JPH06344083A - Production of half-solidified metal - Google Patents

Production of half-solidified metal

Info

Publication number
JPH06344083A
JPH06344083A JP14042693A JP14042693A JPH06344083A JP H06344083 A JPH06344083 A JP H06344083A JP 14042693 A JP14042693 A JP 14042693A JP 14042693 A JP14042693 A JP 14042693A JP H06344083 A JPH06344083 A JP H06344083A
Authority
JP
Japan
Prior art keywords
cooling
metal
solidified
semi
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14042693A
Other languages
Japanese (ja)
Inventor
Mitsuo Uchimura
光雄 内村
Tsukasa Niide
司 新出
Kazusato Hironaka
一聡 廣中
Hiroyoshi Takahashi
広芳 高橋
Akihiko Nanba
明彦 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leotec KK
Original Assignee
Leotec KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leotec KK filed Critical Leotec KK
Priority to JP14042693A priority Critical patent/JPH06344083A/en
Publication of JPH06344083A publication Critical patent/JPH06344083A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To produce half-solidified metal in an industrial process through continuous discharge of the half-solidified metal high in solid phase ratio by making the cooling plate of a cooling vessel in multi-layer structure and controlling heat conductive speed. CONSTITUTION:Molten metal is poured into the cylindrical cooling vessel 6 having a water cooling jacket from the upper part. This molten steel is stirred by using a motor 2 and a stirrer 10 to continuously produce the half-solidified metal. Then, by making the cooling plate 8 of the cooling vessel 6 into the multi-layer structure, the heat conductive speed is controlled to restrain the growth of a solidified shell. To the plate material 8-2 at molten metal side in the multi-layer structural cooling plate, a low heat conductivity heat-resistant metal material is adopted, and a copper-base metal material is adopted for the plate material 8-1 at cooling water side. Two sheets or more of the low heat conductivity heat-resistant metal materials are superposed and a groove is arranged on the mating surface between the low heat conductivity heat- resistant metal material and the copper-base metal material. Thus, the unevenness of solid phase ratio and the primary crystal grain size in the half-solidified metal can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、非樹枝状初晶が金属
(一般に合金)液体中に分散した固体一液体金属混合物
(以下単に半凝固金属という)を連続して安定的に製造
する方法を提案するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously and stably producing a solid-liquid metal mixture (hereinafter simply referred to as a semi-solid metal) in which a non-dendritic primary crystal is dispersed in a metal (generally an alloy) liquid. Is proposed.

【0002】[0002]

【従来の技術】半凝固金属を連続的に製造する手段とし
ては、たとえば、特公昭56-20944号公報(非樹枝状初晶
固体分を含む合金を連続的に形成する為の装置)に開示
されているように、一定温度の溶融金属を円筒状の冷却
槽の内面と高速回転する攪拌子との隙間に導き、強い攪
拌作用を加えつつ冷却し、得られた半凝固金属をその底
部から連続的に排出させる機械攪拌方式(以下攪拌子回
転法という)のものが知られている。また、攪拌方式と
して、電磁力を用いる方法(以下電磁攪拌法という)も
良く知られている。
2. Description of the Related Art A means for continuously producing semi-solidified metal is disclosed, for example, in Japanese Patent Publication No. Sho 56-20944 (apparatus for continuously forming an alloy containing non-dendritic primary crystal solids). As shown in the figure, the molten metal at a constant temperature is introduced into the gap between the inner surface of the cylindrical cooling tank and the stirrer rotating at high speed, cooled while applying a strong stirring action, and the resulting semi-solid metal is cooled from its bottom. A mechanical stirring method (hereinafter referred to as a stirrer rotation method) of continuously discharging is known. As a stirring method, a method using electromagnetic force (hereinafter referred to as electromagnetic stirring method) is also well known.

【0003】さらに他の手段として、抜熱能を有し横軸
のまわりに回転する単ロールと該ロールの外周に沿う凹
曲面からなる固定壁との隙間に溶湯を供給して、ロール
の回転により発生する固液界面のせん断歪により半凝固
金属を製造する手段(以下単ロール法という)が、特開
平3-142040号公報(連続的に半凝固金属を製造する方法
とその装置)や特開平4-238645号公報(半凝固金属の製
造方法及び装置)などに開示されている。
As still another means, molten metal is supplied to a gap between a single roll having heat removal ability and rotating around a horizontal axis and a fixed wall formed of a concave curved surface along the outer circumference of the roll, and the roll is rotated. Means for producing semi-solidified metal by the generated shear strain at the solid-liquid interface (hereinafter referred to as a single roll method) is disclosed in JP-A-3-42040 (method and apparatus for continuously producing semi-solidified metal) and It is disclosed in, for example, 4-238645 (method and apparatus for producing semi-solidified metal).

【0004】これらいずれの手段も、半凝固金属中の固
相粒は、溶湯金属を冷却しながら激しく攪拌することに
よって、融体中に生成しつつある樹枝状初晶の枝部が消
失ないしは縮少して丸みを帯びた形態に変換されて形成
される。
In any of these means, the solid-phase particles in the semi-solidified metal are vigorously agitated while cooling the molten metal, whereby the branches of the dendritic primary crystals that are being formed in the melt disappear or shrink. It is formed by converting it into a slightly rounded form.

【0005】この半凝固金属は、非樹枝状初晶粒子が細
かいほど、また固相率が高いほどその半凝固金属から得
られる製品の品質特性が優れていると云われ、その初晶
粒の大きさは冷却速度が大きいほど細かくなる。
It is said that the finer the non-dendritic primary crystal grains and the higher the solid fraction of the semi-solidified metal, the more excellent the quality characteristics of the product obtained from the semi-solidified metal. The size becomes finer as the cooling rate increases.

【0006】このようなことから、半凝固金属の製造装
置としては、強冷却が可能な装置が必要であるが、強冷
却して微細初晶粒、高固相率の半凝固金属を製造する場
合、見かけ粘度が大きくなるため生成した半凝固金属の
流動性が非常に悪くなり、特に高固相率の半凝固金属の
連続的な安定した排出は困難になる。
For this reason, an apparatus capable of performing strong cooling is required as an apparatus for producing semi-solidified metal, but it is subjected to intense cooling to produce fine primary crystal grains and semi-solidified metal with a high solid fraction. In this case, the apparent viscosity becomes large, so that the fluidity of the generated semi-solidified metal becomes extremely poor, and it becomes difficult to continuously and stably discharge the semi-solidified metal having a particularly high solid fraction.

【0007】上記した各手段を、この半凝固金属の排出
能の観点から検討すると、単ロール法は、生成した半凝
固金属の排出がロールの回転により促進され、ロール表
面に付着する凝固シェルはスクレーパーで削り取られる
ので、排出する半凝固金属の固相率が大きくても排出の
ための妨害要因は少なく、排出能が非常に優れた方法で
ある。しかし、攪拌子回転法や電磁攪拌法では冷却槽中
で、供給された溶湯を冷却槽の中心を回転軸とする回転
による攪拌を行うために、遠心力による冷却槽壁面への
圧力が増大し、排出能を逆に低下させることになる。し
たがって、攪拌子回転法や電磁攪拌法では、半凝固金属
の排出能増大技術の確立が特に重要な課題になる。
When the above-mentioned means are examined from the viewpoint of the discharging ability of the semi-solidified metal, in the single roll method, the discharge of the generated semi-solidified metal is promoted by the rotation of the roll, and the solidified shell attached to the surface of the roll is Since it is scraped off by a scraper, even if the solid fraction of the semi-solidified metal to be discharged is large, there are few obstructive factors for discharging, and the discharging ability is very excellent. However, in the stirrer rotation method and the electromagnetic stirring method, since the supplied molten metal is stirred by rotation around the center of the cooling tank as a rotation axis, the pressure on the wall surface of the cooling tank due to centrifugal force increases. , The discharge capacity will be reduced. Therefore, in the stirrer rotation method and the electromagnetic stirring method, establishment of a technique for increasing the discharge capacity of semi-solidified metal becomes a particularly important issue.

【0008】一方、これらの攪拌子回転法や電磁攪拌法
は、排出能の増大が実現できれば、製造した半凝固金属
をノズルを通過させるか、あるいは直接丸断面あるいは
角断面等の形状に押し出すことを可能にして、高固相率
の半凝固金属を直接加工する(レオフォーム)素材や、
ビレット化するなど、半凝固金属を形状化するには非常
に優れた手段である。
On the other hand, in the stirrer rotation method and the electromagnetic stirring method, if the discharge capacity can be increased, the manufactured semi-solidified metal is passed through a nozzle or directly extruded into a round cross section or a square cross section. Enables the direct processing of semi-solidified metal with a high solid fraction (Reoform),
It is a very excellent means for shaping a semi-solid metal such as billeting.

【0009】このような観点から攪拌子回転法について
は半凝固金属の排出能改善手段として、この発明会社は
先に特開平4-124231号公報(半凝固金属製造装置)に開
示したように、ねじ溝を設けたスクリュースピンドル形
状の攪拌子を用い、冷却槽で生成した半凝固金属を下方
へ強制的に送給する手段を取り入れた装置を提案した
が、工業化するにはいたらずいまだ改善の余地が残され
ている。
From this point of view, the stirrer rotation method is used as a means for improving the ability of discharging semi-solidified metal, as disclosed by Japanese Patent Laid-Open No. 4-124231 (semi-solidified metal production apparatus) by the inventor of the present invention. We proposed a device that uses a screw-spindle-shaped stirrer with a thread groove and incorporates a means for forcibly feeding the semi-solidified metal generated in the cooling tank downward, but it is still improving to industrialization and it is still improving. There is room left.

【0010】[0010]

【発明が解決しようとする課題】このような状況下で、
発明者らは攪拌子回転法、電磁攪拌法についてさらに研
究を進めた結果、攪拌子回転法を工業プロセスとして実
現すること、電磁攪拌法により製造される半凝固金属の
品質の安定化を実現するためには、上記課題に加え以下
に述べる課題の解決が不可欠であることを知見するに至
った。
Under these circumstances,
As a result of further research on the stirrer rotation method and the electromagnetic stirrer method, the inventors have realized the stirrer rotation method as an industrial process and stabilized the quality of semi-solidified metal produced by the electromagnetic stirrer method. In order to achieve this, they have found that it is essential to solve the following problems in addition to the above problems.

【0011】すなわち、攪拌子回転法においては、攪拌
子として、パドル状のものを採用しても、スクリュース
ピンドル状のものを採用しても、凝固シェルの成長に起
因した攪拌子トルクの上昇が観察されること、また、電
磁攪拌法においては、凝固シェルが成長するにつれ冷却
槽の抜熱能も低下し、この抜熱能の変動は排出半凝固金
属の固相率と初晶粒径の変動要因になること、などが明
らかになった。そして、このような凝固シェルの成長が
半凝固金属の連続排出の妨害要因であること、また排出
した半凝固金属の品質不安定要因であることを知見し
た。したがって、攪拌子回転法、電磁攪拌法の優れた特
徴を生かし、半凝固金属の製造プロセスとして完成させ
るためには、凝固シェルの成長を抑制することが最も重
要な技術課題になる。
That is, in the stirrer rotation method, whether the stirrer paddle type or the screw spindle type stirrer is adopted, the stirrer torque increases due to the growth of the solidified shell. What is observed, and in the electromagnetic stirring method, the heat removal capacity of the cooling tank decreases as the solidified shell grows, and this change in heat removal capacity is the cause of the change in the solid fraction of the discharged semi-solidified metal and the primary crystal grain size. It became clear. It was also found that the growth of such a solidified shell is a factor that hinders the continuous discharge of semi-solidified metal and a factor that causes unstable quality of the discharged semi-solidified metal. Therefore, in order to utilize the excellent features of the stirrer rotation method and the electromagnetic stirring method and complete the manufacturing process of the semi-solidified metal, suppressing the growth of the solidified shell is the most important technical issue.

【0012】そこでこの発明は、上記課題を有利に解決
し、より高固相率の半凝固金属を連続して安定的に製造
できる方法を提案することを目的とする。
[0012] Therefore, an object of the present invention is to solve the above-mentioned problems advantageously, and to propose a method capable of continuously and stably producing a semi-solidified metal having a higher solid fraction.

【0013】[0013]

【課題を解決するための手段】発明者らはかかる課題を
解決するため、攪拌子回転法及び電磁攪拌法の凝固シェ
ル成長抑制法を研究した結果、固液界面のせん断歪速度
に応じ冷却槽の抜熱速度を適正化することが有効であ
り、凝固シェルの成長を抑制しその厚さを制御するため
には、固液界面のせん断歪速度か、あるいは冷却槽の抜
熱速度を制御することが有効であることを知見するに至
った。
In order to solve such a problem, the inventors have studied a solidification shell growth suppression method of a stirrer rotation method and an electromagnetic stirring method, and as a result, a cooling tank depending on a shear strain rate of a solid-liquid interface is obtained. It is effective to optimize the heat removal rate of the solidified shell, and in order to suppress the growth of the solidified shell and control its thickness, the shear strain rate of the solid-liquid interface or the heat removal rate of the cooling tank is controlled. It came to discover that what is effective.

【0014】さらに、これらの結果に基づき冷却槽抜熱
速度と固液界面のせん断歪速度とを調整する方法につい
て研究した結果、固液界面のせん断歪速度は攪拌子の回
転数で調整できるが、この回転数による固液界面のせん
断歪速度の増大には、電磁攪拌法に比しせん断歪速度を
大きくすることのできる攪拌子回転法においても機械的
要因によりおのずから限界がある。
Further, as a result of researching a method for adjusting the heat removal rate in the cooling tank and the shear strain rate at the solid-liquid interface based on these results, the shear strain rate at the solid-liquid interface can be adjusted by the rotation speed of the stirrer. The increase in the shear strain rate at the solid-liquid interface due to this rotation speed is naturally limited by mechanical factors even in the stirrer rotation method, which can increase the shear strain rate as compared with the electromagnetic stirring method.

【0015】一方抜熱速度は、たとえば攪拌子回転法に
よる高融点材料の半凝固金属の製造を対象とし、冷却板
として銅系金属材料を採用した場合、通常得られる攪拌
子の回転数で、凝固シェルの成長を抑制できるシェル厚
は30mm以上になり、また冷却板材料として伝熱係数が小
さなステンレス鋼系材料を採用した場合、溶湯側と冷却
水側の温度差が非常に大きくなるためこの温度差により
冷却板に反りが発生するという問題があって操業上トラ
ブルが発生する。
On the other hand, the heat removal rate is the number of rotations of the stirrer which is usually obtained when a semi-solidified metal of a high melting point material is produced by the stirrer rotation method and a copper-based metal material is adopted as the cooling plate. The thickness of the shell that can suppress the growth of the solidified shell is 30 mm or more, and when a stainless steel material with a small heat transfer coefficient is used as the cooling plate material, the temperature difference between the molten metal side and the cooling water side becomes extremely large, so There is a problem that the cooling plate warps due to the temperature difference, which causes operational troubles.

【0016】したがって、凝固シェルの成長を抑制する
ためには固液界面に付加できるせん断速度に応じ、冷却
槽における抜熱速度を適正に制御可能な冷却槽の冷却板
構造の確立が重要な課題であることを知見してこの発明
を達成したものである。すなわち、この発明の要旨とす
るところは以下の通りである。
Therefore, in order to suppress the growth of the solidified shell, it is important to establish a cooling plate structure of the cooling tank capable of appropriately controlling the heat removal rate in the cooling tank in accordance with the shear rate that can be added to the solid-liquid interface. The present invention has been achieved by finding that That is, the gist of the present invention is as follows.

【0017】 水冷ジャケットを有する筒状の冷却槽
の上部より注入した溶湯を、冷却下に攪拌を加えて連続
的に半凝固金属を製造するにあたり、該冷却槽の冷却板
を多層構造にすることにより抜熱速度を制御し、凝固シ
ェルの成長を抑制することを特徴とする半凝固金属の製
造方法である。
When a molten metal injected from the upper part of a cylindrical cooling tank having a water cooling jacket is continuously stirred to produce semi-solidified metal under cooling, the cooling plate of the cooling tank has a multilayer structure. The method for producing a semi-solidified metal is characterized in that the heat removal rate is controlled by the method to suppress the growth of the solidified shell.

【0018】 多層構造冷却板の溶湯側板材に低導熱
性耐熱金属材料を採用し、冷却水側板材には銅系金属材
料を採用して冷却槽の抜熱速度を制御し、凝固シェルの
成長を抑制することを特徴とする項に記載の半凝固金
属の製造方法である。
A low heat-conducting heat-resistant metal material is used for the molten-side plate material of the multilayer cooling plate, and a copper-based metal material is used for the cooling-water side plate material to control the heat removal rate of the cooling tank and to grow the solidified shell. The method for producing a semi-solidified metal according to item 1, wherein

【0019】 多層構造冷却板の溶湯側低導熱性耐熱
金属材料を2枚以上重ね合せることにより冷却槽の抜熱
速度を制御し、凝固シェルの成長を抑制することを特徴
とする項に記載の半凝固金属の製造方法である。
[0019] The heat removal rate of the cooling tank is controlled by superimposing two or more low-heat-conductivity heat-resistant metal materials on the melt side of the multi-layer structure cooling plate to suppress the growth of the solidified shell. It is a method for producing a semi-solid metal.

【0020】 多層構造冷却板の低導熱性耐熱金属材
料と銅系金属材料との合せ面に溝を設けることにより冷
却槽の抜熱速度を制御し、凝固シェルの成長を抑制する
ことを特徴とする項に記載の半凝固金属の製造方法で
ある。
A feature of the present invention is that the heat removal rate of the cooling tank is controlled and the growth of the solidified shell is suppressed by providing a groove on the mating surface of the low heat conductive heat resistant metal material and the copper-based metal material of the multilayer structure cooling plate. The method for producing a semi-solid metal according to item 1.

【0021】 多層構造冷却板の低導熱性耐熱金属材
料と銅系金属材料との合せ面に溝を設けること、低導熱
性耐熱金属材料を2枚以上重ね合せることにより冷却槽
の抜熱速度を制御し、凝固シェルの成長を抑制すること
を特徴とする項に記載の半凝固金属の製造方法であ
る。
The heat removal rate of the cooling tank can be increased by providing a groove on the mating surface of the low heat-conducting heat-resistant metal material and the copper-based metal material of the multi-layer structure cooling plate The method for producing a semi-solidified metal according to the item 1, wherein the growth of the solidified shell is controlled.

【0022】 多層構造の冷却板の合せ面に溝を設け
ることにより抜熱速度を制御し、凝固シェルの成長を抑
制することを特徴とする項に記載の半凝固金属の製造
方法である。
The method for producing a semi-solidified metal according to the item (1), characterized in that the heat removal rate is controlled by providing a groove on the mating surface of the cooling plate having a multilayer structure to suppress the growth of the solidified shell.

【0023】ここに、低導熱性耐熱金属材料には、オー
ステナイト系ステンレス鋼又はチタン系金属材料などを
用いて好適である。
Here, austenitic stainless steel or titanium metallic material is preferably used as the low heat conductive and heat resistant metallic material.

【0024】[0024]

【作用】この発明を実験結果に基づいてさらに詳細に述
べる。図1に示す半凝固金属製造装置、すなわち、受湯
槽5、冷却槽6、保持槽7、排出量制御用ノズル12及び
冷却槽6の冷却板8の中心において回転する攪拌子10と
そのトルクメーター3から主として構成される実験装置
により、 0.6mass%Cの溶湯を用いて攪拌子回転法によ
り半凝固金属を製造し、冷却板8に生成する凝固シェル
の成長におよぼす多層冷却板及びその層間合せ面の溝の
効果を検討した。
The present invention will be described in more detail based on the experimental results. The semi-solid metal production apparatus shown in FIG. 1, that is, a hot water receiving tank 5, a cooling tank 6, a holding tank 7, a discharge control nozzle 12, and a stirrer 10 rotating at the center of a cooling plate 8 of the cooling tank 6 and a torque meter therefor. A semi-solid metal is produced by a stirrer rotation method using a molten metal of 0.6 mass% C by an experimental apparatus mainly composed of 3 and a multi-layered cooling plate and its inter-layer bonding on the growth of a solidified shell formed on a cooling plate 8 are produced. The effect of the groove on the surface was examined.

【0025】上記において、冷却板8の形状は下向きに
先細りのテーパーをなす筒状で、その厚さはいずれの場
合も24mmと一定にし、これに適合する攪拌子10はスクリ
ュースピンドル状のものとした。
In the above description, the shape of the cooling plate 8 is a cylindrical shape tapering downward, and the thickness thereof is 24 mm in any case, and the stirrer 10 conforming to this has a screw spindle shape. did.

【0026】まず、最初の実験は、図2に示す多層構造
の冷却板を用いてその効果を調査した。この多層冷却板
には冷却水(9−1)側板材8−1に銅系金属を、溶湯
(1−1)側板材8−2にステンレス鋼又はチタン系金
属を用いる。
First, in the first experiment, the effect was investigated by using the cooling plate having the multilayer structure shown in FIG. In this multi-layer cooling plate, a copper-based metal is used for the cooling water (9-1) side plate 8-1 and a stainless steel or titanium-based metal is used for the molten metal (1-1) side plate 8-2.

【0027】これらの調査結果を図3及び図4に示す。
なお、これらの図において、冷却板が1層の場合は銅板
を用い、多層の場合は板厚12mmの銅板の溶湯側にステン
レス鋼板を1〜4板重ね合せ、合計の厚さ(冷却板板
厚)は、いずれの場合も24mmと一定にした。
The results of these investigations are shown in FIGS.
In these figures, when the cooling plate is a single layer, a copper plate is used. When the cooling plate is a multilayer, 1 to 4 stainless steel plates are superposed on the molten metal side of a 12 mm thick copper plate, and the total thickness (cooling plate plate The thickness was 24 mm in each case.

【0028】図3は冷却板の層数と抜熱速度との関係を
示すグラフであり、この図から抜熱速度は冷却板の層数
が増加するにしたがって減少し、冷却板の層数により抜
熱速度を制御できることがわかる。
FIG. 3 is a graph showing the relationship between the number of layers of the cooling plate and the heat removal rate. From this figure, the rate of heat removal decreases as the number of layers of the cooling plate increases, and it depends on the number of layers of the cooling plate. It can be seen that the heat removal rate can be controlled.

【0029】ここで、冷却板の抜熱熱流速すなわち抜熱
速度は冷却板の銅板中に熱電対を埋め込み、測定した温
度勾配と熱伝導率から算出した。
Here, the heat removal heat flow rate of the cooling plate, that is, the heat removal rate, was calculated from the measured temperature gradient and thermal conductivity obtained by embedding a thermocouple in the copper plate of the cooling plate.

【0030】図4は冷却板の層数と成長抑制時の凝固シ
ェル厚との関係を示すグラフであり、凝固シェル抑制厚
さは冷却板の層数が多いほど薄くなっていて、冷却板の
層数により凝固シェルの成長を抑制しその厚さを制御で
きることがわかる。
FIG. 4 is a graph showing the relationship between the number of layers of the cooling plate and the thickness of the solidified shell when growth is suppressed. The thickness of the solidified shell suppression is smaller as the number of layers of the cooling plate is smaller, It can be seen that the growth of the solidified shell can be suppressed and the thickness thereof can be controlled by the number of layers.

【0031】ここで、この実験では攪拌子回転数を一定
としたので、固液界面のせん断歪速度は、下記式(1) で
あらわすことができ、凝固シェルが生成した場合その厚
さdが厚いほどクリアランスSは小さくなりせん断歪速
度は大きくなる。 〔記〕 γ=2・r1 ・r3 ・Ω/(r2 2−r1 2)‥‥‥ (1) r3 =r2 −d=S+r1 上記式において、 γ :固液界面のせん断歪速度(s-1) r1 :攪拌子半径(m) r2 :冷却槽半径(m) Ω :攪拌子の角速度(rad/s) S :クリアランス(m) r3 :冷却槽内溶湯半径(m) d :凝固シェル厚(m)
Here, since the stirrer rotation speed was constant in this experiment, the shear strain rate at the solid-liquid interface can be expressed by the following equation (1), and when the solidified shell is formed, its thickness d is The thicker the clearance S, the smaller the shear strain rate. [Note] γ = 2 · r 1 · r 3 · Ω / (r 2 2 −r 12 2 ) (1) r 3 = r 2 −d = S + r 1 In the above formula, γ: solid-liquid interface Shear strain rate (s -1 ) r 1 : Radius of stirrer (m) r 2 : Radius of cooling tank (m) Ω: Angular velocity of stirrer (rad / s) S: Clearance (m) r 3 : Molten metal in cooling tank Radius (m) d: Solidified shell thickness (m)

【0032】そしてこの実験では、凝固シェル成長抑制
時のクリアランスSを一定(0.8mm)に調整し固液界面の
せん断歪速度γを1500(s-1)としたものである。
In this experiment, the clearance S at the time of suppressing solidified shell growth was adjusted to a constant value (0.8 mm), and the shear strain rate γ at the solid-liquid interface was set to 1500 (s -1 ).

【0033】なお、冷却槽冷却板内面に生成する凝固シ
ェル抑制厚さは、鋳造の後半(安定状態に達したのち)
で攪拌子を上昇させて冷却槽内の溶湯ないしは半凝固金
属を排出し、冷却凝固後試料を採取してその厚さを測定
することにより定量化し、溶湯ないしは半凝固金属の排
出が不十分な場合は、冷却槽内に残留した鋳塊の成分分
析により負偏析部分の厚さを測定し、その厚さを凝固シ
ェル抑制厚さとした。また、凝固シェル成長の抑制は攪
拌子のトルクの上昇がないことにより確認した。
The solidified shell suppression thickness produced on the inner surface of the cooling plate of the cooling tank is in the latter half of casting (after reaching a stable state).
To raise the stirrer to discharge the molten metal or semi-solidified metal in the cooling tank.After cooling and solidification, a sample is taken and quantified by measuring its thickness, and the molten metal or semi-solidified metal is insufficiently discharged. In this case, the thickness of the negative segregation portion was measured by analyzing the composition of the ingot remaining in the cooling tank, and the thickness was defined as the solidified shell suppression thickness. The suppression of the growth of the solidified shell was confirmed by the fact that the torque of the stirrer did not increase.

【0034】つぎに、図5に示す合せ面に溝を設けた2
層構造の冷却板を用いて溝の効果を調査した。この冷却
板は冷却水側板材8−1に銅系金属、溶湯側板材8−2
にステンレス鋼又はチタン系金属を用い、ステンレス鋼
板又はチタン系金属板の銅系金属板との合せ面に溝8−
3を設けた構造とする。
Next, the groove 2 is formed on the mating surface shown in FIG.
The effect of the groove was investigated using a layered cooling plate. In this cooling plate, the cooling water side plate material 8-1 is a copper-based metal, the molten metal side plate material 8-2.
Stainless steel or titanium metal is used for the groove, and a groove 8- is formed on the mating surface of the stainless steel plate or titanium metal plate with the copper metal plate.
3 is provided.

【0035】これらの調査結果を図6及び図7に示す。
図6は、このような構造の2層冷却板の銅板とステンレ
ス鋼板との合せ面の接触面積率(銅板とステンレス鋼板
とがその合せ面で互いに全面で接している場合を1とし
た面積比)と抜熱速度との関係を示すグラフである。こ
の図から、抜熱速度は接触面積率が小さくなるにつれ減
少し、溝深さが深いほど抜熱速度におよぼす接触面積率
の影響が大きいことがわかる。
The results of these investigations are shown in FIGS. 6 and 7.
FIG. 6 shows the contact area ratio of the mating surface of the copper plate and the stainless steel plate of the two-layer cooling plate having such a structure (the area ratio is 1 when the copper plate and the stainless steel plate are entirely in contact with each other at the mating surface). 2) and the heat removal rate. From this figure, it can be seen that the heat removal rate decreases as the contact area ratio decreases, and the deeper the groove depth, the greater the influence of the contact area ratio on the heat removal rate.

【0036】図7は接触面積率と成長抑制時の凝固シェ
ル厚との関係を示すグラフである。この図から接触面積
率が小さくなるほど凝固シェル抑制厚さが薄くなること
がわかる。
FIG. 7 is a graph showing the relationship between the contact area ratio and the solidified shell thickness when growth is suppressed. From this figure, it can be seen that the smaller the contact area ratio, the thinner the solidified shell suppression thickness.

【0037】以上のように、2層冷却板の合せ面に溝を
設け、その接触面積率を調整すること、さらには溝深さ
を調整することにより、冷却槽冷却板の抜熱速度を制御
でき、冷却槽内面に生成する凝固シェルの成長を抑制し
その厚さを制御できる。
As described above, the heat removal rate of the cooling tank cooling plate is controlled by providing a groove on the mating surface of the two-layer cooling plate and adjusting the contact area ratio thereof, and further by adjusting the groove depth. Therefore, it is possible to suppress the growth of the solidified shell generated on the inner surface of the cooling tank and control the thickness thereof.

【0038】なお、この合せ面に溝を設けた冷却板の層
数を増加することにより生成する凝固シェル厚は、冷却
板合せ面の接触面積率、溝深さ及び冷却板の層数とによ
り抑制制御できることになる。
The solidified shell thickness produced by increasing the number of layers of the cooling plates having grooves on the mating surfaces depends on the contact area ratio of the mating surfaces of the cooling plates, the groove depth and the number of layers of the cooling plates. Suppression control can be performed.

【0039】さらに、攪拌方式として電磁攪拌法を用い
て半凝固金属を製造し、冷却板に生成する凝固シェルの
成長におよぼす多層構造の冷却板の層数及びその合せ面
の溝の効果を検討した。
Further, the effect of the number of layers of the cooling plate having a multilayer structure and the groove of the mating surface on the growth of the solidified shell produced in the cooling plate by producing the semi-solidified metal by using the electromagnetic stirring method as the stirring method is examined. did.

【0040】図8に示す冷却板8、循環水15を流す水冷
ジャケット13の外周に電磁誘導コイル14を配置してなる
冷却槽に、上記実験と同様に上掲図2に示した多層構造
の冷却板及び上掲図5に示した合せ面に溝を設けた2層
構造の冷却板をそれぞれ用いて、冷却板に生成する凝固
シェルの成長抑制時の厚さを調査した。なお、この場
合、冷却板構成材は全て非磁性のステンレス鋼とした。
また、固液界面のせん断歪速度は溶湯回転流速を測定し
て算出した。
The cooling plate 8 shown in FIG. 8 and the cooling tank having the electromagnetic induction coil 14 arranged on the outer periphery of the water cooling jacket 13 through which the circulating water 15 flows have the multilayer structure shown in FIG. Using a cooling plate and a cooling plate having a two-layer structure in which grooves are formed on the mating surface shown in FIG. 5 above, the thickness of the solidified shell generated in the cooling plate when growth was suppressed was investigated. In this case, all the cooling plate constituent materials were non-magnetic stainless steel.
The shear strain rate at the solid-liquid interface was calculated by measuring the molten metal rotation speed.

【0041】これらの結果を図9及び図10に示す。図9
は冷却板の層数と成長抑制時の凝固シェル厚との関係を
示すグラフであり、攪拌子回転法の場合と同様に、成長
抑制時の凝固シェル厚は冷却板の層数が多いほど薄くな
る。また図9には循環水流速度の影響も示したが、この
水流速度を遅くすることによっても凝固シェルの抑制厚
さを薄くできる。
The results are shown in FIGS. 9 and 10. Figure 9
Is a graph showing the relationship between the number of cooling plate layers and the solidified shell thickness when growth is suppressed.As with the stirrer rotation method, the solidified shell thickness when growth is suppressed becomes smaller as the number of cooling plate layers increases. Become. Although the effect of the circulating water flow velocity is also shown in FIG. 9, the suppression thickness of the solidified shell can be reduced by slowing this water flow velocity.

【0042】図10は2層冷却板の合せ面の接触面積率と
成長抑制時の凝固シェル厚との関係を示すグラフであ
り、攪拌子回転法の場合と同様に接触面積率が小さいほ
ど成長抑制時の凝固シェル厚は薄くなる。
FIG. 10 is a graph showing the relationship between the contact area ratio of the mating surfaces of the two-layer cooling plate and the thickness of the solidified shell when growth is suppressed. As in the case of the stirrer rotation method, the smaller the contact area ratio, the larger the growth. The thickness of the solidified shell during suppression is reduced.

【0043】このように、電磁攪拌法を採用しても冷却
板を多層化すること、多層構造の冷却板の合せ面に溝を
設けることなどにより、冷却槽の抜熱速度の調整が可能
であり、これらにより凝固シェルの成長を抑制しその厚
さを制御できる。
As described above, even if the electromagnetic stirring method is adopted, it is possible to adjust the heat removal rate of the cooling tank by making the cooling plates multi-layered and providing grooves on the mating surfaces of the cooling plates having a multilayer structure. By these, the growth of the solidified shell can be suppressed and the thickness thereof can be controlled.

【0044】なお、溝を設けた多層構造の冷却板におい
て、抜熱速度をさらに小さくするためには、溝の深さを
深くすること、冷却板溶湯側に高融点材料をさらに重ね
合せることも有効である。また、冷却板としてステンレ
ス鋼を採用した場合に発生する曲がりは、多層構造にす
ることにより容易に防止できる。
In order to further reduce the heat removal rate in the multi-layered cooling plate having the grooves, the depth of the grooves may be increased and a high melting point material may be further stacked on the molten metal side of the cooling plate. It is valid. Further, the bending that occurs when stainless steel is used as the cooling plate can be easily prevented by using a multilayer structure.

【0045】以上この発明により、付加可能な固液界面
のせん断歪速度に応じて抜熱速度を選択することができ
るようになり、その結果、凝固シェルの成長を抑制して
その厚さを制御し、攪拌子回転法においては凝固シェル
成長に起因したトルクの上昇を皆無にして、高固相率の
半凝固金属の連続排出による工業プロセスでの製造を可
能にし、電磁攪拌法においては抜熱速度の変動を防止し
て品質の安定化が実現できる。
As described above, according to the present invention, the heat removal rate can be selected according to the shear strain rate of the solid-liquid interface that can be added, and as a result, the growth of the solidified shell is suppressed and the thickness thereof is controlled. However, in the stirrer rotation method, there is no increase in torque due to solidified shell growth, which enables production in an industrial process by continuous discharge of semi-solidified metal with high solid fraction. Stabilization of quality can be realized by preventing speed fluctuations.

【0046】[0046]

【実施例】【Example】

実施例1 図1に実施例に用いた攪拌子回転法による半凝固金属製
造装置の説明図を示す。この装置の主な構成は、受湯槽
5、冷却板8を有する冷却槽6、保持槽7、攪拌子10、
排出量制御用ノズル12及びトルクメータ3からなる。そ
の他図1において、1は溶湯、2は攪拌子用モータ、4
はタンディッシュ、9は冷却板8の冷却スプレー、11は
受湯槽5及び保持槽7の各ヒータである。この装置での
半凝固金属の製造は、スクリュースピンドル状の攪拌子
10を用い、受湯槽5及び保持槽7をそれぞれのヒータ11
で、また排出用ノズル12をバーナ(図示省略)で十分予
熱したのち、装置の上方よりタンディッシュ4を介して
適正温度に調整した溶湯1を注入し、冷却槽6の冷却板
8からの抜熱と攪拌子10の回転による攪拌により半凝固
金属スラリーを生成させ、排出される半凝固金属の固相
率を排出量制御用ノズル12により冷却槽6内での滞溜時
間を調整することで制御し、排出量制御用ノズル12から
所望の固相率の半凝固金属を排出することで行った。
Example 1 FIG. 1 shows an explanatory view of a semi-solidified metal manufacturing apparatus by a stirrer rotation method used in Examples. The main components of this apparatus are a hot water receiving tank 5, a cooling tank 6 having a cooling plate 8, a holding tank 7, a stirrer 10,
It consists of a discharge control nozzle 12 and a torque meter 3. Others In FIG. 1, 1 is a molten metal, 2 is a stirrer motor, 4
Is a tundish, 9 is a cooling spray for the cooling plate 8, and 11 is each heater of the hot water receiving tank 5 and the holding tank 7. The production of semi-solidified metal with this equipment is performed by a screw spindle-shaped stirrer.
10 is used for the hot water receiving tank 5 and the holding tank 7 for the respective heaters 11.
In addition, after sufficiently preheating the discharge nozzle 12 with a burner (not shown), the melt 1 adjusted to an appropriate temperature is injected from above the device through the tundish 4, and the cooling tank 6 is withdrawn from the cooling plate 8. A semi-solidified metal slurry is generated by stirring by heat and rotation of the stirrer 10, and the solid phase rate of the discharged semi-solidified metal is adjusted by the discharge control nozzle 12 to adjust the retention time in the cooling tank 6. It was performed by controlling and discharging the semi-solidified metal having a desired solid fraction from the discharge amount controlling nozzle 12.

【0047】実施例は、図2に示す多層構造(冷却水
側:銅板、溶湯側:ステンレス鋼板)の冷却板を採用
し、 0.6mass%C鋼を用いて、排出される半凝固金属の
固相率を0.3 、設定クリアランス(冷却板8と攪拌子10
との間隔)を15mmとして溶湯の注入を開始し、固液界面
のせん断歪速度を1500s-1と一定にして行い、冷却板の
抜熱速度、冷却板に生成する凝固シェルの成長抑制時の
凝固シェル厚を調査した。
In the embodiment, a cooling plate having a multilayer structure (cooling water side: copper plate, molten metal side: stainless steel plate) shown in FIG. 2 is adopted, and 0.6 mass% C steel is used to discharge the solidified semi-solid metal. Phase ratio 0.3, set clearance (cooling plate 8 and stirrer 10
Interval) and the injection of molten metal is started at 15 mm, and the shear strain rate at the solid-liquid interface is kept constant at 1500 s -1, and the heat removal rate of the cooling plate and the growth of the solidified shell generated on the cooling plate are suppressed. The solidified shell thickness was investigated.

【0048】なお、固液界面のせん断歪速度の調整は、
攪拌子10の回転数を一定にしクリアランS(凝固シェル
と攪拌子10との間隔)を0.8mm にすることで行った。ま
た、冷却板に生成する凝固シェル成長の抑制は攪拌子ト
ルクが上昇しないことにより確認し、凝固シェル抑制厚
さは排出後の冷却板に生成しているシェル厚、及び冷却
槽内に残存する鋳塊の成分分析による負偏析分布から測
定した。
The shear strain rate at the solid-liquid interface can be adjusted by
The rotation speed of the stirrer 10 was kept constant and the clear run S (distance between the solidified shell and the stirrer 10) was set to 0.8 mm. Also, the suppression of solidified shell growth generated on the cooling plate is confirmed by the fact that the stirrer torque does not rise, and the solidified shell suppression thickness remains in the cooling plate after discharge and in the cooling tank. It was measured from the negative segregation distribution by component analysis of the ingot.

【0049】かくして得られた結果を図3及び図4に示
す。図3は冷却板の層数と抜熱速度との関係を示すグラ
フである。この図から抜熱速度は冷却板の層数が増加す
るにつれ減少することがわかる。図4は冷却板の層数と
成長抑制時の凝固シェル厚との関係を示すグラフであ
る。この図から成長抑制時の凝固シェル厚は冷却板の層
数が多いほど薄くなっていることがわかる。
The results thus obtained are shown in FIGS. 3 and 4. FIG. 3 is a graph showing the relationship between the number of layers of the cooling plate and the heat removal rate. It can be seen from this figure that the heat removal rate decreases as the number of layers of the cooling plate increases. FIG. 4 is a graph showing the relationship between the number of layers of the cooling plate and the thickness of the solidified shell when growth is suppressed. From this figure, it can be seen that the solidified shell thickness when growth is suppressed becomes thinner as the number of layers of the cooling plate increases.

【0050】なお、これらの傾向は冷却板の溶湯側材料
にチタン系金属を採用してもほぼ同様で、これらの材料
は耐熱材料として優れた材料である。
These tendencies are almost the same even when a titanium-based metal is used as the material for the molten metal of the cooling plate, and these materials are excellent heat-resistant materials.

【0051】以上より、冷却板の層数を変更することに
より冷却槽の抜熱速度の制御が可能で、凝固シェルの成
長を抑制しその厚さを制御できることが明らかである。
From the above, it is apparent that the heat removal rate of the cooling tank can be controlled by changing the number of layers of the cooling plate, the growth of the solidified shell can be suppressed and the thickness thereof can be controlled.

【0052】実施例2 実施例1と同様に図1に示した半凝固金属製造装置によ
り半凝固金属を製造した。この実施例は、図5に示す合
せ面に溝を設けた2層構造の冷却板を採用した以外は、
実施例1と同様の合金溶湯を用い、同様の実験方法で行
った。
Example 2 Similar to Example 1, a semi-solid metal was produced by the semi-solid metal producing apparatus shown in FIG. In this embodiment, except that a cooling plate having a two-layer structure in which grooves are provided on the mating surface shown in FIG. 5 is adopted,
The same molten alloy as in Example 1 was used and the same experimental method was used.

【0053】ここで、採用した冷却板は、図5におい
て、冷却水側板材8−1に銅板、溶湯側板材8−2にス
テンレス鋼板を用い、ステンレス鋼板に溝8−3を設
け、かつ、溝部合計面積及び溝深さを変化させた。
The cooling plate adopted here is, in FIG. 5, a copper plate for the cooling water side plate member 8-1, a stainless steel plate for the molten metal side plate member 8-2, a groove 8-3 provided on the stainless steel plate, and The total groove area and the groove depth were changed.

【0054】かくして得られた結果を図6及び図7に示
す。図6は溝深さをパラメータとする銅板とステンレス
鋼板間合せ面の接触面積率と抜熱速度との関係を示すグ
ラフであり、図7は溝深さをパラメータとする鋼板とス
テンレス鋼板間合せ面の接触面積率と成長抑制時の凝固
シェル厚との関係を示すグラフである。
The results thus obtained are shown in FIGS. 6 and 7. FIG. 6 is a graph showing the relationship between the contact area ratio of the copper plate / stainless steel plate mating surface with the groove depth as a parameter and the heat removal rate. FIG. 7 shows the relationship between the steel plate and the stainless steel plate with the groove depth as a parameter. It is a graph which shows the relationship between the contact area ratio of a surface and the solidification shell thickness at the time of growth control.

【0055】ここで、接触面積率とは冷却水側板材と溶
湯側板材との合せ面で互いに全面で接触している場合
(溝のない場合)を1とした面積比である。
Here, the contact area ratio is an area ratio which is 1 when the cooling water side plate material and the molten metal side plate material are in contact with each other over the entire surface (when there is no groove).

【0056】これらの図から明らかなように、合せ面の
接触面積率を減じることにより抜熱速度を減少させ、成
長抑制時の凝固シェル厚を薄くすることができる。ま
た、溝深さが深い方が接触面積率の影響がより顕著にな
る。したがって、冷却槽の抜熱速度及び成長抑制時の凝
固シェル厚は合せ面に溝を設けた冷却板の接触面積率、
溝深さによっても制御できる。
As is clear from these figures, the heat removal rate can be reduced by reducing the contact area ratio of the mating surfaces, and the solidified shell thickness at the time of growth suppression can be reduced. Further, the deeper the groove depth, the more noticeable the influence of the contact area ratio. Therefore, the heat removal rate of the cooling tank and the solidification shell thickness at the time of growth suppression are the contact area ratio of the cooling plate provided with grooves on the mating surface,
It can also be controlled by the groove depth.

【0057】なお冷却板の溶湯側板材としてチタン系金
属を採用しても図6及び7と同様の傾向が得られる。
Even if a titanium-based metal is used as the plate material on the melt side of the cooling plate, the same tendency as in FIGS. 6 and 7 can be obtained.

【0058】実施例3 この実施例は電磁攪拌法を採用して行ったものである。
この電磁攪拌法による実験装置の冷却槽の説明図を図8
に示す。図において冷却槽は、冷却板8の外周に循環水
15を流す水冷ジャケット13を配し、さらにその外周に電
磁誘導コイル14を配置してなる。なお、冷却槽の形状
は、その筒状の冷却板が、下向きに先細りのテーパーを
なす形状とすることがよく、かくすることにより、冷却
板の各層間の接触状況が安定し抜熱速度のバラツキが小
さくなる。
Example 3 This example was carried out using the electromagnetic stirring method.
FIG. 8 shows an explanatory view of the cooling tank of the experimental apparatus by this electromagnetic stirring method.
Shown in. In the figure, the cooling tank has circulating water around the cooling plate 8.
A water cooling jacket 13 through which 15 flows is arranged, and an electromagnetic induction coil 14 is further arranged on the outer periphery thereof. The shape of the cooling tank is preferably such that the cylindrical cooling plate has a downwardly tapering taper shape, whereby the contact condition between the layers of the cooling plate is stable and the heat removal rate is high. Variation is reduced.

【0059】この実施例は、図2に示した多層構造の各
層ともステンレス鋼(非磁性)からなる冷却板、及び図
5に示した合せ面に溝を設けた2層構造の両層ともステ
ンレンス鋼(非磁性)からなる冷却板をそれぞれ採用し
て、冷却板の層数、合せ面の接触面積率を変化させ、
0.6mass%C鋼を用いて固相率0〜0.35の半凝固金属を
製造し、冷却板に生成する凝固シェルの成長抑制時の厚
さを調査した。なお、固相率は冷却面積、排出速度等で
制御した。
In this embodiment, each layer of the multi-layer structure shown in FIG. 2 has a cooling plate made of stainless steel (nonmagnetic), and both layers of the two-layer structure shown in FIG. Each of the cooling plates made of steel (non-magnetic) is adopted, and the number of layers of the cooling plates and the contact area ratio of the mating surfaces are changed,
A semi-solid metal having a solid fraction of 0 to 0.35 was manufactured using 0.6 mass% C steel, and the thickness of the solidified shell formed on the cooling plate when growth was suppressed was investigated. The solid phase rate was controlled by the cooling area, the discharge rate, and the like.

【0060】なお、成長抑制時の凝固シェル厚の測定
は、実施例1の場合と同様で、安定状態に達するまでの
十分な時間冷却・攪拌したのち溶湯ないしは半凝固金属
を排出し、残留したシェル厚を測定する方法と、冷却槽
内に残存する鋳塊の負偏析部厚さを測定する方法とで定
量化した。
The measurement of the solidified shell thickness at the time of growth inhibition was the same as in Example 1, and after cooling and stirring for a sufficient time to reach a stable state, the molten metal or semi-solidified metal was discharged and remained. It was quantified by the method of measuring the shell thickness and the method of measuring the thickness of the negative segregation portion of the ingot remaining in the cooling tank.

【0061】かくして得られた結果を図9及び図10に示
す。図9は循環水流速度をパラメータとする冷却板の層
数と成長抑制時の凝固シェル厚との関係を示すグラフ
で、この図から明らかなように、成長抑制時の凝固シェ
ル厚は、冷却板の層数を増加するほど薄くなり、循環水
流速度が小さい方が薄くなる。
The results thus obtained are shown in FIGS. 9 and 10. FIG. 9 is a graph showing the relationship between the number of layers of the cooling plate with the circulating water flow velocity as a parameter and the solidification shell thickness when the growth is suppressed. As is clear from this figure, the solidification shell thickness when the growth is suppressed is the cooling plate. It becomes thinner as the number of layers increases, and becomes thinner as the circulating water flow velocity decreases.

【0062】図10は循環水流速度をパラメータとする2
層構造冷却板合せ面の接触面積率と成長抑制時の凝固シ
ェル厚との関係を示すグラフである。この図から明らか
なように、成長抑制時の凝固シェル厚は、冷却板合せ面
の接触面積率が小さいほど薄くなり、また、循環水流速
度が小さい方が薄くなる。
In FIG. 10, the circulating water flow velocity is used as a parameter 2.
It is a graph which shows the relationship between the contact area ratio of the laminated structure cooling plate mating surface, and the solidification shell thickness at the time of growth suppression. As is clear from this figure, the solidified shell thickness at the time of growth suppression becomes thinner as the contact area ratio of the cooling plate mating surface becomes smaller, and becomes thinner as the circulating water flow velocity becomes smaller.

【0063】なお、上記において冷却板の層数を増加す
ること、溝深さを変更することによっても成長抑制時の
凝固シェル厚と接触面積率との関係を調整できる。ま
た、冷却板の溶湯側板材にチタン系金属を用いてもステ
ンレス鋼を用いた場合と同様の傾向が得られる。
The relationship between the solidified shell thickness and the contact area ratio when growth is suppressed can be adjusted by increasing the number of layers of the cooling plate and changing the groove depth in the above. Further, even if a titanium-based metal is used for the molten-side plate material of the cooling plate, the same tendency as in the case of using stainless steel can be obtained.

【0064】以上のように、攪拌子回転法に比し攪拌力
が劣り固液界面のせん断歪速度が小さい電磁攪拌法にお
いても抜熱速度の制御が可能で、その結果冷却板に生成
する凝固シェルの成長を抑制しその厚さを制御すること
ができる。したがって、電磁攪拌法による半凝固金属の
製造において、品質の安定した半凝固金属を連続して製
造することができる。
As described above, the heat removal rate can be controlled even in the electromagnetic stirring method in which the stirring force is inferior to that in the stirrer rotation method and the shear strain rate at the solid-liquid interface is small, and as a result, the solidification generated on the cooling plate The growth of the shell can be suppressed and its thickness can be controlled. Therefore, in the production of semi-solidified metal by the electromagnetic stirring method, it is possible to continuously produce semi-solidified metal with stable quality.

【0065】[0065]

【発明の効果】この発明は、溶湯を冷却下に攪拌を加え
て半凝固金属を連続的に製造するにあたり、冷却槽の冷
却板構造を多層化すること、さらにはその層間の合せ面
に溝を設けることにより冷却槽の抜熱速度を制御して、
固液界面のせん断歪速度に応じて冷却板に生成する凝固
シェルの成長を抑制し、その厚さを制御するものであ
り、
According to the present invention, when a molten metal is stirred while being cooled to continuously produce a semi-solidified metal, the cooling plate structure of the cooling tank is formed into multiple layers, and furthermore, a groove is formed on the mating surface between the layers. By controlling the heat removal rate of the cooling tank,
It suppresses the growth of the solidified shell generated in the cooling plate according to the shear strain rate of the solid-liquid interface, and controls the thickness thereof.

【0066】この発明によれば、攪拌子回転法において
は、凝固シェルの成長に起因する攪拌子トルクの上昇を
防止して従来困難であった高固相率の半凝固金属の連続
排出による工業プロセス生産を可能にし、電磁攪拌法に
おいては、凝固シェルの成長に起因する排出される半凝
固金属の固相率及び初晶粒径のバラツキの防止が可能に
なり品質の安定化を実現できる。
According to the present invention, in the stirrer rotation method, it is possible to prevent the rise of the stirrer torque due to the growth of the solidified shell to prevent the industrialization by continuously discharging the semi-solidified metal having a high solid fraction, which has been difficult in the past. It enables process production, and in the electromagnetic stirring method, it is possible to prevent variations in the solid phase ratio of the discharged semi-solidified metal and the primary crystal grain size due to the growth of the solidified shell, and to stabilize the quality.

【0067】そしてこのようにして製造した半凝固金属
は、半凝固金属を直接製品に加工するレオフォーム用素
材、半融状態まで再加熱して加工するチクソキャスト用
素材ならびに半凝固金属を凝固させたのちの鋳造用など
の素材に供給することにより、ニアネットシェーププロ
セスを実現し、加工エネルギーの大幅な削減や、さらに
は半凝固金属を用いた新材料の開発を可能にする。
The semi-solidified metal produced as described above solidifies the material for rheoform for directly processing the semi-solidified metal into a product, the material for thixocasting for re-heating to a semi-molten state and the semi-solidified metal. By supplying the material for later casting, etc., the near net shape process will be realized, and it will be possible to greatly reduce the processing energy and to develop new materials using semi-solid metal.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例に用いた攪拌子回転法による半凝固金属
製造装置の説明図である。
FIG. 1 is an explanatory view of a semi-solidified metal producing apparatus by a stirrer rotation method used in Examples.

【図2】多層構造の冷却板の説明図である。FIG. 2 is an explanatory diagram of a cooling plate having a multilayer structure.

【図3】冷却板の層数と抜熱速度との関係を示すグラフ
である。
FIG. 3 is a graph showing the relationship between the number of layers of cooling plates and the heat removal rate.

【図4】冷却板の層数と成長抑制時の凝固シェル厚との
関係を示すグラフである。
FIG. 4 is a graph showing a relationship between the number of layers of a cooling plate and a solidified shell thickness when growth is suppressed.

【図5】合せ面に溝を設けた2層構造の冷却板の説明図
である。
FIG. 5 is an explanatory diagram of a cooling plate having a two-layer structure in which grooves are provided on a mating surface.

【図6】溝深さをパラメータとする銅板とステンレス鋼
板間合せ面の接触面積率と抜熱速度との関係を示すグラ
フである。
FIG. 6 is a graph showing a relationship between a contact area ratio of a copper plate / stainless steel plate mating surface with a groove depth as a parameter and a heat removal rate.

【図7】溝深さをパラメータとする銅板とステンレス鋼
板間合せ面の接触面積率と成長抑制時の凝固シェル厚と
の関係を示すグラフである。
FIG. 7 is a graph showing a relationship between a contact area ratio between a copper plate and a stainless steel plate mating surface with a groove depth as a parameter and a solidified shell thickness when growth is suppressed.

【図8】電磁攪拌法による実験装置の冷却槽の説明図で
ある。
FIG. 8 is an explanatory diagram of a cooling tank of the experimental apparatus by the electromagnetic stirring method.

【図9】循環水流速度をパラメータとする冷却板の層数
と成長抑制時の凝固シェル厚との関係を示すグラフであ
る。
FIG. 9 is a graph showing the relationship between the number of cooling plate layers and the solidified shell thickness when growth is suppressed, with the circulating water flow velocity as a parameter.

【図10】循環水流速度をパラメータとする2層構造の
冷却板合せ面の接触面積率と成長抑制時の凝固シェル厚
との関係を示すグラフである。
FIG. 10 is a graph showing a relationship between a contact area ratio of a cooling plate mating surface having a two-layer structure and a solidification shell thickness when growth is suppressed, with a circulating water flow velocity as a parameter.

【符号の説明】[Explanation of symbols]

1 溶湯 1−1 溶湯側 2 攪拌用モータ 3 トルクメータ 4 タンディッシュ 5 受湯槽 6 冷却槽 7 保持槽 8 冷却板 8−1 冷却水側板材 8−2 溶湯側板材 8−3 溝 9 冷却スプレー 9−1 冷却スプレー側 10 攪拌子 11 ヒータ 12 排出量制御用ノズル 13 水冷ジャケット 14 電磁誘導コイル 15 循環水 1 Molten Metal 1-1 Melting Side 2 Stirring Motor 3 Torque Meter 4 Tundish 5 Hot Water Tank 6 Cooling Tank 7 Holding Tank 8 Cooling Plate 8-1 Cooling Water Side Plate 8-2 Melting Side Plate 8-3 Groove 9 Cooling Spray 9 -1 Cooling spray side 10 Stirrer 11 Heater 12 Emission control nozzle 13 Water cooling jacket 14 Electromagnetic induction coil 15 Circulating water

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年6月24日[Submission date] June 24, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0031[Correction target item name] 0031

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0031】ここで、この実験では攪拌子回転数を一定
としたので、固液界面のせん断歪速度は、下記式(1) で
あらわすことができ、凝固シェルが生成した場合その厚
さdが厚いほどクリアランスSは小さくなりせん断歪速
度は大きくなる。 〔記〕 γ=2・r1 ・r3 ・Ω/(r3 2−r1 2)‥‥‥ (1) r3 =r2 −d=S+r1 上記式において、 γ :固液界面のせん断歪速度(s-1) r1 :攪拌子半径(m) r2 :冷却槽半径(m) Ω :攪拌子の角速度(rad/s) S :クリアランス(m) r3 :冷却槽内溶湯半径(m) d :凝固シェル厚(m)
Here, since the stirrer rotation speed was constant in this experiment, the shear strain rate at the solid-liquid interface can be expressed by the following equation (1), and when the solidified shell is formed, its thickness d is The thicker the clearance S, the smaller the shear strain rate. In [Symbol] γ = 2 · r 1 · r 3 · Ω / (r 3 2 -r 1 2) ‥‥‥ (1) r 3 = r 2 -d = S + r 1 above formula, gamma: the solid-liquid interface Shear strain rate (s -1 ) r 1 : Radius of stirrer (m) r 2 : Radius of cooling tank (m) Ω: Angular velocity of stirrer (rad / s) S: Clearance (m) r 3 : Molten metal in cooling tank Radius (m) d: Solidified shell thickness (m)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 広芳 千葉県千葉市中央区川崎町1番地 株式会 社レオテック内 (72)発明者 難波 明彦 千葉県千葉市中央区川崎町1番地 株式会 社レオテック内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hiroyoshi Takahashi, 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Stock Company Rheotec (72) Akihiko Namba 1, Kawasaki-cho, Chuo-ku, Chiba Stock Company In rheotech

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 水冷ジャケットを有する筒状の冷却槽の
上部より注入した溶湯を、冷却下に攪拌を加えて連続的
に半凝固金属を製造するにあたり、 該冷却槽の冷却板を多層構造にすることにより抜熱速度
を制御し、凝固シェルの成長を抑制することを特徴とす
る半凝固金属の製造方法。
1. A cooling plate of a cooling tank having a multi-layer structure is used for continuously producing a semi-solid metal by stirring the molten metal poured from the upper part of a cylindrical cooling tank having a water cooling jacket under cooling. The method for producing a semi-solidified metal is characterized by controlling the heat removal rate to suppress the growth of the solidified shell.
【請求項2】 多層構造冷却板の溶湯側板材に低導熱性
耐熱金属材料を採用し、冷却水側板材には銅系金属材料
を採用して冷却槽の抜熱速度を制御し、凝固シェルの成
長を抑制することを特徴とする請求項1に記載の半凝固
金属の製造方法。
2. A multi-layered cooling plate is made of a low heat-conducting heat-resistant metal material for the molten-side plate material, and a copper-based metal material is used for the cooling-water side plate material to control the heat removal rate of the cooling tank to solidify the shell. The method for producing a semi-solid metal according to claim 1, wherein the growth of the metal is suppressed.
【請求項3】 多層構造冷却板の溶湯側低導熱性耐熱金
属材料を2枚以上重ね合せることにより冷却槽の抜熱速
度を制御し、凝固シェルの成長を抑制することを特徴と
する請求項2に記載の半凝固金属の製造方法。
3. The heat removal rate of the cooling tank is controlled by superimposing two or more low-heat-conductivity heat-resistant metal materials on the melt side of the multi-layer structure cooling plate to suppress the growth of the solidified shell. 2. The method for producing a semi-solid metal according to 2.
【請求項4】 多層構造冷却板の低導熱性耐熱金属材料
と銅系金属材料との合せ面に溝を設けることにより冷却
槽の抜熱速度を制御し、凝固シェルの成長を抑制するこ
とを特徴とする請求項2に記載の半凝固金属の製造方
法。
4. The heat removal rate of the cooling tank is controlled by providing a groove in the mating surface of the low heat conductive heat resistant metal material and the copper-based metal material of the multi-layer structure cooling plate to suppress the growth of the solidified shell. The method for producing a semi-solid metal according to claim 2, which is characterized in that.
【請求項5】 多層構造冷却板の低導熱性耐熱金属材料
と銅系金属材料との合せ面に溝を設けること、低導熱性
耐熱金属材料を2枚以上重ね合せることにより冷却槽の
抜熱速度を制御し、凝固シェルの成長を抑制することを
特徴とする請求項2に記載の半凝固金属の製造方法。
5. Heat removal from a cooling tank by providing a groove on a mating surface of a low heat-conducting heat-resistant metal material and a copper-based metal material of a multi-layer structure cooling plate, and stacking two or more low heat-conducting heat-resistant metal materials. The method for producing a semi-solidified metal according to claim 2, wherein the growth rate of the solidified shell is suppressed by controlling the speed.
【請求項6】 多層構造の冷却板の合せ面に溝を設ける
ことにより抜熱速度を制御し、凝固シェルの成長を抑制
することを特徴とする請求項1に記載の半凝固金属の製
造方法。
6. The method for producing a semi-solidified metal according to claim 1, wherein the cooling rate is controlled by providing a groove on the mating surface of the cooling plate having a multilayer structure to suppress the growth of the solidified shell. .
JP14042693A 1993-06-11 1993-06-11 Production of half-solidified metal Pending JPH06344083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14042693A JPH06344083A (en) 1993-06-11 1993-06-11 Production of half-solidified metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14042693A JPH06344083A (en) 1993-06-11 1993-06-11 Production of half-solidified metal

Publications (1)

Publication Number Publication Date
JPH06344083A true JPH06344083A (en) 1994-12-20

Family

ID=15268420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14042693A Pending JPH06344083A (en) 1993-06-11 1993-06-11 Production of half-solidified metal

Country Status (1)

Country Link
JP (1) JPH06344083A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107022731A (en) * 2017-04-25 2017-08-08 昆明理工大学 A kind of device for preparing semi solid slurry and carrying out surface coating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107022731A (en) * 2017-04-25 2017-08-08 昆明理工大学 A kind of device for preparing semi solid slurry and carrying out surface coating

Similar Documents

Publication Publication Date Title
US4434837A (en) Process and apparatus for making thixotropic metal slurries
EP0063757B1 (en) Method and apparatus for casting metals and alloys
EP0095596B1 (en) Process and apparatus for continuous slurry casting
US4960163A (en) Fine grain casting by mechanical stirring
TWI712460B (en) Ultrasonic grain refining devices,system,methods
EP0069270A1 (en) Process and apparatus having improved efficiency for producing a semi-solid slurry
JPS637867B2 (en)
EP0657235B1 (en) Process for the production of semi-solidified metal composition
US4607682A (en) Mold for use in metal or metal alloy casting systems
CA1264522A (en) Continuous casting method and ingot produced thereby
JPH06344083A (en) Production of half-solidified metal
JP3348836B2 (en) Continuous casting equipment for semi-solid metal
Dock-Young et al. Effects of casting speed on microstructure and segregation of electro-magnetically stirred aluminum alloy in continuous casting process
CN108543921A (en) Strong shear is with electromagnetic field coordinate system for the device and method of big specification homogeneous ingot casting
JP3208941B2 (en) Continuous casting method of high purity aluminum alloy
JP3381426B2 (en) Cold wall induction melting continuous casting equipment
JP3249866B2 (en) Method and apparatus for producing semi-solid metal
JP2004255422A (en) Apparatus and method for producing solid-liquid metallic slurry
JPH06328199A (en) Manufacture of continuous semi-solidified metallic slurry
JPH07155906A (en) Method for continuously producing half-solidified metallic material having good workability by electromagnetic stirring method
JP2967415B1 (en) Stirring continuous casting of Al alloy
JPH06297097A (en) Production of half solidified metal
JPH06297098A (en) Production of half solidified metal
JPH07155905A (en) Method for continuously producing half-solidified metal having good workability
JP3062339B2 (en) Method for producing semi-solid metal