languages
Japanese (ja)
Inventor
Yuichi Mikata
裕一 見方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13318693A priority Critical patent/JPH06349741A/en
Publication of JPH06349741A publication Critical patent/JPH06349741A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To easily form a silicon nitride film in a low-temperature region at a low cost by using a gaseous starting material added with a gas containing boron for the CVD method which only uses thermal energy. CONSTITUTION:In a vertical CVD device equipped with a quartz tube 1 in which a boat 3 horizontally carrying a plurality of semiconductor wafers 2 is set, the wafers 2 are heated to about 700 deg.C within a low-temperature region with a heater 4. Then silicon nitride films are formed on the surfaces of the wafers 2 by supplying SiH4, NH3, and B2H6 to the wafers 2 from gas supplying systems 5. Therefore, the silicon nitride films can be easily formed in the low- temperature region by using such a simple CVD device that facilitates the adsorption and decomposition of the gaseous starting material to and on the semiconductor substrates by adding the gas of a boron compound to the material and only giving thermal energy to the substrates.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は半導体装置における半
導体薄膜の成膜に関し、特にシリコン窒化膜やシリコン
酸化窒化膜を半導体基板上に形成する薄膜の形成方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to forming a semiconductor thin film in a semiconductor device, and more particularly to a method for forming a thin film of a silicon nitride film or a silicon oxynitride film on a semiconductor substrate.

【0002】[0002]

【従来の技術】シリコン窒化膜やシリコン酸化窒化膜は
絶縁材料、耐酸化膜、不純物の拡散防止膜として広く半
導体装置の製造に使用されている。通常、これらの膜は
CVD(Chemical Vapor Deposition)法により形成され
る。シリコン窒化膜はSiH2 Cl2 やSiH4 とNH
3 を原料とし、700℃以上の高温で反応させて成膜す
る。また、シリコン酸化窒化膜はシリコン窒化膜の形成
ガスにさらにO2 やN2 O等の酸化材を添加して得られ
るシリコンと窒素と酸素の化合物である。
2. Description of the Related Art A silicon nitride film or a silicon oxynitride film is widely used as an insulating material, an oxidation resistant film, and an impurity diffusion preventing film in the manufacture of semiconductor devices. Usually, these films are formed by a CVD (Chemical Vapor Deposition) method. The silicon nitride film is composed of SiH 2 Cl 2 or SiH 4 and NH.
Using 3 as a raw material, a film is formed by reacting at a high temperature of 700 ° C. or higher. The silicon oxynitride film is a compound of silicon, nitrogen and oxygen obtained by adding an oxidizing material such as O 2 or N 2 O to the gas for forming the silicon nitride film.

【0003】上述したように、シリコン窒化膜やシリコ
ン酸化窒化膜は絶縁性が良いことや不純物が拡散しにく
い等の特性を有するので、半導体装置における配線間の
絶縁膜や素子表面の保護膜(passivation film) として
用いられる。しかしながら、CVD法での成膜は熱的な
エネルギーのみを用いるため、通常700℃以上の高温
でガスを反応させて行う。よって、アルミニウム等の低
融点金属を用いた配線層上への成膜は不向きである。
As described above, since the silicon nitride film and the silicon oxynitride film have characteristics such as good insulation and diffusion of impurities, the insulating film between wirings in the semiconductor device and the protective film on the element surface ( It is used as a passivation film). However, since film formation by the CVD method uses only thermal energy, it is usually performed by reacting gas at a high temperature of 700 ° C. or higher. Therefore, film formation on a wiring layer using a low melting point metal such as aluminum is not suitable.

【0004】これに対し、低温で成膜する技術として半
導体装置に使用されているものに次のような方法があ
る。原料ガスとしてSiH4 及びNH3 を用い、減圧中
でガスをプラズマ化する。このプラズマのエネルギーを
用いることにより、400℃以下の低温でシリコン窒化
膜を形成することが可能である。これをプラズマCVD
法(PCVD法)という。
On the other hand, as a technique for forming a film at a low temperature, there is the following method used in a semiconductor device. SiH 4 and NH 3 are used as the source gas, and the gas is turned into plasma under reduced pressure. By using the energy of this plasma, the silicon nitride film can be formed at a low temperature of 400 ° C. or lower. This is plasma CVD
Method (PCVD method).

【0005】しかしながら、PCVD法はプラズマを発
生させるための高周波を発生する電源や反応炉中に電極
を設置しなければならない等、装置が複雑となり、か
つ、コストがかかるという問題がある。また、プラズマ
中に半導体素子を置くためにプラズマの静電ダメージを
受ける等の問題がある。
However, the PCVD method has a problem that the apparatus is complicated and the cost is high because the electrodes must be installed in a power source or a reaction furnace for generating a high frequency for generating plasma. In addition, there is a problem that the semiconductor element is placed in the plasma and the plasma is damaged electrostatically.

【0006】[0006]

【発明が解決しようとする課題】このように、従来では
比較的高温で成膜する方法を採る方が製造装置の構造も
比較的簡単であり、コスト的には有利である半面、素子
を形成する低融点金属にダメージを与える。低温で成膜
する方法を採用すると成膜の装置の複雑化、コスト高は
避けられないという欠点がある。
As described above, the conventional method of forming a film at a relatively high temperature has a relatively simple manufacturing apparatus structure and is advantageous in terms of cost. Damages low melting point metal. If the method of forming a film at a low temperature is adopted, the film forming apparatus becomes complicated and the cost is inevitable.

【0007】この発明は上記のような事情を考慮してな
されたものであり、その目的は、シリコン窒化膜やシリ
コン酸化窒化膜の成膜が700℃以下の低温領域で容易
に、しかも低コストで達成できる薄膜の形成方法を提供
することにある。
The present invention has been made in consideration of the above circumstances, and an object thereof is to easily form a silicon nitride film or a silicon oxynitride film in a low temperature region of 700 ° C. or less and at a low cost. It is to provide a method for forming a thin film that can be achieved by

【0008】[0008]

【課題を解決するための手段】この発明の薄膜の形成方
法は、熱的なエネルギーのみを用いるCVD法にボロン
を含むガスを添加した原料ガスを用いることにより半導
体基板上にシリコン窒化膜またはシリコン酸化窒化膜を
形成することを特徴とする。
The method of forming a thin film of the present invention uses a raw material gas obtained by adding a gas containing boron to a CVD method using only thermal energy to form a silicon nitride film or a silicon film on a semiconductor substrate. A feature is that an oxynitride film is formed.

【0009】[0009]

【作用】この発明では、原料ガスにボロン化合物のガス
を添加することによって原料ガスの半導体基板への吸着
分解を促進させる。
In this invention, the boron compound gas is added to the source gas to promote the adsorption decomposition of the source gas on the semiconductor substrate.

【0010】[0010]

【実施例】以下、図面を参照してこの発明を実施例によ
り説明する。図1はこの発明の薄膜の形成方法に係るC
VD装置の断面図である。石英チューブ1 内に複数の半
導体ウェハ2 それぞれが水平に載置されるボート3 が備
えられており、縦型のCVD装置が構成されている。石
英チューブ1 の外部の周囲にはヒータ4 が設置されてい
る。ガス供給系5 からの原料ガスは半導体ウェハ2 に達
した後、ドライポンプ6 により排気され、排ガス処理装
置7 により有害成分が処理される。8 ,9 はバルブ、10
はガスの流量制御装置を表す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the accompanying drawings. FIG. 1 shows C according to the thin film forming method of the present invention.
It is sectional drawing of a VD apparatus. A quartz tube 1 is provided with a boat 3 on which a plurality of semiconductor wafers 2 are placed horizontally, and a vertical CVD apparatus is configured. A heater 4 is installed around the outside of the quartz tube 1. After the raw material gas from the gas supply system 5 reaches the semiconductor wafer 2, it is exhausted by the dry pump 6 and the harmful components are processed by the exhaust gas processing device 7. 8 and 9 are valves, 10
Represents a gas flow rate control device.

【0011】上記図1を参照してこの発明の薄膜の形成
方法について説明する。半導体ウェハ2 はヒータ4 によ
り700℃に加熱される。この半導体ウェハ2 にガス供
給系5 からSiH4 を100sccm、NH3 を500scc
m、B26 を10sccmをそれぞれ供給し、装置内の圧
力を5Torrに保つ。これにより、半導体ウェハ2 表面上
にシリコン窒化膜が形成される。
The thin film forming method of the present invention will be described with reference to FIG. The semiconductor wafer 2 is heated to 700 ° C. by the heater 4. 100 sccm of SiH 4 and 500 scc of NH 3 are supplied to the semiconductor wafer 2 from the gas supply system 5.
m and B 2 H 6 are supplied at 10 sccm respectively, and the pressure inside the apparatus is maintained at 5 Torr. As a result, a silicon nitride film is formed on the surface of the semiconductor wafer 2.

【0012】図2は上記シリコン窒化膜の成膜速度と成
膜温度の関係を示す特性図である。熱的エネルギーのみ
を与えるCVD法での成膜時においてSiH4 、NH3
以外にB26 を加えた原料ガスを使用した場合が実線
11である。また、破線12は比較対象となる従来の成膜技
術、SiH4 、NH3 のみからなる原料ガスを使用した
場合である。
FIG. 2 is a characteristic diagram showing the relationship between the deposition rate and the deposition temperature of the silicon nitride film. SiH 4 , NH 3 during film formation by the CVD method that provides only thermal energy
Solid line when using source gas with B 2 H 6 added
Eleven. Further, the broken line 12 is the case where the conventional film forming technique to be compared, and the raw material gas consisting of SiH 4 and NH 3 are used.

【0013】このように、従来の成膜技術では温度が下
がるにつれ急激に成膜速度が低下し、500℃付近では
ほとんど成膜されないのに対して、この発明における成
膜速度は低温領域でかなりの成膜速度が得られ、500
℃以下でも成膜される。したがって、この発明では、7
00℃以下の低温での成膜が容易に達成できる。成膜速
度が従来より上がるのは、B26 を添加したことによ
り基板上に吸着したボロンがSiH4 の吸着、分解を促
進するためである。
As described above, in the conventional film forming technique, the film forming rate rapidly decreases as the temperature lowers, and almost no film is formed near 500 ° C., whereas the film forming rate in the present invention is considerably low in the low temperature region. Film formation rate of 500
Films are formed even at temperatures below ℃. Therefore, in the present invention, 7
It is possible to easily achieve film formation at a low temperature of 00 ° C. or less. The reason why the film forming rate is higher than that of the conventional one is that boron adsorbed on the substrate by adding B 2 H 6 promotes adsorption and decomposition of SiH 4 .

【0014】この発明の方法を用いたときの膜の組成は
数%の窒化ホウ素を含んでいるが、実質的にはシリコン
窒化膜としてさしつかえなく、絶縁性、不純物の拡散は
通常使用しているシリコン窒化膜と差はほとんどみられ
ない。よって、半導体装置におけるアルミニウム配線上
の保護膜として十分使用できる。
The composition of the film using the method of the present invention contains several% of boron nitride, but it can be substantially used as a silicon nitride film, and insulation and diffusion of impurities are usually used. Almost no difference is seen with the silicon nitride film. Therefore, it can be sufficiently used as a protective film on aluminum wiring in a semiconductor device.

【0015】図3はこの発明に係る薄膜の形成方法の第
2の実施例によるCVD装置の断面図である。図1と同
様の箇所には図1と同一の符号を付している。半導体ウ
ェハ2 はヒータ4 により700℃に加熱、保温される。
この半導体ウェハ2 にガス供給系11からSiH4 を10
0sccm、NH3 を500sccm、N2 Oを500sccm、B
26 を10sccmをそれぞれ供給し、装置内の圧力を5
Torrに保つ。これにより、半導体ウェハ2 表面上にシリ
コン酸化窒化膜が形成される。
FIG. 3 is a sectional view of a CVD apparatus according to a second embodiment of the thin film forming method of the present invention. The same parts as those in FIG. 1 are designated by the same reference numerals as those in FIG. The semiconductor wafer 2 is heated to 700 ° C. and kept warm by the heater 4.
SiH 4 is supplied to the semiconductor wafer 2 from the gas supply system 11 by 10 times.
0 sccm, NH 3 500 sccm, N 2 O 500 sccm, B
2 H 6 is supplied at 10 sccm, and the pressure inside the device is 5
Keep on Torr. As a result, a silicon oxynitride film is formed on the surface of the semiconductor wafer 2.

【0016】シリコン酸化窒化膜はシリコン窒化膜とシ
リコン酸化膜の中間の性質を有する。この場合も、供給
ガスにB26 を加えない場合に比較して700℃以下
の低温領域での成膜速度が大きい。しかも、シリコン酸
化窒化膜としての膜の性能は従来の膜質に比べ実質的に
は劣らない。
The silicon oxynitride film has an intermediate property between the silicon nitride film and the silicon oxide film. Also in this case, the film forming rate in the low temperature region of 700 ° C. or lower is higher than that in the case where B 2 H 6 is not added to the supply gas. Moreover, the performance of the film as the silicon oxynitride film is substantially inferior to the conventional film quality.

【0017】以上の実施例において、SiH4 、NH
3 、N2 O、B26 を用いているがこれらのガスに限
定されることはない。例えば、SiH4 のかわりにSi
26、Si38 、SiH2 Cl2 、SiCl4 、S
i(CH34 等のSiを含むガスであれば同様の効果
が期待できる。また、B26 の代りにBCl3 やBF
3 、B(CH33 等のB(ボロン)を含むガスであれ
ば同様の効果が期待できる。
In the above embodiments, SiH 4 , NH
3 , N 2 O and B 2 H 6 are used, but not limited to these gases. For example, instead of SiH 4 , Si
2 H 6 , Si 3 H 8 , SiH 2 Cl 2 , SiCl 4 , S
A similar effect can be expected with a gas containing Si such as i (CH 3 ) 4 . Also, instead of B 2 H 6 , BCl 3 or BF
A similar effect can be expected with a gas containing B (boron) such as 3 , B (CH 3 ) 3 .

【0018】また、低温での成膜のみを考慮するなら、
熱分解のCVD法だけでなく、プラズマCVDや光CV
D等、その他のSVD法に用いることにより成膜のさら
なる低温化が期待される。また、N2 OのかわりにO2
やO3 または酸素ラジカルを加えても同様の結果が得ら
れる。NH3 のかわりにN24 (ヒドラジン)を用い
てもよい。
If only film formation at low temperature is considered,
Not only thermal decomposition CVD method, but also plasma CVD and optical CV
It is expected that the temperature of the film formation can be further lowered by using the SVD method such as D. Also, instead of N 2 O, O 2
Similar results are obtained by adding or O 3 or oxygen radicals. N 2 H 4 (hydrazine) may be used instead of NH 3 .

【0019】[0019]

【発明の効果】以上説明したようにこの発明によれば、
ボロン化合物のガスを添加することによって原料ガスの
半導体基板への吸着分解を促進させるので、熱的なエネ
ルギーのみを与える簡単なCVD装置により容易に低温
領域での成膜がなされる薄膜の形成方法が提供できる。
As described above, according to the present invention,
A method of forming a thin film in which a gas of a boron compound is added to promote adsorption and decomposition of a source gas on a semiconductor substrate, so that a film can be easily formed in a low temperature region by a simple CVD apparatus that provides only thermal energy Can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の薄膜の形成方法に係るCVD装置の
断面図。
FIG. 1 is a sectional view of a CVD apparatus according to a thin film forming method of the present invention.

【図2】この発明の方法を用いた場合のシリコン窒化膜
の成膜速度と成膜温度の関係を示す特性図。
FIG. 2 is a characteristic diagram showing a relationship between a film formation rate of a silicon nitride film and a film formation temperature when the method of the present invention is used.

【図3】この発明の第2の実施例の薄膜の形成方法に係
るCVD装置の断面図。
FIG. 3 is a sectional view of a CVD apparatus according to a thin film forming method of a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…石英チューブ、 2…半導体ウェハ、 3…ボート、 4
…ヒータ、 5…ガス供給系、 6…ドライポンプ、 7…排
ガス処理装置、8 ,9 …バルブ、10…ガスの流量制御装
置。
1 ... Quartz tube, 2 ... Semiconductor wafer, 3 ... Boat, 4
... Heater, 5 ... Gas supply system, 6 ... Dry pump, 7 ... Exhaust gas treatment device, 8, 9 ... Valve, 10 ... Gas flow rate control device.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱的なエネルギーのみを用いるCVD法
にボロンを含むガスを添加した原料ガスを用いることに
より半導体基板上にシリコン窒化膜またはシリコン酸化
窒化膜を形成することを特徴とする薄膜の形成方法。
1. A thin film characterized by forming a silicon nitride film or a silicon oxynitride film on a semiconductor substrate by using a raw material gas to which a gas containing boron is added in a CVD method using only thermal energy. Forming method.
【請求項2】 前記ボロンを含むガスがボロンの水素化
物、ボロンの塩素化物、ボロンのフッ化物、ボロン有機
物のいずれかであることを特徴とする特許請求の範囲第
1項に記載の薄膜の形成方法。
2. The thin film according to claim 1, wherein the gas containing boron is any one of a hydride of boron, a chlorinated product of boron, a fluoride of boron, and a boron organic compound. Forming method.
JP13318693A 1993-06-03 1993-06-03 Formation of thin film Pending JPH06349741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13318693A JPH06349741A (en) 1993-06-03 1993-06-03 Formation of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13318693A JPH06349741A (en) 1993-06-03 1993-06-03 Formation of thin film

Publications (1)

Publication Number Publication Date
JPH06349741A true JPH06349741A (en) 1994-12-22

Family

ID=15098711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13318693A Pending JPH06349741A (en) 1993-06-03 1993-06-03 Formation of thin film

Country Status (1)

Country Link
JP (1) JPH06349741A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015097255A (en) * 2013-10-07 2015-05-21 東京エレクトロン株式会社 Deposition method and deposition device of silicon nitride film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015097255A (en) * 2013-10-07 2015-05-21 東京エレクトロン株式会社 Deposition method and deposition device of silicon nitride film

Similar Documents

Publication Publication Date Title
US6313035B1 (en) Chemical vapor deposition using organometallic precursors
US6348420B1 (en) Situ dielectric stacks
US7105055B2 (en) In situ growth of oxide and silicon layers
US7473655B2 (en) Method for silicon based dielectric chemical vapor deposition
US20040255868A1 (en) Plasma etch resistant coating and process
JP2776726B2 (en) Method for manufacturing semiconductor device
US4501769A (en) Method for selective deposition of layer structures consisting of silicides of HMP metals on silicon substrates and products so-formed
US20090311857A1 (en) Method to form ultra high quality silicon-containing compound layers
JP2005534179A (en) Low temperature dielectric deposition using aminosilane and ozone.
TWI777069B (en) Substrate processing apparatus, electrode of substrate processing apparatus, and manufacturing method of semiconductor device
JP6594804B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
US20060024959A1 (en) Thin tungsten silicide layer deposition and gate metal integration
JP2008258591A (en) Plasma enhanced cyclic chemical vapor deposition of silicon-containing films
KR20190109484A (en) Substrate processing apparatus, manufacturing method and program of semiconductor device
US6147013A (en) Method of LPCVD silicon nitride deposition
JP3189771B2 (en) Method for manufacturing semiconductor device
JP2018163931A (en) Substrate processing device, method of manufacturing semiconductor device, and program
JPH06349741A (en) Formation of thin film
KR20050018641A (en) Low temperature dielectric deposition using aminosilane and ozone
JP2022087143A (en) Substrate processing method, semiconductor device manufacturing method, substrate processing device, and program
JP3081932B2 (en) Atmospheric pressure CVD equipment
KR100451507B1 (en) Method for manufacturing semiconductor device
KR100444611B1 (en) Method for manufacturing semiconductor device to reduce stress of substrate by forming silicon nitride layer using plasma
JPH06181205A (en) Method of manufacturing semiconductor device
JPS60158672A (en) Manufacture of semiconductor device