JPH06349522A - Molten salt battery - Google Patents

Molten salt battery

Info

Publication number
JPH06349522A
JPH06349522A JP5135847A JP13584793A JPH06349522A JP H06349522 A JPH06349522 A JP H06349522A JP 5135847 A JP5135847 A JP 5135847A JP 13584793 A JP13584793 A JP 13584793A JP H06349522 A JPH06349522 A JP H06349522A
Authority
JP
Japan
Prior art keywords
nacl
molten salt
battery
alcl
collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5135847A
Other languages
Japanese (ja)
Inventor
Yuichiro Murakami
勇一郎 村上
Akihiro Sawada
明宏 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5135847A priority Critical patent/JPH06349522A/en
Publication of JPH06349522A publication Critical patent/JPH06349522A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To lower the inner resistance of a battery and increase the capacity by increasing the solubility of NaCl by putting a porous electric collector between a positive electrode and a solid electrolytic pipe the inside of which is filled with a specified compound whose outside is sodium. CONSTITUTION:A solid electrolytic pipe 2 is put in the inside of an positive electrode container 1 and liquid sodium is stored in the inside of the pipe. Further an electric collector 4 is put in the inside wall in the inside of the container 1. Moreover, a poroous carbon felt 5 as a positive electrode is put in the inside of the collector 4. A mixture 6 of molten salts having various compositions and an active material SeCl4 is stored in an area surrounded with the bottom part of the container 1, the electrolytic pipe 2, and the felt 5. A negative electrode lead wire 7 is drawn out of sodium 3 and a positive electrode lead wire 8 is drawn out of the collector 4 and electricity is collected by the collector 4 and current runs through the lead wire 8. Consequently, solubility of Nail is increased and the inner resistance of the battery is lowered, resulting in the increase of the battery's capacity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、特に電力貯蔵や電気
自動車用バッテリー等に用いられる充放電可能な溶融塩
電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chargeable / dischargeable molten salt battery, which is particularly used for power storage, batteries for electric vehicles and the like.

【0002】[0002]

【従来の技術】周知の如く、溶融塩電池については、陰
極活物質として液体ナトリウム,陽極活物質としてS,
Se,Fe,Ni等を用いたものが知られている。これ
ら電池をNa/X電池(Xは活物質)と表示すると、N
a/S電池は充電状態の起電力が約2.1Vで作動温度
が約350℃と高いという性質を持つ。Na/Fe,N
i電池は充電状態の起電力は2.3〜2.6Vで、作動
温度は約250℃である。これに対し、Na/Se電池
は充電状態の起電力が約4Vと高く、Na/S,Na/
Fe,Ni電池の約2倍もあり、作動温度も約200℃
と低く、高エネルギー密度の電池が期待される。
As is well known, in molten salt batteries, liquid sodium is used as the cathode active material, S as the anode active material,
Those using Se, Fe, Ni, etc. are known. When these batteries are labeled as Na / X batteries (X is an active material), N
The a / S battery has a property that the electromotive force in a charged state is about 2.1 V and the operating temperature is as high as about 350 ° C. Na / Fe, N
The i battery has a charged state electromotive force of 2.3 to 2.6 V and an operating temperature of about 250 ° C. On the other hand, the Na / Se battery has a high electromotive force of about 4 V in the charged state, and Na / S, Na /
About twice as much as Fe and Ni batteries, operating temperature is about 200 ℃
Low and high energy density batteries are expected.

【0003】[0003]

【発明が解決しようとする課題】現在、Na/Se電池
用の電解質溶液として用いられる溶融塩としては、通常
NaCl/AlCl3 モル濃度比(以下、NaCl/A
lCl3 比と省略)≧1のAlCl3 −NaCl系が用
いられており、状態図から判断して、この組成領域では
溶融塩は液相(L)+NaClの固液共存状態であり、
液相中にたえずNaClの沈殿物が混在している状態で
使用されていた。この時の充放電反応は、次式で表わさ
れる。
At present, as a molten salt used as an electrolyte solution for a Na / Se battery, a NaCl / AlCl 3 molar concentration ratio (hereinafter referred to as NaCl / A) is usually used.
LCL 3 ratio abbreviated) AlCl 3 -NaCl system of ≧ 1 is used and it is judged from the state diagram, molten salt in this composition region is a solid-liquid coexistence state of the liquid phase (L) + NaCl,
It was used in a state where NaCl precipitates were always mixed in the liquid phase. The charge / discharge reaction at this time is represented by the following equation.

【0004】(放電時)4Na+SeCl4 +NaAl
Cl4 →Se+4NaCl+NaAlCl4 (充電時)Se+4NaCl+NaAlCl4 →4Na
+SeCl4 +NaAlCl4 溶融塩は液相にNaClが飽和し、既にNaClの沈殿
物がある状態であるので、放電反応により生成したNa
Clは溶融塩中で析出し、集電フェルト面に付着するの
で、放電を続けると次第に陽極部の活性点が減少し、溶
融塩と集電フェルト界面での電子の授受が阻害され、そ
の結果電池の内部抵抗が増加し、電池の容量もある値以
上には増やすことができず、活物質の利用率が低い等の
問題点がある。このため、溶融塩に第3成分を添加し、
溶融塩の組成を変えることにより、溶融塩中のNaCl
の溶解度を上げること等が必要であると考えられる。
(During discharge) 4Na + SeCl 4 + NaAl
Cl 4 → Se + 4NaCl + NaAlCl 4 (during charging) Se + 4NaCl + NaAlCl 4 → 4Na
In the + SeCl 4 + NaAlCl 4 molten salt, NaCl is saturated in the liquid phase, and there is already a precipitate of NaCl.
Since Cl precipitates in the molten salt and adheres to the surface of the current collecting felt, the active points of the anode part gradually decrease with continuous discharge, and the transfer of electrons at the interface between the molten salt and the current collecting felt is hindered. There are problems that the internal resistance of the battery increases, the capacity of the battery cannot be increased beyond a certain value, and the utilization rate of the active material is low. Therefore, the third component is added to the molten salt,
By changing the composition of the molten salt, NaCl in the molten salt
It is considered necessary to increase the solubility of

【0005】この発明はこうした事情を考慮してなされ
たもので、溶融塩中のNaClの溶解度を増大させるこ
とにより、電池の内部抵抗を下げ、容量を増大できる溶
融塩電池を提供することを目的とする。
The present invention has been made in view of these circumstances, and an object thereof is to provide a molten salt battery capable of lowering the internal resistance of the battery and increasing the capacity by increasing the solubility of NaCl in the molten salt. And

【0006】[0006]

【課題を解決するための手段】この発明者らは、実施例
記載の種々の試験を行った結果、NaBr,NaI等の
金属臭化物やヨウ化物の添加が溶融塩中のNaClの溶
解度を上げるのに効果があることを見い出し、以下の手
段を用いた。即ち、この発明は、陽極容器と、この陽極
容器内に配置され、内側にナトリウムを,外側にAlC
3 −NaCl又はAlCl3 −NaCl−金属ハロゲ
ン化物,及びセレン又はそのハロゲン化物を収容した固
体電解質管と、前記陽極容器と固体電解質管との間に配
置された多孔質集電電極とを具備することを特徴とする
溶融塩電池である。これにより、溶融塩中のNaClの
溶解度を増大させ、電池の内部抵抗を下げ、容量を増大
せることができる。
As a result of conducting various tests described in Examples, the present inventors have found that addition of metal bromides such as NaBr and NaI and iodides increases the solubility of NaCl in molten salt. Was found to be effective, and the following means were used. That is, the present invention is directed to an anode container, which is disposed inside the anode container and which has sodium inside and AlC outside.
l 3 -NaCl or AlCl 3 -NaCl- metal halides, and includes selenium or a solid electrolyte tube containing the halide, and a porous collector electrode disposed between the anode container and the solid electrolyte tube The molten salt battery is characterized in that This can increase the solubility of NaCl in the molten salt, reduce the internal resistance of the battery, and increase the capacity.

【0007】また、この発明において、完全充電状態に
おける液体AlCl3 −NaCl−金属ハロゲン化物系
溶融塩の組成として、AlCl3 濃度が50〜60モル
%であり、かつNaCl/AlCl3 比0.9以下の組
成範囲とすることにより、少なくとも完全充電状態では
NaClがほとんど析出しておらず、均一な液相が得ら
れる。
In the present invention, the composition of the liquid AlCl 3 --NaCl--metal halide molten salt in a fully charged state has an AlCl 3 concentration of 50 to 60 mol%, and a NaCl / AlCl 3 ratio of 0.9. By setting the compositional range below, NaCl is hardly precipitated at least in the fully charged state, and a uniform liquid phase is obtained.

【0008】[0008]

【作用】従来のAlCl3 −50モル%NaCl組成の溶
融塩を電解質とするNa/Se電池では、電池の内部抵
抗の約50%以上が陽極側の導電抵抗及び反応抵抗で占
められることが本発明者により確認されている。これら
の抵抗構成因子は、主として活物質カチオンの溶融塩中
の拡散抵抗及びNaCl析出に伴うNaイオン抵抗の変
動にある。そこで、溶融塩中のNaClの溶解度の向上
が電池の内部抵抗の低減と電池容量の向上に有効な手段
となる。
In a conventional Na / Se battery using a molten salt of AlCl 3 -50 mol% NaCl as an electrolyte, about 50% or more of the internal resistance of the battery is occupied by the conductive resistance and reaction resistance on the anode side. Confirmed by the inventor. These resistance components are mainly due to the diffusion resistance of the active material cation in the molten salt and the fluctuation of the Na ion resistance due to NaCl precipitation. Therefore, improving the solubility of NaCl in the molten salt is an effective means for reducing the internal resistance of the battery and improving the battery capacity.

【0009】例えば、この発明の実施例として作成した
200℃におけるAlCl3 −NaCl−SeCl4
状態図(図1)によれば、AlCl3 −NaCl系溶融
塩にSeCl4 を添加した場合、SeCl4 濃度が約1
5%未満の領域ではNaClとSeCl4 の沈殿物が存
在する(図1のL+N+S領域)。この状態図によれ
ば、AlCl3 −NaCl2成分系への200℃におけ
るNaClの溶解度は約49.8モル%であるのに対
し、AlCl3 −NaCl−SeCl4 系ではNaCl
の溶解度は約37.5モル%にまで減少していることが
わかった。このことは、活物質としてSeCl4 を添加
すると、溶解塩中のNaClの溶解度が減ることを意味
する。
[0009] For example, according to the AlCl 3 -NaCl-SeCl 4 system phase diagram at 200 ° C. created as an embodiment of the present invention (FIG. 1), the case of adding SeCl 4 to AlCl 3 -NaCl molten salts, SeCl 4 concentration is about 1
Precipitates of NaCl and SeCl 4 are present in the region of less than 5% (L + N + S region in FIG. 1). According to this phase diagram, AlCl 3 -NaCl2 solubility of NaCl at 200 ° C. to component whereas about 49.8 mole%, NaCl at AlCl 3 -NaCl-SeCl 4 system
Was found to be reduced to about 37.5 mol%. This means that the addition of SeCl 4 as active material reduces the solubility of NaCl in the dissolved salt.

【0010】この原因としては、SeCl4 が液相に溶
けることにより、液相中のClイオン濃度が増えるた
め、NaClの溶解度が減少することが考えられる。そ
こで、金属ハロゲン化物を添加することにより溶融塩の
融点が下がるという効果があるが、NaClの溶解度を
上げるためには、Clイオン濃度を減少させること、即
ち臭化物またはヨウ化物の添加が良好な作用を及ぼすこ
とになる。これは、既知のAlCl3 −50モル%NaC
l溶融塩にNaBrを10モル%以上添加すれば、実際
に液相中に存在していたNaClの沈殿物が200℃で
消滅し、沈殿物がない均一な液相が得られることからも
実証された作用である。
As a cause of this, it is conceivable that the solubility of NaCl decreases because SeCl 4 is dissolved in the liquid phase to increase the concentration of Cl ions in the liquid phase. Therefore, adding a metal halide has the effect of lowering the melting point of the molten salt, but in order to increase the solubility of NaCl, decreasing the Cl ion concentration, that is, adding bromide or iodide has a good effect. Will be affected. This is known AlCl 3 -50 mol% NaCl
l It was also proved that if NaBr is added to the molten salt in an amount of 10 mol% or more, the precipitate of NaCl actually existing in the liquid phase disappears at 200 ° C, and a uniform liquid phase without precipitate is obtained. It is the effect that was done.

【0011】図1から明らかのように、従来のAlCl
3 −50モル%NaCl溶融塩に活物質としてSeCl4
を添加した場合、NaClとSeCl4 の沈殿物が生成
し、その上ずみ液即ち電解液の組成は概略AlCl3 4
6.5モル%−NaCl37.5モル%−SeCl4 16モル%
である。このことは、NaCl/AlCl3 比=1の溶
融塩を出発物質として用いても、実際のNa/Se電池
ではNaClが析出するため、電解液のNaCl/Al
Cl3 比は0.8に変化していることを意味する。そこ
で、溶融塩電池を作成する手段として、出発物質として
AlCl3 −NaCl溶融塩の組成を、NaCl/Al
Cl3 比0.9以下にしておけば、完全充電状態で析出
しているNaClの量をほとんど無くすることができ
る。このためには、AlCl3 濃度50モル%以下でNa
Cl/AlCl3 比0.9以下の領域が好ましく、それ
以外の領域ではNaClの析出物が増えて、電池に悪影
響を与えるからである。溶融塩の組成が60モル%以上
になれば、導電性の悪いAlCl3 成分が増えるため、
電池の内部抵抗増加の原因となるとともに、溶融塩の腐
食性も強くなるので好ましくない。そこで、溶融塩の組
成としては、AlCl3濃度50〜60モル%でNaCl/
AlCl3 比0.9以下とすることが好ましい。なお、
NaCl/AlCl3 比=0.8又はAlCl3 濃度50
〜55モル%の領域とすることが、溶融塩の導電特性から
も更に好ましい実施形態とするものである。
As is apparent from FIG. 1, conventional AlCl
3 SeCl 4 -50 mole% NaCl molten salt as the active material
When NaCl is added, a precipitate of NaCl and SeCl 4 is formed, and the composition of the complete solution, that is, the electrolytic solution is approximately AlCl 3 4
6.5 mol% -NaCl37.5 mol% -SeCl 4 16 mol%
Is. This means that even if a molten salt having a NaCl / AlCl 3 ratio of 1 is used as a starting material, NaCl will precipitate in an actual Na / Se battery, and therefore NaCl / Al of the electrolyte solution
This means that the Cl 3 ratio has changed to 0.8. Therefore, as a means for producing a molten salt battery, the composition of AlCl 3 -NaCl molten salt as a starting material is changed to NaCl / Al.
If the Cl 3 ratio is 0.9 or less, the amount of NaCl precipitated in the fully charged state can be almost eliminated. For this purpose, when the AlCl 3 concentration is 50 mol% or less, Na
This is because a region where the Cl / AlCl 3 ratio is 0.9 or less is preferable, and in other regions, NaCl precipitates increase, which adversely affects the battery. If the composition of the molten salt is 60 mol% or more, the AlCl 3 component with poor conductivity increases,
This is not preferable because it causes an increase in the internal resistance of the battery and the corrosiveness of the molten salt becomes stronger. Therefore, the composition of the molten salt, NaCl at AlCl 3 concentration 50-60 mol% /
The AlCl 3 ratio is preferably 0.9 or less. In addition,
NaCl / AlCl 3 ratio = 0.8 or AlCl 3 concentration 50
It is a more preferable embodiment to set the region to 55 mol% in view of the conductive property of the molten salt.

【0012】添加する金属ハロゲン化物としては、KC
lやKlの場合、導電特性から判断して10モル%以下
が好ましい。金属臭化物として、NaBrの場合、添加
量には特に制限はなく、NaClの全てをNaBrで置
換したAlCl3 −NaBr系を選定してもその液相温
度はAlCl3 −NaCl系よりも低いので、溶融塩電
池を作製することができる。図2は、この発明により提
供された溶融塩電池の電解液として用いられるAlCl
3 −NaCl−NaBr系溶融塩の好ましい組成範囲を
示す。
The metal halide to be added is KC
In the case of 1 or Kl, it is preferably 10 mol% or less, judging from the conductive properties. In the case of NaBr as the metal bromide, the addition amount is not particularly limited, and even if an AlCl 3 —NaBr system in which all of NaCl is replaced with NaBr is selected, its liquidus temperature is lower than that of the AlCl 3 —NaCl system, Molten salt batteries can be made. FIG. 2 shows AlCl used as an electrolyte of a molten salt battery provided by the present invention.
The preferable composition range of the 3- NaCl-NaBr molten salt is shown.

【0013】[0013]

【実施例】以下、この発明の一実施例を図を参照して説
明する。まず、液相中に食塩が析出する条件を明らかに
するため、200℃におけるAlCl3 −NaCl−S
eCl4 系状態図を検討した。(1) AlCl3 ,NaC
l,SeCl4 の各粉末を乾燥したN2 雰囲気中で所定
の組成になるようにガラス管中に秤量した後、真空封入
し、200℃に加熱して溶融した時の、溶融塩の性状
(沈殿物の有無等)をその場観察し、さらにガラス管の
内部にガラスフィルターを取り付け、200℃で沈殿を
濾過した後、冷却して室温でX線回折により沈殿物の結
晶構造を調べ、200℃における状態図を作成した。得
られた状態図を図1に示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. First, in order to clarify the conditions under which salt precipitates in the liquid phase, AlCl 3 —NaCl—S at 200 ° C.
The eCl 4 system phase diagram was examined. (1) AlCl 3 , NaC
l, SeCl 4 powders were weighed in a glass tube in a dry N 2 atmosphere so as to have a predetermined composition, vacuum-sealed, and then heated to 200 ° C. to melt the molten salt ( The presence or absence of a precipitate, etc.) is observed in situ, a glass filter is attached inside the glass tube, the precipitate is filtered at 200 ° C., cooled, and the crystal structure of the precipitate is examined by X-ray diffraction at room temperature. A phase diagram at ° C was created. The obtained state diagram is shown in FIG.

【0014】この結果、従来の電解液であるAlCl3
−50モル%NaClに活物質としてSeCl4 を加えた
場合、完全充電状態でもNaClが析出していること、
NaCl/AlCl3 比が0.8となるAlCl3 −N
aCl系溶融塩を電解液として選定すれば、完全充電状
態では、NaClの析出物がない液相のみの溶融塩が得
られることが明らかとなった。
As a result, the conventional electrolytic solution AlCl 3
When SeCl 4 is added as an active material to −50 mol% NaCl, NaCl is precipitated even in a fully charged state,
AlCl 3 -N with a NaCl / AlCl 3 ratio of 0.8
It has been clarified that, when an aCl-based molten salt is selected as the electrolytic solution, a molten salt only in a liquid phase without NaCl precipitates can be obtained in a fully charged state.

【0015】(2) 従来のAlCl3 −50モル%NaCl
溶融塩にNaBrを10モル%以上添加すると、従来の
ものでは存在していたNaClの沈殿物が200℃でほ
とんど現われず、均一な液相のみからなる電解質が得ら
れることが明らかとなった。液相を冷却した場合、液相
温度以下の温度で、NaClやAlCl3 が析出せず、
更にSeCl4 を添加してもNaClが析出しないよう
な溶融塩の組成範囲を図2に示す。この図2でNaBr
濃度又はAlCl3 濃度が高くなると、NaCl濃度は
飽和濃度以下となるので、電池の放電反応によってもN
aClは析出量は少なくなるので、Na/Se電池の容
量増大に有効であると考えられる。
(2) Conventional AlCl 3 -50 mol% NaCl
It was revealed that when NaBr is added to the molten salt in an amount of 10 mol% or more, the NaCl precipitate which was present in the conventional one hardly appears at 200 ° C., and an electrolyte composed of a uniform liquid phase is obtained. When the liquid phase is cooled, NaCl or AlCl 3 does not precipitate at a temperature below the liquid phase temperature,
FIG. 2 shows the composition range of the molten salt in which NaCl does not precipitate even if SeCl 4 is added. In this figure, NaBr
If the concentration or AlCl 3 concentration becomes higher, the NaCl concentration becomes lower than the saturation concentration, so that the N concentration may increase due to the discharge reaction of the battery.
It is considered that aCl is effective in increasing the capacity of the Na / Se battery because the amount of precipitation is small.

【0016】(実施例)上記(1) ,(2) で得られた溶融
塩のデータをもとに、実際に図3に示した溶融塩電池を
作製し、以下の試験を行った。
(Example) Based on the data of the molten salt obtained in the above (1) and (2), the molten salt battery shown in FIG. 3 was actually manufactured and the following tests were conducted.

【0017】図3において、符番1は、ガラス製の陽極
容器である。なお、陽極容器の材質としては、金属やカ
ーボン管等を用いることも可能である。前記陽極容器1
の内側には、外径20mmφ,厚さ1mm,実効長さ100
mmのβ”アルミナチューブ(固体電解質管)2が配置さ
れている。この固体電解質管2の内側には、液体ナトリ
ウム3が収容されている。前記陽極容器1の内側には該
陽極容器1の内壁に接して集電部材4が配置され、更に
この集電部材4の内側には陽極としての多孔質カーボン
フェルト5が配置されている。ここで、前記多孔質カー
ボンフェルト5は、溶融塩との接触面積を増加させるた
めのものである。前記陽極容器1の底部,固体電解質管
2及び多孔質カーボンフェルト5で囲まれた領域には、
種々の組成の溶融塩と活物質SeCl4 の混合物6が収
容されている。前記液体ナトリウム3からは陰極リード
線7が取り出され、前記集電部材4からは陽極リード線
8が取り出されている。ここで、前記集電部材4により
集電し、陽極リード線8により電流を取り出す。
In FIG. 3, reference numeral 1 is a glass anode container. As the material of the anode container, it is also possible to use metal, carbon tube or the like. The anode container 1
Inside, inside diameter is 20mmφ, thickness is 1mm, effective length is 100mm.
A β ″ alumina tube (solid electrolyte tube) 2 of mm is arranged. Liquid sodium 3 is accommodated inside the solid electrolyte tube 2. Inside the anode container 1, the anode container 1 A current collecting member 4 is arranged in contact with the inner wall, and a porous carbon felt 5 as an anode is arranged inside the current collecting member 4. Here, the porous carbon felt 5 is a molten salt. In order to increase the contact area of the anode container 1, the area surrounded by the bottom of the anode container 1, the solid electrolyte tube 2 and the porous carbon felt 5,
A mixture 6 of molten salt of different composition and the active material SeCl 4 is contained. A cathode lead wire 7 is taken out from the liquid sodium 3 and an anode lead wire 8 is taken out from the current collecting member 4. Here, current is collected by the current collecting member 4 and current is taken out by the anode lead wire 8.

【0018】試作した溶融塩電池の性能を下記「表1」
に示し、また放電電流1Aで試験した場合の放電特性を
図4に示す。いずれの電池も理論容量は22Ahに設計
し、完全充電時の開放端電圧は3.8Vであった。本試
験では、放電限界容量を比較するため、下限電圧を3V
に設定した。
The performance of the prototype molten salt battery is shown in "Table 1" below.
4 and the discharge characteristics when tested with a discharge current of 1 A are shown in FIG. The theoretical capacity of each battery was designed to be 22 Ah, and the open end voltage when fully charged was 3.8V. In this test, in order to compare the discharge capacity
Set to.

【0019】[0019]

【表1】 但し、表1において、本発明(1) とは上記(1) による溶
融塩を用いた場合であり、本発明(2) とは上記(2) によ
る溶融塩を用いた場合を示す。
[Table 1] However, in Table 1, the present invention (1) is the case where the molten salt according to the above (1) is used, and the present invention (2) is the case where the molten salt according to the above (2) is used.

【0020】従来例の電池と比較し、完全充電状態でN
aClが析出していない本実施例で作成した本発明(1)
,(2) による電池では、内部抵抗が低下し、電池容量
が大幅に改善されている。本発明(2) の場合、3Aの放
電でも電池容量は15Ahあった。これはβ”アルミナ
の単位表面積の電流密度に換算すると約45mA/cm2
となり、電池として実用に供する値である。特に、本発
明(2) による電池の場合、NaBrを添加することによ
り、放電末期のNaClの析出量を低減できるため、電
池の内部抵抗が低くなるとともに、放電深度の深いとこ
ろまで高起電力を維持でき、活物質の利用率やエネルギ
ー密度が大幅に向上している。なお、溶融塩にNaI等
のヨウ化物を添加しても、液相中のClイオン濃度を減
少させるので、同様の電池特性改善効果が可能である。
Compared with the conventional battery, N
The present invention (1) prepared in this example in which aCl is not precipitated
In the battery according to (2), the internal resistance is lowered and the battery capacity is greatly improved. In the case of the present invention (2), the battery capacity was 15 Ah even with a discharge of 3 A. This is approximately 45 mA / cm 2 when converted to the current density per unit surface area of β ”alumina.
Is a value that is practically used as a battery. In particular, in the case of the battery according to the present invention (2), the addition amount of NaBr can reduce the precipitation amount of NaCl at the end of discharge, so that the internal resistance of the battery becomes low and a high electromotive force is generated even at a deep discharge depth. It can be maintained, and the utilization rate and energy density of the active material are greatly improved. Even if an iodide such as NaI is added to the molten salt, the Cl ion concentration in the liquid phase is reduced, and the similar effect of improving the battery characteristics is possible.

【0021】このように、上記実施例に係る溶融塩電池
は、図3に示す如く、ガラス製の陽極容器1と、前記陽
極容器1の内側に配置され,内部に液体ナトリウム3が
収容された固体電解質管2と、前記陽極容器1の内側で
該陽極容器1の内壁に接して配置された集電部材4と、
この集電部材4の内側に配置された多孔質カーボンフェ
ルト(陽極)5とを具備し、前記陽極容器1の底部,固
体電解質管2及び多孔質カーボンフェルト5で囲まれた
領域に種々の組成の溶融塩と活物質SeCl4の混合物
とを収容した構成になっているため、電池の内部抵抗を
下げて、容量を増大できる。
As described above, the molten salt battery according to the above-mentioned embodiment is provided with the glass anode container 1 and the inside of the anode container 1, and the liquid sodium 3 is contained therein. A solid electrolyte tube 2, and a current collecting member 4 arranged inside the anode container 1 and in contact with the inner wall of the anode container 1.
A porous carbon felt (anode) 5 disposed inside the current collecting member 4, and various compositions in the bottom portion of the anode container 1, the solid electrolyte tube 2 and the region surrounded by the porous carbon felt 5. Since the molten salt and the mixture of the active material SeCl 4 are contained, the internal resistance of the battery can be lowered and the capacity can be increased.

【0022】[0022]

【発明の効果】以上詳述したようにこの発明によれば、
溶融塩中のNaClの溶解度を増大させることにより、
3.5V以上の高起電力で容量の大きい充放電特性をも
ち、もって電力貯蔵等の産業上の貢献が大きい溶融塩電
池を提供できる。
As described above in detail, according to the present invention,
By increasing the solubility of NaCl in the molten salt,
It is possible to provide a molten salt battery having a high electromotive force of 3.5 V or more and a large charge / discharge characteristic, which has a large capacity, and thus makes a large industrial contribution such as power storage.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例に使用した200℃における
AlCl3 −NaCl−SeCl4 系状態図。
FIG. 1 is a phase diagram of an AlCl 3 —NaCl—SeCl 4 system at 200 ° C. used in an example of the present invention.

【図2】この発明により提供された溶融塩電池の電解液
として用いられるAlCl3 −NaCl−NaBr系溶
融塩の組成範囲を示す状態図。
FIG. 2 is a state diagram showing a composition range of an AlCl 3 —NaCl—NaBr molten salt used as an electrolytic solution of a molten salt battery provided by the present invention.

【図3】この発明の実施例に係る溶融塩電池の説明図。FIG. 3 is an explanatory diagram of a molten salt battery according to an embodiment of the present invention.

【図4】この発明の実施例に係る溶融塩電池の放電電流
1Aで試験した場合の放電特性図。
FIG. 4 is a discharge characteristic diagram of the molten salt battery according to the example of the present invention when tested at a discharge current of 1 A.

【符号の説明】[Explanation of symbols]

1…陽極容器、 2…固体電解質管、 3
…液体ナトリウム、4…集電部材、 5…多孔質カ
ーボンフェルト、7…陰極リード線、8…陽極リード
線。
1 ... Anode container, 2 ... Solid electrolyte tube, 3
... liquid sodium, 4 ... current collecting member, 5 ... porous carbon felt, 7 ... cathode lead wire, 8 ... anode lead wire.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 陽極容器と、この陽極容器内に配置さ
れ、内側にナトリウムを,外側にAlCl3 −NaCl
又はAlCl3 −NaCl−金属ハロゲン化物,及びセ
レン又はそのハロゲン化物を収容した固体電解質管と、
前記陽極容器と固体電解質管との間に配置された多孔質
集電電極とを具備することを特徴とする溶融塩電池。
1. An anode container, which is arranged in the anode container, in which sodium is inside and AlCl 3 —NaCl is outside.
Or a solid electrolyte tube containing AlCl 3 -NaCl-metal halide and selenium or its halide;
A molten salt battery comprising: a porous collector electrode disposed between the anode container and the solid electrolyte tube.
【請求項2】 AlCl3 濃度が50〜60モル%で、
かつNaCl/AlCl3 が0.9以下の組成範囲であ
る請求項1記載の溶融塩電池。
2. The AlCl 3 concentration is 50 to 60 mol%,
The molten salt battery according to claim 1, wherein the composition range of NaCl / AlCl 3 is 0.9 or less.
JP5135847A 1993-06-07 1993-06-07 Molten salt battery Withdrawn JPH06349522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5135847A JPH06349522A (en) 1993-06-07 1993-06-07 Molten salt battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5135847A JPH06349522A (en) 1993-06-07 1993-06-07 Molten salt battery

Publications (1)

Publication Number Publication Date
JPH06349522A true JPH06349522A (en) 1994-12-22

Family

ID=15161159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5135847A Withdrawn JPH06349522A (en) 1993-06-07 1993-06-07 Molten salt battery

Country Status (1)

Country Link
JP (1) JPH06349522A (en)

Similar Documents

Publication Publication Date Title
US3969139A (en) Lithium electrode and an electrical energy storage device containing the same
CA1058284A (en) Metallic sulfide additives for positive electrode material within a secondary electrochemical cell
JP4623965B2 (en) Electrolyte additives for non-aqueous electrochemical cells
JP2716268B2 (en) Electrochemical cell
JP3407733B2 (en) Method of forming inorganic solid electrolyte thin film
KR102339641B1 (en) Sodium-Aluminum Battery with Sodium Ion Conductive Ceramic Separator
JP2718759B2 (en) Electrochemical cell
JPS6145353B2 (en)
US8795868B1 (en) Rechargeable lithium-air and other lithium-based batteries using molten nitrates
US20200321662A1 (en) High temperature lithium air battery
KR102302404B1 (en) Intermediate temperature sodium-metal halide battery
US3484296A (en) Low temperature battery
JPH06325800A (en) Battery
US4631240A (en) Electrochemical cell
JPH06349522A (en) Molten salt battery
US4357399A (en) Alkali metal-sulfur cells
US3918991A (en) Sodium-halogen battery
US3879224A (en) Sealed primary sodium-halogen cell
US3976504A (en) Sealed lithium-iodine cell
US3879223A (en) Sealed primary sodium-halogen cell
US4058651A (en) Rechargeable aqueous metal-halogen cell
JPH11250933A (en) Nonaqueous electrolyte secondary battery
JP2000058120A (en) Electrolyte for lithium secondary battery
JPH07335251A (en) Sodium fused salt battery
US3953229A (en) Sealed lithium-reducible phosphorous oxyhalide cell

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000905