JPH06346150A - Forming material for can for battery and its production - Google Patents

Forming material for can for battery and its production

Info

Publication number
JPH06346150A
JPH06346150A JP5134987A JP13498793A JPH06346150A JP H06346150 A JPH06346150 A JP H06346150A JP 5134987 A JP5134987 A JP 5134987A JP 13498793 A JP13498793 A JP 13498793A JP H06346150 A JPH06346150 A JP H06346150A
Authority
JP
Japan
Prior art keywords
steel sheet
forming
battery
annealing
low carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5134987A
Other languages
Japanese (ja)
Inventor
Hirofumi Sugikawa
裕文 杉川
Yukio Michihashi
幸雄 道端
Keiichi Hayashi
圭一 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Katayama Special Industries Ltd
Original Assignee
Katayama Special Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Katayama Special Industries Ltd filed Critical Katayama Special Industries Ltd
Priority to JP5134987A priority Critical patent/JPH06346150A/en
Priority to DE69404765T priority patent/DE69404765T2/en
Priority to ES94101200T priority patent/ES2106376T3/en
Priority to EP94101200A priority patent/EP0629009B1/en
Priority to US08/187,000 priority patent/US5576113A/en
Publication of JPH06346150A publication Critical patent/JPH06346150A/en
Priority to US08/373,438 priority patent/US5840441A/en
Priority to US08/423,721 priority patent/US5603782A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

PURPOSE:To attain the reduction of the producing time, cost or the like in a forming material for a can for a battery by making it of a stable material free from the generation of the aging of strains and executing annealing treatment by continuous annealing. CONSTITUTION:A can for a battery having a one end opening type cylindrical shape is made of a forming material with a sheet shape for forming by DI (Drawing and Ironing) working obtd. by applying the obverse and reverse faces of a dead soft steel sheet 13 contg. <0.009wt.% carbon with plating layers 4. The dead soft steel sheet 13 in annealed by continuous annealing in a stage before or after the stage of forming the plating layers 4, by which the material can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、DI(Drawing and I
roning)絞り加工による電池用缶の形成に適した形成材
料およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to DI (Drawing and I).
The present invention relates to a forming material suitable for forming a battery can by drawing and a manufacturing method thereof.

【0002】[0002]

【従来の技術】近時、主としてプラス側とする一端閉鎖
面と、マイナス側としてカバーを取り付ける他端開口部
を有する円筒状の電池用缶を製造する方法として図5に
示すDI絞り加工方法が開発されている。このDI絞り
加工方法はシート鋼板Sから基材Mを打ち抜く際に、底
壁M−1と周壁M−2とを有する浅底円筒形状としてカ
ップを絞りながら打ち抜き、このカップを次の1工程の
深絞り加工で所要の深さと径を有する円筒形状に加工す
るものである。
2. Description of the Related Art Recently, a DI drawing method shown in FIG. 5 has been used as a method for producing a cylindrical battery can having a closed surface on one end, which is mainly on the plus side, and an opening on the other end, which is attached on the minus side. Being developed. In this DI drawing method, when the base material M is punched out from the sheet steel plate S, it is punched while being drawn into a shallow cylindrical shape having a bottom wall M-1 and a peripheral wall M-2, and the cup is subjected to the next one step. Deep drawing is performed to form a cylindrical shape having a required depth and diameter.

【0003】上記DI絞り加工を用いる場合、カップを
深絞りする工程で、周壁のみを引き伸ばし加工するた
め、一例として底壁の板厚0.4mmで、周壁の板厚を
0.15mmまで絞ることが可能で、板厚に対するしご
き率(減少率)は従来の2倍強とすることができる。こ
のように、周壁を薄肉とすると中空部の容積が大きくな
り、充填剤が増加して電池特性を向上させることができ
る。また、加工工程が缶形成材料であるシート鋼板から
カップを打ち抜く一工程のカッピング工程と、絞り加工
するDI工程の一工程との合計二工程のみで良いため、
加工工程の大幅な減少、それに伴う製造コストの低減を
図ることができる。
When the above-mentioned DI drawing is used, since only the peripheral wall is stretched in the deep drawing process of the cup, as an example, the thickness of the bottom wall is 0.4 mm and the thickness of the peripheral wall is reduced to 0.15 mm. The ironing rate (reduction rate) with respect to the plate thickness can be more than double the conventional value. As described above, when the peripheral wall is thin, the volume of the hollow portion is increased, the amount of the filler is increased, and the battery characteristics can be improved. Further, since the processing steps are only a total of two steps including a cupping step of punching a cup from a sheet steel sheet which is a can forming material and a DI step of drawing,
It is possible to significantly reduce the number of processing steps and accordingly reduce the manufacturing cost.

【0004】従来、上記DI絞り加工により電池用缶を
製造するためのシート鋼板は、炭素含有率が0.04〜
0.05重量%の低炭素鋼であって、図6に示す方法で
製造していた。
Conventionally, a sheet steel sheet for producing a battery can by the above DI drawing has a carbon content of 0.04 to.
It was a low carbon steel of 0.05% by weight and was manufactured by the method shown in FIG.

【0005】すなわち、未焼鈍冷延鋼板に対してバッチ
焼鈍(工程#1)と調質圧延(工程#2)を行い、その
後、表裏面にメッキを施す(工程#3)。そして、この
メッキ層を設けた鋼板に連続焼鈍(工程#4)、調質圧
延(工程#5)を行い、さらに、メッキを施して(工程
#6)シート鋼板を製造していた。
That is, batch annealing (step # 1) and temper rolling (step # 2) are performed on an unannealed cold rolled steel sheet, and then the front and back surfaces are plated (step # 3). Then, the steel sheet provided with this plated layer was subjected to continuous annealing (step # 4), temper rolling (step # 5), and further plated (step # 6) to manufacture a sheet steel sheet.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記バ
ッチ焼鈍(工程#1)には、下記の不都合がある。ま
ず、バッチ焼鈍では、図7に示すように、フープ状に巻
いた鋼板S'を焼鈍炉Wの内部に積み上げた状態で焼鈍
を行うため、鋼板S'どうしが癒着することによるキズ
の発生を防ぐために、各鋼板S'の表面にケイ酸ソーダ
を塗布して皮膜を設ける必要がある。しかし、このケイ
酸ソーダの皮膜が破れると、その破れた皮膜が粉となる
と共に鉄粉が生じ、鋼板表面の品質低下の原因となる。
特に、調質圧延(工程#2)の際に圧延用のロール表面
に鉄粉が付着すると、この付着した鉄粉が鋼板に転写さ
れてロールマークが付いてしまう。
However, the batch annealing (step # 1) has the following disadvantages. First, in batch annealing, as shown in FIG. 7, since steel plates S ′ wound in a hoop shape are annealed in a state of being stacked inside an annealing furnace W, the occurrence of scratches due to the adhesion of the steel plates S ′ to each other. In order to prevent this, it is necessary to apply sodium silicate to the surface of each steel plate S ′ to form a film. However, when the film of this sodium silicate breaks, the broken film becomes powder and iron powder is generated, which causes deterioration of the quality of the steel sheet surface.
In particular, when iron powder adheres to the surface of the rolling roll during temper rolling (process # 2), the adhered iron powder is transferred to the steel plate and a roll mark is attached.

【0007】また、バッチ焼鈍は、図8に示すように、
1時間かけて550〜600℃の範囲で加熱し、この温
度で2〜10時間保持し、さらに23〜33時間かけて
100℃まで除冷するため、焼鈍開始から炉出までに3
6時間もの時間を要し、コスト増大の原因となる。
Further, the batch annealing, as shown in FIG.
It is heated in the range of 550 to 600 ° C. for 1 hour, kept at this temperature for 2 to 10 hours, and further cooled to 100 ° C. in 23 to 33 hours.
It takes as long as 6 hours, which increases costs.

【0008】さらに、バッチ焼鈍で、上記のように鋼板
をフープ状として焼鈍を行うため、鋼板S'の温度分布
が良好でなく、均質に焼鈍するのは困難である。
Further, in the batch annealing, since the steel sheet is annealed in the hoop shape as described above, the temperature distribution of the steel sheet S'is not good and it is difficult to uniformly anneal it.

【0009】これに対して、上記工程#4で行う連続焼
鈍は、シート鋼板をロールにより送りながら焼鈍を行う
ため、ケイ酸ソーダを塗布し皮膜を設ける必要がなく、
温度分布も良好である。また、連続焼鈍の場合、図9に
示すように、1分間で600〜900℃まで急速に加温
してこの温度で30秒保持し、20秒で400℃まで冷
却して2分30秒間過時効処理を行い、さらに15秒で
100℃まで急冷する。よって、連続焼鈍であれば、焼
鈍開始から炉出まで約5分程度の時間しかかからない。
On the other hand, in the continuous annealing performed in the above step # 4, since the sheet steel sheet is annealed while being fed by a roll, it is not necessary to apply sodium silicate to form a film,
The temperature distribution is also good. Further, in the case of continuous annealing, as shown in FIG. 9, it is rapidly heated to 600 to 900 ° C. in 1 minute and kept at this temperature for 30 seconds, cooled to 400 ° C. in 20 seconds and passed for 2 minutes and 30 seconds. An aging treatment is performed, and the material is rapidly cooled to 100 ° C. in 15 seconds. Therefore, in the case of continuous annealing, it takes about 5 minutes from the start of annealing to leaving the furnace.

【0010】しかし、上記炭素含有率が0.04〜0.0
5重量%の低炭素鋼では、下記の理由により、上記工程
#1のバッチ焼鈍に代えて連続焼鈍を行うことはできな
い。
However, the carbon content is 0.04 to 0.0.
For 5 wt% low carbon steel, continuous annealing cannot be performed in place of the batch annealing in the above step # 1 for the following reason.

【0011】すなわち、上記低炭素鋼は、常温では、鉄
のα固溶体(フェライト)と、FeC3(パーライト)
が混合した状態であり、未焼鈍材の場合、フェライト中
のセメンタイト(炭素原子A)は、図10に示すよう
に、鉄原子Bの配置が異なった部分(転位部D)に集中
する傾向がある。鋼板に外力が加わるとこの転位部Dが
すべり面Xに沿って移動することにより変形が起きるの
であるが、セメンタイトが転位部Dに集中していると、
転位部Dの移動抵抗にセメンタイトの為に生じる抵抗が
加わり、図11(A)に示す降伏点のびYlが生じる。
そして、この降伏点のびYlがある鋼板に対して上記D
I絞り加工を行うと、図12に示す電池用缶1の表面に
線模様(リューダース・ライン)が生じる。特に、トッ
プ部1aは電池として完成品となった際に眼に触れるた
め、上記リューダース・ラインがあると電池の外観上好
ましくない。
That is, the above-mentioned low-carbon steel has an α solid solution of iron (ferrite) and FeC 3 (perlite) at room temperature.
In the case of the unannealed material, the cementite (carbon atom A) in the ferrite tends to concentrate in the portion where the disposition of the iron atoms B is different (dislocation portion D), as shown in FIG. is there. When an external force is applied to the steel sheet, the dislocation portion D moves along the slip surface X, causing deformation. However, if cementite is concentrated in the dislocation portion D,
The resistance generated by cementite is added to the movement resistance of the dislocation portion D, and the yield point extension Yl shown in FIG. 11A is generated.
Then, for the steel plate having the yield point extension Yl, the above D
When the I drawing process is performed, a line pattern (Luders line) is generated on the surface of the battery can 1 shown in FIG. In particular, since the top portion 1a comes into contact with the eyes when the battery is completed as a finished product, the presence of the above Luders line is not preferable in terms of the appearance of the battery.

【0012】一方、上記低炭素鋼を加熱するとセメンタ
イトは過飽和固溶体となり、再雇用が起るため、焼鈍及
び調質圧延を行うと図11(B)に示すように、降伏点
のびYlは消失する。しかし、連続焼鈍の場合は、上記
のように急加温、急冷却を行うため、再結晶によってひ
ずみは完全に除去されず、時間の経過と共に図11
(C)に示すように再び降伏点のびYlが発生する現象
(時効)が生じる。これに対して、バッチ焼鈍の場合、
緩加温、緩冷却であるため、ひずみのない結晶が生成し
ており、上記時効は生じない。よって、従来は、時効に
よるリューダス・ラインの発生を防止するために、冷延
鋼板を焼鈍する工程では連続焼鈍を行うことができず、
バッチ焼鈍を行わざるを得なかった。
On the other hand, when the above low carbon steel is heated, cementite becomes a supersaturated solid solution and re-employment occurs. Therefore, when annealing and temper rolling are performed, the yield point spread Yl disappears as shown in FIG. 11 (B). . However, in the case of continuous annealing, since rapid heating and rapid cooling are performed as described above, strain is not completely removed by recrystallization, and as time elapses, as shown in FIG.
As shown in (C), a phenomenon (aging) in which the yield point spread Yl occurs again occurs. On the other hand, in the case of batch annealing,
Because of slow heating and slow cooling, strain-free crystals are generated and the above aging does not occur. Therefore, conventionally, continuous annealing cannot be performed in the step of annealing the cold-rolled steel sheet in order to prevent the generation of the Luders line due to aging,
There was no choice but to carry out batch annealing.

【0013】本発明は、上記のような従来の電池用缶の
缶形成材料における問題を解決するためになされたもの
であって、ひずみの時効が生じないような安定した材質
の鋼板とすることにより、焼鈍工程を連続焼鈍により行
うことを可能とし、製造時間の短縮、コストの低減等を
図ることを目的としてなされたものである。
The present invention has been made in order to solve the above problems in the conventional can-forming materials for battery cans, and provides a steel sheet of a stable material that does not cause strain aging. Thus, the annealing process can be performed by continuous annealing, and the purpose is to shorten the manufacturing time, reduce the cost, and the like.

【0014】[0014]

【課題を解決するための手段】従って、本発明は、一端
開口の円筒形状の電池用缶をDI(Drawing and Ironi
ng)絞り加工で形成するために用いる形成材料であっ
て、炭素含有量が0.009重量%未満の極低炭素鋼板
の表裏面にメッキ層を設けることを特徴とする電池用缶
の形成材料を提供するものであり、上記極低炭素鋼板
は、具体的には、コイル状に巻いた連続シートであるこ
とが好ましい。
Therefore, according to the present invention, a cylindrical battery can having an opening at one end is used for DI (Drawing and Ironi).
ng) A forming material used for forming by drawing, which is characterized in that a plating layer is provided on the front and back surfaces of an ultra-low carbon steel sheet having a carbon content of less than 0.009% by weight. Specifically, it is preferable that the ultra-low carbon steel sheet is specifically a continuous sheet wound in a coil shape.

【0015】また、本発明は、一端開口の円筒形状の電
池用缶をDI(Drawing and Ironing)絞り加工で形成
するために用いる形成材料を製造する方法であって、炭
素含有量が0.009重量%未満の極低炭素鋼板の未焼
鈍冷延鋼板を連続焼鈍する工程と、上記鋼板の表裏両面
にメッキ層を形成する工程と、を備えることを特徴とす
る電池用缶の形成材料の製造方法を提供するものであ
る。
Further, the present invention is a method for producing a forming material used for forming a cylindrical battery can having an opening at one end by DI (Drawing and Ironing) drawing, and having a carbon content of 0.009. Manufacture of a material for forming a battery can, which comprises a step of continuously annealing an unannealed cold-rolled steel sheet of ultra-low carbon steel sheet of less than wt%, and a step of forming plating layers on both front and back surfaces of the steel sheet. It provides a method.

【0016】上記製造方法は、具体的には、炭素含有量
が0.009重量%未満の極低炭素鋼板の未焼鈍冷延鋼
板を連続焼鈍する工程と、上記連続焼鈍の後に鋼板の表
裏両面にメッキ層を形成する工程と、該メッキ層を形成
した鋼板を連続焼鈍する工程とを備えることが好まし
い。
[0016] Specifically, the above-mentioned manufacturing method includes a step of continuously annealing an unannealed cold-rolled steel sheet of an ultra-low carbon steel sheet having a carbon content of less than 0.009% by weight, and both the front and back surfaces of the steel sheet after the continuous annealing. It is preferable that the method further comprises a step of forming a plating layer and a step of continuously annealing the steel sheet on which the plating layer is formed.

【0017】あるいは、上記製造方法は、炭素含有量が
0.009重量%未満の極低炭素鋼板の表裏両面にメッ
キ層を形成する工程と、該メッキ層を形成した未焼鈍冷
延鋼板を連続焼鈍する工程とを備えることが好ましい。
Alternatively, in the above-mentioned manufacturing method, a step of forming plating layers on both front and back surfaces of an ultra low carbon steel sheet having a carbon content of less than 0.009% by weight and an unannealed cold rolled steel sheet on which the plating layers are formed are continuously formed. And a step of annealing.

【0018】[0018]

【作用】炭素含有量が0.009重量%未満の極低炭素
鋼板は、ひずみの時効がないため、焼鈍処理を行った後
は降伏点のびのない状態で維持される。よって、極低炭
素鋼板の表裏両面にメッキ層を設けてなる本発明の電池
用缶の形成材料は、冷延後の焼鈍を連続焼鈍により行う
ことができ、製造に要する時間を短縮することができ
る。また、本発明の形成材料を用いてDI絞り加工によ
り電池用缶を形成すると、上記のように降伏点のびがな
いためリューダース・ラインが発生せず、外観の優れた
電池用缶を得ることができる。
The ultra-low carbon steel sheet having a carbon content of less than 0.009% by weight has no strain aging, and therefore is maintained in a yield point-free state after the annealing treatment. Therefore, the forming material of the battery can of the present invention, which is provided with plating layers on both front and back surfaces of an ultra-low carbon steel sheet, can perform annealing after cold rolling by continuous annealing, and can shorten the time required for production. it can. Further, when a battery can is formed by DI drawing using the forming material of the present invention, since there is no yield point spread as described above, a Luders line does not occur and a battery can having an excellent appearance is obtained. You can

【0019】[0019]

【実施例】次に、図面に示す実施例に基づいて、本発明
について詳細に説明する。図1は、本発明の実施例に係
る電池用缶の形成材料であるシート鋼板2を示してい
る。このシート鋼板2は、極低炭素鋼板3の表裏両面に
ニッケルのメッキ層4を設けてなる。上記極低炭素鋼の
成分は、下記の表1に示すとおりであり、炭素含有量が
0.002〜0.003重量%であって、上記した従来電
池用缶の形成材料として用いられていた低炭素鋼(0.
04〜0.05重量%)と比較して炭素含有量がきわめ
て微量である。なお、極低炭素鋼の成分はこれに限定さ
れず、炭素含有量が0.009重量%未満であればよ
い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the embodiments shown in the drawings. FIG. 1 shows a sheet steel plate 2 which is a material for forming a battery can according to an embodiment of the present invention. The sheet steel plate 2 is formed by providing nickel plating layers 4 on both front and back surfaces of an ultra-low carbon steel plate 3. The components of the ultra-low carbon steel are as shown in Table 1 below, and the carbon content was 0.002 to 0.003% by weight, which was used as a material for forming the conventional battery can described above. Low carbon steel (0.
The content of carbon is extremely small compared to that of (04 to 0.05% by weight). The composition of the ultra-low carbon steel is not limited to this, and the carbon content may be less than 0.009% by weight.

【0020】[0020]

【表1】成分 含有量(重量%) C 0.002〜0.003 Mn 0.14 Si 0.02 P 0.016 S 0.012 H 0.065 Fe 残量[Table 1] Components Content (wt%) C 0.002 to 0.003 Mn 0.14 Si 0.02 P 0.016 S 0.012 H 0.065 Fe Remaining amount

【0021】次に、上記シート鋼板の製造方法について
説明する。まず、図2中工程#11において熱延済みの
極低炭素鋼を常温下で冷延した後、工程#12において
連続焼鈍を行う。
Next, a method for manufacturing the sheet steel sheet will be described. First, ultra low carbon steel that has been hot rolled in step # 11 in FIG. 2 is cold rolled at room temperature, and then continuously annealed in step # 12.

【0022】上記工程#12の連続焼鈍では、熱延済み
の極低炭素鋼をロールにより送りながら焼鈍処理する。
この連続焼鈍における温度設定は、前記した図9に示す
ように、まず、1分間で730℃まで急加温して30秒
間保持し、その後20秒で400℃まで急冷する。さら
に、400℃で2分30秒間過時効処理を行い、15秒
で100℃まで冷却した後炉出しする。連続焼鈍に要す
る時間は、約5分程度であり、きわめて短時間で焼鈍処
理が終了する。連続焼鈍により、鋼板3の金属組織が再
結晶し、ひずみのない状態となる。この連続焼鈍の場
合、上記のように鋼板をロールにより送りながら焼鈍処
理を行うため鋼板の温度分布は均一であり、また、鋼板
に皮膜を設ける必要もない。なお、連続焼鈍の温度設定
はこれに限定されず、最高温度を600〜900℃に設
定すればよい。
In the continuous annealing in the step # 12, the ultra-low carbon steel which has been hot rolled is annealed while being fed by a roll.
As for the temperature setting in this continuous annealing, first, as shown in FIG. 9, first, the temperature is rapidly heated to 730 ° C. for 1 minute and held for 30 seconds, and then rapidly cooled to 400 ° C. for 20 seconds. Further, overaging treatment is performed at 400 ° C. for 2 minutes and 30 seconds, cooled to 100 ° C. in 15 seconds, and then removed from the furnace. The time required for continuous annealing is about 5 minutes, and the annealing process is completed in an extremely short time. Due to the continuous annealing, the metal structure of the steel sheet 3 is recrystallized to be in a strain-free state. In the case of this continuous annealing, the temperature distribution of the steel sheet is uniform because the annealing treatment is performed while the steel sheet is fed by the rolls as described above, and it is not necessary to provide a coating on the steel sheet. The temperature setting for continuous annealing is not limited to this, and the maximum temperature may be set to 600 to 900 ° C.

【0023】次に、工程#13において、圧下率1.5
%で調質圧延を行う。この調質圧延を終了した時点での
鋼板の応力とひずみの関係は、前記した図11(B)に
示すようになり、降伏点のびが消失する。また、本実施
例では、鋼板3を、炭素含有率が0.002〜0.003
重量%の極低炭素鋼板としているため、時効が生じるこ
とがなく、応力−ひずみの関係は、上記図11(B)の
状態が維持され、降伏点のびが再度発生することはな
い。これは、図3に示すように、炭素含有率が0.00
9%未満の場合、常温ではセメンタイトが存在せず、炭
素原子は鉄のα固溶体に存在するからであり、本発明者
は、上記炭素含有率が0.009%未満の極低炭素鋼に
時効が生じないことを実験により確認した。
Next, in step # 13, the reduction rate is 1.5.
Performs temper rolling in%. The relationship between the stress and strain of the steel sheet at the time of finishing the temper rolling is as shown in FIG. 11 (B) described above, and the yield point elongation disappears. In addition, in this example, the steel sheet 3 had a carbon content of 0.002 to 0.003.
Since the ultra-low carbon steel sheet of weight% is used, aging does not occur, the stress-strain relationship is maintained in the state shown in FIG. 11B, and the yield point stretch does not occur again. This has a carbon content of 0.00, as shown in FIG.
This is because if it is less than 9%, cementite does not exist at room temperature and carbon atoms exist in the α solid solution of iron, and the present inventor aged the ultra low carbon steel having the carbon content of less than 0.009%. It was confirmed by an experiment that no occurrence of

【0024】次に、工程#14において、上記鋼板3の
表裏両面にニッケルメッキを施してメッキ層4を形成す
る。工程#15,#16では、Fe−Ni拡散層を形成
すると共に、メッキ層4の組織を調整するために、再び
連続焼鈍及び調質圧延を行う。この工程#15の連続焼
鈍、工程#16の調質圧延は、それぞれ上記した工程#
12,#13と同様の条件設定で行い、完成したシート
鋼板2はコイル状に巻き取られる。
Next, in step # 14, the front and back surfaces of the steel plate 3 are nickel-plated to form a plating layer 4. In steps # 15 and # 16, the Fe-Ni diffusion layer is formed, and in order to adjust the structure of the plating layer 4, continuous annealing and temper rolling are performed again. The continuous annealing in step # 15 and the temper rolling in step # 16 are the same as those in step #
The completed sheet steel plate 2 is wound into a coil shape under the same condition settings as in No. 12 and # 13.

【0025】上記工程#11〜#16により製造された
シート鋼板2は、上記のように鋼板3の炭素含有量が極
めて微量であるためひずみの時効が生じることはなく、
降伏点のびのない状態で維持される。このシート鋼板2
を用いて、DI絞り加工により電池用缶を成形すると、
電池用缶にリューダース・ラインが生じることがなく、
外観上極めて優れた電池用缶を形成することができる。
また、上記工程#12,#14における焼鈍処理をいず
れも連続焼鈍により行っているため、製造に要する時間
を短縮すると共に、コストの低減を図ることができる。
The sheet steel sheet 2 produced by the above steps # 11 to # 16 does not undergo strain aging because the carbon content of the steel sheet 3 is extremely small as described above.
The yield point is maintained without any stretch. This sheet steel plate 2
When a battery can is formed by DI drawing using
There is no Luders line on the battery can,
It is possible to form a battery can having an extremely excellent appearance.
Further, since the annealing treatments in the steps # 12 and # 14 are both performed by continuous annealing, it is possible to shorten the time required for manufacturing and reduce the cost.

【0026】図4は、上記図1のシート鋼板2を製造す
るための他の方法を示している。この図4の製造方法で
は、まず、工程#21において、熱延済みの鋼材に、冷
延、調質圧延仕上げを行う。
FIG. 4 shows another method for manufacturing the sheet steel plate 2 of FIG. In the manufacturing method of FIG. 4, first, in step # 21, the hot rolled steel material is subjected to cold rolling and temper rolling finish.

【0027】工程#21の後は、連続焼鈍及び調質圧延
(第1実施例の工程#12,#13)を行うことなく、
工程#14において鋼板3の表裏面にニッケルメッキを
施す。続いて、工程#15,#16において連続焼鈍、
調質圧延を行う。このように、図4の製造方法では、上
記図2の工程#12,#13の連続焼鈍、調質圧延を省
略し、工程#15,#16において、鋼板とメッキ層の
焼鈍及び調質圧延を一度に行うようにしている。図4の
方法のその他の点は図1の方法と同様である。
After step # 21, continuous annealing and temper rolling (steps # 12 and # 13 of the first embodiment) were not performed,
In step # 14, the front and back surfaces of the steel plate 3 are nickel-plated. Then, in steps # 15 and # 16, continuous annealing,
Perform temper rolling. As described above, in the manufacturing method of FIG. 4, the continuous annealing and temper rolling of steps # 12 and # 13 of FIG. 2 are omitted, and the annealing and temper rolling of the steel plate and the plating layer are performed in steps # 15 and # 16. I try to do it all at once. The other points of the method of FIG. 4 are similar to the method of FIG.

【0028】この図4の製造方法の場合も、炭素含有量
が0.009重量%以下の極低炭素鋼を使用しているた
め、連続焼鈍を行ってもひずみの時効が生じることがな
く、DI絞り加工により電池用缶を形成する際にリュー
ダース・ラインが生じることがなく外観の優れた電池用
缶を得ることができる。また、鋼板3とメッキ層4を一
度に焼鈍するため、製造に要する時間及びコストを一層
低減することができる。
Also in the case of the manufacturing method of FIG. 4, since the ultra low carbon steel having a carbon content of 0.009% by weight or less is used, strain aging does not occur even if continuous annealing is performed, It is possible to obtain a battery can having an excellent appearance without producing a Luders line when forming a battery can by DI drawing. Moreover, since the steel plate 3 and the plating layer 4 are annealed at the same time, the time and cost required for manufacturing can be further reduced.

【0029】なお、本発明の形成材料により電池用缶を
形成するためには、必ずしも上記したDI絞り加工によ
る必要はなく、例えば、鋼板から打ち抜いた円板形状の
基板に深絞り加工を繰り返す方法(順送りプレス加工)
等他の方法により電池用缶を形成することもできる。こ
の場合も焼鈍処理を連続焼鈍により行っても加工時にリ
ューダース・ラインが生じることがなく、連続焼鈍によ
り焼鈍を行うことによる製造時間の短縮、コストの低減
を図ることができる。
In order to form a battery can with the forming material of the present invention, it is not always necessary to use the above-mentioned DI drawing process. For example, a method of repeating deep drawing process on a disk-shaped substrate punched from a steel plate. (Progressive press processing)
The battery can can also be formed by other methods such as. Also in this case, even if the annealing treatment is performed by continuous annealing, the Luders line does not occur during processing, and it is possible to reduce the manufacturing time and the cost by performing annealing by continuous annealing.

【0030】[0030]

【発明の効果】以上の説明から明らかなように、本発明
に係る電池用缶の形成材料は、炭素含有量が0.009
重量%未満の極低炭素鋼板の表裏面にメッキ層を設けて
なるため、冷延後の焼鈍を連続焼鈍としてもひずみの時
効が生じることがない降伏点のびのない状態で維持され
るため、DI絞り加工により電池用缶に形成する際にリ
ューダース・ラインが生じることがなく、外観上優れた
電池用缶を製造することができる。
As is apparent from the above description, the material for forming a battery can according to the present invention has a carbon content of 0.009.
Since the plating layers are provided on the front and back surfaces of the ultra-low carbon steel sheet of less than wt%, even if the annealing after cold rolling is continuous annealing, the strain is not aged and the yield point is maintained in a stretch-free state. It is possible to produce a battery can having an excellent appearance without producing a Luders line when forming a battery can by DI drawing.

【0031】また、上記のように連続焼鈍により冷延後
の焼鈍を行うため、製造時間の短縮によるコストの低減
を図ることができる。特に、極低炭素鋼板の表裏面にメ
ッキ層を設けた後に上記連続焼鈍を行えば、鋼板とメッ
キ層を一度に焼鈍することになるため、製造に要する時
間及びコストを一層短縮することができる。
Since the annealing after the cold rolling is performed by the continuous annealing as described above, the cost can be reduced by shortening the manufacturing time. In particular, if the continuous annealing is performed after the plating layers are provided on the front and back surfaces of the ultra-low carbon steel sheet, the steel sheet and the plating layer are annealed at the same time, so that the time and cost required for the production can be further reduced. .

【0032】さらに、連続焼鈍の場合、焼鈍時の温度分
布が均一であると共に、鋼板の表面に皮膜を設ける必要
がないため、鋼板表面の品質低下を防止することがで
き、歩留まりを向上することができる。
Further, in the case of continuous annealing, since the temperature distribution during annealing is uniform and it is not necessary to form a film on the surface of the steel sheet, it is possible to prevent deterioration of the quality of the steel sheet surface and improve the yield. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例に係る電池用缶の形成材料を
示す概略断面図である。
FIG. 1 is a schematic cross-sectional view showing a material for forming a battery can according to an embodiment of the present invention.

【図2】 図1の形成材料の製造方法を示すフローチャ
ートである。
FIG. 2 is a flowchart showing a method for manufacturing the forming material of FIG.

【図3】 鉄の状態図である。FIG. 3 is a state diagram of iron.

【図4】 図1の形成材料の他の製造方法を示すフロー
チャートである。
FIG. 4 is a flowchart showing another method of manufacturing the forming material of FIG.

【図5】 DI絞り加工による電池用缶の製造方法を示
す概略図である。
FIG. 5 is a schematic view showing a method of manufacturing a battery can by DI drawing.

【図6】 従来の電池用缶の形成材料の製造方法を示す
フローチャートである。
FIG. 6 is a flowchart showing a conventional method for producing a material for forming a battery can.

【図7】 バッチ焼鈍を示す概略図である。FIG. 7 is a schematic view showing batch annealing.

【図8】 バッチ焼鈍の温度設定を示す線図である。FIG. 8 is a diagram showing a temperature setting for batch annealing.

【図9】 連続焼鈍の温度設定を示す線図である。FIG. 9 is a diagram showing a temperature setting for continuous annealing.

【図10】 転位部への炭素原子の集中を示す概略図で
ある。
FIG. 10 is a schematic diagram showing concentration of carbon atoms at dislocation portions.

【図11】 (A)は未焼鈍材の応力−ひずみ線図、
(B)は連続焼鈍及び調質圧延を行った鋼板の応力−ひ
ずみ線図、(C)はひずみ時効を生じた鋼板の応力−ひ
ずみ線図である。
FIG. 11 (A) is a stress-strain diagram of an unannealed material,
(B) is a stress-strain diagram of a steel sheet that has been subjected to continuous annealing and temper rolling, and (C) is a stress-strain diagram of a steel sheet that has undergone strain aging.

【図12】 電池用缶の部分概略図である。FIG. 12 is a partial schematic view of a battery can.

【符号の説明】[Explanation of symbols]

1 電池用缶 1a トップ部 2 シート鋼板 3 極低炭素鋼 4 メッキ層 1 Battery can 1a Top part 2 Sheet steel plate 3 Ultra low carbon steel 4 Plating layer

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年8月25日[Submission date] August 25, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記バ
ッチ焼鈍(工程#1)には、下記の不都合がある。ま
ず、バッチ焼鈍では、図7に示すように、コイル状に巻
いた鋼板S'を焼鈍炉Wの内部に積み上げた状態で焼鈍
を行うため、鋼板S'どうしが癒着することによるキズ
の発生を防ぐために、各鋼板S'の表面にケイ酸ソーダ
を塗布して皮膜を設ける必要がある。しかし、このケイ
酸ソーダの皮膜が破れると、その破れた皮膜が粉となる
と共に鉄粉が生じ、鋼板表面の品質低下の原因となる。
特に、調質圧延(工程#2)の際に圧延用のロール表面
に鉄粉が付着すると、この付着した鉄粉が鋼板に転写さ
れてロールマークが付いてしまう。
However, the batch annealing (step # 1) has the following disadvantages. First, in batch annealing, as shown in FIG. 7, since the steel sheets S ′ wound in a coil shape are annealed in a state of being stacked inside the annealing furnace W, the occurrence of flaws due to the adhesion of the steel sheets S ′ to each other. In order to prevent this, it is necessary to apply sodium silicate to the surface of each steel plate S ′ to form a film. However, when the film of this sodium silicate breaks, the broken film becomes powder and iron powder is generated, which causes deterioration of the quality of the steel sheet surface.
In particular, when iron powder adheres to the surface of the rolling roll during temper rolling (process # 2), the adhered iron powder is transferred to the steel plate and a roll mark is attached.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】さらに、バッチ焼鈍で、上記のように鋼板
をコイル状として焼鈍を行うため、鋼板S'の温度分布
が良好でなく、均質に焼鈍するのは困難である。
Further, in the batch annealing, since the steel sheet is annealed in the coil shape as described above, the temperature distribution of the steel sheet S'is not good and it is difficult to uniformly anneal it.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】すなわち、上記低炭素鋼は、常温では、鉄
のα固溶体(フェライト)と、Fe3C(パーライト)
が混合した状態であり、未焼鈍材の場合、フェライト中
のセメンタイト(炭素原子A)は、図10に示すよう
に、鉄原子Bの配置が異なった部分(転位部D)に集中
する傾向がある。鋼板に外力が加わるとこの転位部Dが
すべり面Xに沿って移動することにより変形が起きるの
であるが、セメンタイトが転位部Dに集中していると、
転位部Dの移動抵抗にセメンタイトの為に生じる抵抗が
加わり、図11(A)に示す降伏点のびYlが生じる。
そして、この降伏点のびYlがある鋼板に対して上記D
I絞り加工を行うと、図12に示す電池用缶1の表面に
線模様(リューダース・ライン)が生じる。特に、トッ
プ部1aは電池として完成品となった際に眼に触れるた
め、上記リューダース・ラインがあると電池の外観上好
ましくない。
That is, the above-mentioned low carbon steel is composed of iron α solid solution (ferrite) and Fe 3 C (perlite) at room temperature.
In the case of the unannealed material, the cementite (carbon atom A) in the ferrite tends to concentrate in the portion where the disposition of the iron atoms B is different (dislocation portion D), as shown in FIG. is there. When an external force is applied to the steel sheet, the dislocation portion D moves along the slip surface X, causing deformation. However, if cementite is concentrated in the dislocation portion D,
The resistance generated by cementite is added to the movement resistance of the dislocation portion D, and the yield point extension Yl shown in FIG. 11A is generated.
Then, for the steel plate having the yield point extension Yl, the above D
When the I drawing process is performed, a line pattern (Luders line) is generated on the surface of the battery can 1 shown in FIG. In particular, since the top portion 1a comes into contact with the eyes when the battery is completed as a finished product, the presence of the above Luders line is not preferable in terms of the appearance of the battery.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】一方、上記低炭素鋼を加熱するとセメンタ
イトは過飽和固溶体となり、再固溶が起るため、焼鈍及
び調質圧延を行うと図11(B)に示すように、降伏点
のびYlは消失する。しかし、連続焼鈍の場合は、上記
のように急加温、急冷却を行うため、再結晶によってひ
ずみは完全に除去されず、時間の経過と共に図11
(C)に示すように再び降伏点のびYlが発生する現象
(時効)が生じる。これに対して、バッチ焼鈍の場合、
緩加温、緩冷却であるため、ひずみのない結晶が生成し
ており、上記時効は生じない。よって、従来は、時効に
よるリューダス・ラインの発生を防止するために、冷延
鋼板を焼鈍する工程では連続焼鈍を行うことができず、
バッチ焼鈍を行わざるを得なかった。
On the other hand, when the above-mentioned low carbon steel is heated, cementite becomes a supersaturated solid solution and re-dissolution occurs. Therefore, when annealing and temper rolling are performed, the yield point spread Yl disappears as shown in FIG. 11 (B). To do. However, in the case of continuous annealing, since rapid heating and rapid cooling are performed as described above, strain is not completely removed by recrystallization, and as time elapses, as shown in FIG.
As shown in (C), a phenomenon (aging) in which the yield point spread Yl occurs again occurs. On the other hand, in the case of batch annealing,
Because of slow heating and slow cooling, strain-free crystals are generated and the above aging does not occur. Therefore, conventionally, continuous annealing cannot be performed in the step of annealing the cold-rolled steel sheet in order to prevent the generation of the Luders line due to aging,
There was no choice but to carry out batch annealing.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Name of item to be corrected] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0015】また、本発明は、一端開口の円筒形状の電
池用缶をDI(Drawing and Ironing)絞り加工で形成
するために用いる形成材料を製造する方法であって、炭
素含有量が0.009重量%未満の極低炭素鋼板の冷延
鋼板を連続焼鈍する工程と、上記鋼板の表裏両面にメッ
キ層を形成する工程と、を備えることを特徴とする電池
用缶の形成材料の製造方法を提供するものである。
Further, the present invention is a method for producing a forming material used for forming a cylindrical battery can having an opening at one end by DI (Drawing and Ironing) drawing, and having a carbon content of 0.009. A method for producing a forming material for a battery can, which comprises a step of continuously annealing a cold rolled steel sheet of an ultra-low carbon steel sheet of less than wt% and a step of forming plating layers on both front and back surfaces of the steel sheet. It is provided.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0023[Name of item to be corrected] 0023

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0023】次に、工程#13において、圧下率1.5
%で調質圧延を行う。この調質圧延を終了した時点での
鋼板の応力とひずみの関係は、前記した図11(B)に
示すようになり、降伏点のびが消失する。また、本実施
例では、鋼板3を、炭素含有率が0.002〜0.003
重量%の極低炭素鋼板としているため、時効が生じるこ
とがなく、応力−ひずみの関係は、上記図11(B)の
状態が維持され、降伏点のびが再度発生することはな
い。これは、図3に示すように、炭素含有率が0.00
9重量%未満の場合、常温ではセメンタイトが存在せ
ず、炭素原子は鉄のα固溶体に存在するからであり、本
発明者は、上記炭素含有率が0.009重量%未満の極
低炭素鋼に時効が生じないことを実験により確認した。
Next, in step # 13, the reduction rate is 1.5.
Performs temper rolling in%. The relationship between the stress and strain of the steel sheet at the time of finishing the temper rolling is as shown in FIG. 11 (B) described above, and the yield point elongation disappears. In addition, in this example, the steel sheet 3 had a carbon content of 0.002 to 0.003.
Since the ultra-low carbon steel sheet of weight% is used, aging does not occur, the stress-strain relationship is maintained in the state shown in FIG. 11B, and the yield point stretch does not occur again. This has a carbon content of 0.00, as shown in FIG.
This is because if it is less than 9% by weight, cementite does not exist at room temperature and carbon atoms are present in the α solid solution of iron, and the present inventors have found that the above carbon content is an ultra low carbon steel of less than 0.009% by weight. It was confirmed by experiments that the aging did not occur.

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0031[Correction target item name] 0031

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0031】また、上記のように連続焼鈍により冷延後
の焼鈍を行うため、製造時間の短縮によるコストの低減
を図ることができる。特に、極低炭素鋼板の表裏面にメ
ッキ層を設けた後に上記連続焼鈍を行えば、鋼板とメッ
キ層を一度に焼鈍することになるため、製造に要する時
間及びコストを一層低減することができる。
Since the annealing after the cold rolling is performed by the continuous annealing as described above, the cost can be reduced by shortening the manufacturing time. Particularly, if the continuous annealing is performed after the plating layers are provided on the front and back surfaces of the ultra-low carbon steel sheet, the steel sheet and the plating layer are annealed at the same time, so that the time and cost required for the production can be further reduced. .

【手続補正8】[Procedure Amendment 8]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図5[Name of item to be corrected] Figure 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図5】 [Figure 5]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // B21D 22/20 E 9346−4E ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location // B21D 22/20 E 9346-4E

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 一端開口の円筒形状の電池用缶をDI
(Drawing and Ironing)絞り加工で形成するために用
いる形成材料であって、 炭素含有量が0.009重量%未満の極低炭素鋼板の表
裏面にメッキ層を設けることを特徴とする電池用缶の形
成材料。
1. A cylindrical battery can having an opening at one end is DI.
(Drawing and Ironing) A forming material used for forming by drawing, characterized in that a plating layer is provided on the front and back surfaces of an ultra-low carbon steel sheet having a carbon content of less than 0.009% by weight. Forming material.
【請求項2】 上記極低炭素鋼板はコイル状に巻いてい
る連続シートからなることを特徴とする請求項1記載の
電池用缶の形成材料。
2. The material for forming a battery can according to claim 1, wherein the ultra-low carbon steel plate is a continuous sheet wound in a coil shape.
【請求項3】 一端開口の円筒形状の電池用缶をDI
(Drawing and Ironing)絞り加工で形成するために用
いる形成材料を製造する方法であって、 炭素含有量が0.009重量%未満の極低炭素鋼板の未
焼鈍冷延鋼板を連続焼鈍する工程と、 上記鋼板の表裏両面にメッキ層を形成する工程と、 を備えることを特徴とする電池用缶の形成材料の製造方
法。
3. A cylindrical battery can having an opening at one end is DI.
(Drawing and Ironing) A method for producing a forming material used for forming by drawing, which is a step of continuously annealing an unannealed cold rolled steel sheet of an ultra low carbon steel sheet having a carbon content of less than 0.009% by weight. And a step of forming plating layers on both front and back surfaces of the steel sheet, the method for producing a material for forming a battery can.
【請求項4】 炭素含有量が0.009重量%未満の極
低炭素鋼板の未焼鈍冷延鋼板を連続焼鈍する工程と、 上記連続焼鈍の後に鋼板の表裏両面にメッキ層を形成す
る工程と、 該メッキ層を形成した鋼板を連続焼鈍する工程とを備え
ることを特徴とする請求項3に記載の電池用缶の形成材
料の製造方法。
4. A step of continuously annealing an unannealed cold rolled steel sheet of an ultra low carbon steel sheet having a carbon content of less than 0.009% by weight, and a step of forming a plating layer on both front and back surfaces of the steel sheet after the continuous annealing. The method for producing a material for forming a battery can according to claim 3, further comprising a step of continuously annealing the steel sheet on which the plated layer is formed.
【請求項5】 炭素含有量が0.009重量%未満の極
低炭素鋼板の表裏両面にメッキ層を形成する工程と、 該メッキ層を形成した未焼鈍冷延鋼板を連続焼鈍する工
程と、 を備えることを特徴とする請求項3に記載の電池用缶の
形成材料の製造方法。
5. A step of forming a plating layer on both front and back surfaces of an ultra low carbon steel sheet having a carbon content of less than 0.009% by weight, and a step of continuously annealing the unannealed cold rolled steel sheet having the plating layer formed thereon. The method for producing a material for forming a battery can according to claim 3, further comprising:
JP5134987A 1993-06-04 1993-06-04 Forming material for can for battery and its production Pending JPH06346150A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP5134987A JPH06346150A (en) 1993-06-04 1993-06-04 Forming material for can for battery and its production
DE69404765T DE69404765T2 (en) 1993-06-04 1994-01-27 Battery container, sheet metal for shaping the battery container and method for the production of the sheet metal
ES94101200T ES2106376T3 (en) 1993-06-04 1994-01-27 BATTERY GLASS; SHEET TO FORM A BATTERY GLASS AND METHOD TO MAKE SUCH SHEET.
EP94101200A EP0629009B1 (en) 1993-06-04 1994-01-27 Battery can, sheet for forming battery can, and method for manufacturing sheet
US08/187,000 US5576113A (en) 1993-06-04 1994-01-27 Battery can, sheet for forming battery can, and method for manufacturing sheet
US08/373,438 US5840441A (en) 1993-06-04 1995-01-17 Battery can, sheet for forming battery can, and method for manufacturing sheet
US08/423,721 US5603782A (en) 1993-06-04 1995-04-18 Battery can, sheet for forming battery can, and method for manufacturing sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5134987A JPH06346150A (en) 1993-06-04 1993-06-04 Forming material for can for battery and its production

Publications (1)

Publication Number Publication Date
JPH06346150A true JPH06346150A (en) 1994-12-20

Family

ID=15141284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5134987A Pending JPH06346150A (en) 1993-06-04 1993-06-04 Forming material for can for battery and its production

Country Status (1)

Country Link
JP (1) JPH06346150A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6126759A (en) * 1996-02-08 2000-10-03 Nkk Corporation Steel sheet for 2-piece battery can having excellent formability, anti secondary work embrittlement and corrosion resistance
EP1950819A1 (en) 2003-08-29 2008-07-30 Matsushita Electric Industrial Co., Ltd. Battery can and manufacturing method thereof and battery using the same
US8097357B2 (en) 2005-06-22 2012-01-17 Panasonic Corporation Battery can and method for manufacturing the same
CN111241721A (en) * 2019-11-12 2020-06-05 太原科技大学 Magnesium alloy sheet rolling edge cracking criterion and depth prejudging method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6126759A (en) * 1996-02-08 2000-10-03 Nkk Corporation Steel sheet for 2-piece battery can having excellent formability, anti secondary work embrittlement and corrosion resistance
EP1950819A1 (en) 2003-08-29 2008-07-30 Matsushita Electric Industrial Co., Ltd. Battery can and manufacturing method thereof and battery using the same
US8097357B2 (en) 2005-06-22 2012-01-17 Panasonic Corporation Battery can and method for manufacturing the same
CN111241721A (en) * 2019-11-12 2020-06-05 太原科技大学 Magnesium alloy sheet rolling edge cracking criterion and depth prejudging method
CN111241721B (en) * 2019-11-12 2023-09-08 太原科技大学 Magnesium alloy sheet rolled edge cracking criterion and depth prejudging method

Similar Documents

Publication Publication Date Title
US4374682A (en) Process for producing deep-drawing cold rolled steel strips by short-time continuous annealing
JPS5943974B2 (en) How to make a shadow mask
JPH06346150A (en) Forming material for can for battery and its production
JPH0215609B2 (en)
JPS6169928A (en) Manufacture of steel plate for ironing by continuous annealing
JPS607343B2 (en) Manufacturing method of shadow mask for color television cathode ray tube
JPS607342B2 (en) Manufacturing method of shadow mask for color TV cathode ray tube
JPH03267320A (en) Production of shadow mask material
JP3103268B2 (en) Method for producing steel sheet for containers with excellent fluting resistance
CN85100666B (en) Low iron loss cold-rolled orientation silicon steel plate (containing 4 percent of si) and its preparation method
JPS585969B2 (en) Manufacturing method of low core loss unidirectional silicon steel sheet
JPH1088302A (en) Production of titanium sheet excellent in glare-proof characteristics
JPS6249324B2 (en)
JPS58181825A (en) Manufacture of shadow mask
GB2046785A (en) Manufacture of sheet or foil silicon steel having a Goss texture
JPS61139624A (en) Production of unidirectional silicon steel sheet having very high magnetic flux density and small iron loss
JPH0432127B2 (en)
KR860000350B1 (en) Method for manufacture of black plate
JPH0152452B2 (en)
RU1780884C (en) Method of obtaining coldrolles work-hardened band for production of bimetal band saw
JPS6354048B2 (en)
WO2005017221A1 (en) Material for shadow mask, process for producing the same, shadow mask from the shadow mask material and picture tube including the shadow mask
JPH0580528B2 (en)
JPS62185832A (en) Manufacture of cold rolled steel strip or sheet of austenitic stainless steel
JPS62185833A (en) Manufacture of cold rolled steel strip or steel sheet of austenitic stainless steel

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980623