JPH0634257A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH0634257A
JPH0634257A JP18816492A JP18816492A JPH0634257A JP H0634257 A JPH0634257 A JP H0634257A JP 18816492 A JP18816492 A JP 18816492A JP 18816492 A JP18816492 A JP 18816492A JP H0634257 A JPH0634257 A JP H0634257A
Authority
JP
Japan
Prior art keywords
compressor
heat
refrigerant
heat radiation
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18816492A
Other languages
Japanese (ja)
Inventor
Minoru Tenmyo
稔 天明
Masato Tago
正人 田子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18816492A priority Critical patent/JPH0634257A/en
Publication of JPH0634257A publication Critical patent/JPH0634257A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/003General constructional features for cooling refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/002Details for cooling refrigerating machinery
    • F25D2323/0026Details for cooling refrigerating machinery characterised by the incoming air flow
    • F25D2323/00264Details for cooling refrigerating machinery characterised by the incoming air flow through the front bottom part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/002Details for cooling refrigerating machinery
    • F25D2323/0027Details for cooling refrigerating machinery characterised by the out-flowing air
    • F25D2323/00271Details for cooling refrigerating machinery characterised by the out-flowing air from the back bottom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/002Details for cooling refrigerating machinery
    • F25D2323/0027Details for cooling refrigerating machinery characterised by the out-flowing air
    • F25D2323/00274Details for cooling refrigerating machinery characterised by the out-flowing air from the front bottom

Abstract

PURPOSE:To restrict a heat transfer between an auxiliary heat radiation part of high temperature and a main heat radiation part of low temperature even if they are integrally assembled to each other. CONSTITUTION:This heat exchanger is comprised of an auxiliary heat radiation part 41 for feeding gaseous refrigerant discharged from a compressor 15, cooling it, returning it to the compressor 15 and cooling the compressor 15 and a main heat radiation part 43 for feeding the refrigerant returned from the auxiliary heat radiation part 41 to the compressor 15 and condensing the refrigerant. These both heat radiation parts 41 and 43 are disposed while being spaced apart by a predetermined amount to each other and concurrently wires 37 are arranged for expanding a heat transferring area over both heat radiation parts 41 and 43.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、圧縮機から吐出され
る冷媒を凝縮させる熱交換器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger for condensing refrigerant discharged from a compressor.

【0002】[0002]

【従来の技術】従来の冷蔵庫の放熱形態について、比較
的小型(400リットルより小さいクラス)での、冷凍
サイクルにおける放熱を図7及び図8に基づき説明す
る。これによれば、圧縮機1より吐出した高温,高圧の
ガス冷媒は、蒸発皿下の受台パイプ3を通り、冷蔵庫本
体の主として側面の内側に配置された放熱パイプ5及び
クリーンパイプ7で凝縮される。凝縮し放熱されてエン
タルピが減少した冷媒は、キャピラリチューブ9に達し
て膨脹し低圧状態となり、エバポレータ11で蒸発して
エバポレータ11の周囲温度を低下させる。エバポレー
タ11を出た冷媒は、アキュムレータ13を経て圧縮機
1に吸い込まれ、ここで再び高温,高圧の加熱蒸気とな
ってサイクル中を循環する。
2. Description of the Related Art Regarding the heat dissipation form of a conventional refrigerator, heat dissipation in a refrigeration cycle in a relatively small size (class smaller than 400 liters) will be described with reference to FIGS. According to this, the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 passes through the pedestal pipe 3 under the evaporation tray, and is condensed by the heat radiating pipe 5 and the clean pipe 7 arranged mainly inside the side surface of the refrigerator main body. To be done. The refrigerant that has condensed and radiated heat to reduce the enthalpy reaches the capillary tube 9 and expands to a low pressure state, evaporates in the evaporator 11 and lowers the ambient temperature of the evaporator 11. The refrigerant discharged from the evaporator 11 is sucked into the compressor 1 via the accumulator 13, and again becomes high-temperature, high-pressure heating steam and circulates in the cycle.

【0003】ところで、冷蔵庫は近年大型化し、これに
伴い、使用される圧縮機は、能力が大きくなり、必要放
熱量も増大してきている。圧縮機の放熱には、必要放熱
量が小さいときには、自然対流や輻射による放熱で充分
間に合っていたため、上記従来例のように、特に対策は
採られていなかった。
By the way, the size of refrigerators has increased in recent years, and with this, the capacity of compressors used has increased, and the amount of heat radiation required has also increased. For the heat radiation of the compressor, when the required heat radiation amount is small, the heat radiation due to natural convection or radiation was sufficient, so that no particular measure was taken as in the conventional example.

【0004】ところが、大型化した冷蔵庫では、圧縮機
の必要放熱量の増大により、冷却ファンにより圧縮機に
冷却風を当てて強制対流により放熱を行う方式や、図9
及び図10に示すように、圧縮機1からの吐出ガスを受
台パイプ3を通して自然対流により冷却した後、圧縮機
1に戻すオイルクーラ方式が用いられていた。さらに、
放熱量が必要な場合には、上記二つの方式を組み合わせ
て行っている。
However, in a large-sized refrigerator, due to an increase in the required heat radiation amount of the compressor, cooling air is blown to the compressor by a cooling fan to radiate the heat by forced convection, as shown in FIG.
Also, as shown in FIG. 10, an oil cooler system is used in which the discharge gas from the compressor 1 is cooled by natural convection through the pedestal pipe 3 and then returned to the compressor 1. further,
When the amount of heat radiation is required, the above two methods are combined.

【0005】また、一方では、オゾン層破壊により特定
フロン(CFC)の使用が問題となり、代替フロンの使
用が求められている。代替フロンとしては各種考えられ
るが、エアコンなどで実績のあるR22を冷蔵庫用の低
温の冷凍サイクルで使用した場合には、圧縮機の必要放
熱量が増大することがわかっている。このため、前述し
たオイルクーラ方式などの圧縮機冷却手段を積極的に用
いる必要があり、さらに圧縮機の吐出ガスを冷却する補
助放熱器となる図9の受台パイプ3の放熱量の増大も要
求されるので、補助放熱器の強制空冷による放熱方式も
考えられる。
On the other hand, the use of specific Freon (CFC) becomes a problem due to ozone layer depletion, and the use of alternative Freon is required. There are various possible alternative CFCs, but it has been found that when R22, which has a proven record in air conditioners and the like, is used in a low-temperature refrigeration cycle for a refrigerator, the required heat radiation amount of the compressor increases. For this reason, it is necessary to positively use the compressor cooling means such as the oil cooler system described above, and further increase the heat radiation amount of the pedestal pipe 3 of FIG. 9 which serves as an auxiliary radiator for cooling the discharge gas of the compressor. Since it is required, a heat radiation method by forced air cooling of the auxiliary radiator can be considered.

【0006】また、冷蔵庫内部への熱漏洩減少のため、
主放熱器となる図7もしくは図9に示される放熱パイプ
5を、冷蔵庫本体の側面に設けた、いわゆるインナパイ
プコンデンサに対し、機械室あるいは冷蔵庫底面のスペ
ースに配置し、ファンによる強制空冷により放熱させる
方法も考えられる。
In addition, since the heat leakage to the inside of the refrigerator is reduced,
The heat radiating pipe 5 shown in FIG. 7 or 9, which is the main heat radiator, is placed in the space of the machine room or the bottom of the refrigerator against the so-called inner pipe capacitor provided on the side of the refrigerator body, and heat is radiated by forced air cooling by a fan. A method of making it possible is also considered.

【0007】これらの放熱器には、冷媒が通る折り曲げ
られた鉄パイプに、鉄の細線を溶接して伝熱面積を拡大
させた、いわゆるワイヤコンデンサが用いられることが
ある。ワイヤコンデンサの製造方法の一例を説明する。
まず、冷媒配管用の鉄パイプを、図7の受皿パイプ3の
ように、決められた幅及びピッチに、一平面上で繰り返
し折り曲げ、幅及びパイプピッチが一定となるように、
折り曲げ部を固定する治具にセットする。この状態で、
鉄パイプの上下に配置したコイル状に巻かれた鉄の細線
(ワイヤ)を順次繰り出し、繰り出した細線を鉄パイプ
に対して上下から挟み込んで溶接固定する。溶接後は、
細線を切断することでワイヤコンデンサが完成する。細
線は、あらかじめ切断された一定長さのものを用いるこ
ともある。また、2種類の折り曲げた鉄パイプに、同一
のワイヤをまとめて溶接してワイヤコンデンサを製造す
ることも可能である。
In these radiators, so-called wire capacitors may be used, in which a thin iron wire is welded to a bent iron pipe through which a refrigerant passes to expand the heat transfer area. An example of the method for manufacturing the wire capacitor will be described.
First, an iron pipe for refrigerant piping is bent repeatedly on one plane to a predetermined width and pitch as in the saucer pipe 3 of FIG. 7, so that the width and the pipe pitch become constant,
Set it on the jig that fixes the bent part. In this state,
Iron thin wires (wires) wound in a coil shape arranged above and below the iron pipe are sequentially drawn out, and the drawn thin wires are sandwiched from above and below the iron pipe and fixed by welding. After welding,
The wire capacitor is completed by cutting the thin wire. The thin wire may have a certain length that has been cut in advance. Further, it is possible to manufacture a wire capacitor by welding the same wire together to two types of bent iron pipes.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、このよ
うにして製造されるワイヤコンデンサを、前述した圧縮
機の吐出ガスを冷却するための補助放熱器と、機械室あ
るいは冷蔵庫底面のスペースに配置した主放熱器とを一
体化したものとして使用する場合には、補助放熱器及び
主放熱器の二つの放熱器は、内部を流れる冷媒の温度が
大きく異なるため、熱伝導により低温の主放熱器が高温
の補助放熱器により加熱されることになり、両者を一体
化するには無理があり、両者を別々に設置する必要があ
った。両者を別々に設置すると、余計なスペースが必要
となって好ましいものではない。
However, the wire capacitor thus manufactured is arranged in the space above the auxiliary radiator for cooling the discharge gas of the compressor and in the machine room or the bottom of the refrigerator. When used as an integrated radiator, the two radiators, the auxiliary radiator and the main radiator, differ greatly in the temperature of the refrigerant flowing inside, so heat conduction causes the main radiator at a low temperature to become hot. Since it was heated by the auxiliary radiator of No. 2, it was not possible to integrate both, and it was necessary to install both separately. If both are installed separately, an extra space is required, which is not preferable.

【0009】そこで、この発明は、補助放熱器と主放熱
器とを一体化した場合でも、両者間での熱伝導を抑制す
ることを目的としている。
Therefore, an object of the present invention is to suppress heat conduction between the auxiliary radiator and the main radiator even when they are integrated.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するため
に、この発明は、折り曲げた冷媒配管に伝熱部材が設け
られ、圧縮機から吐出された冷媒を冷却させる熱交換器
において、前記冷媒配管は、吐出された冷媒を導入して
冷却し圧縮機に戻して圧縮機を冷却する補助放熱部位
と、この補助放熱部位から圧縮機に戻った冷媒を導入し
て凝縮させる主放熱部位とからなり、これら両放熱部位
相互は所定間隔離して配置されるとともに、両放熱部位
に跨って前記伝熱部材を設けた構成としてある。
In order to achieve the above object, the present invention provides a heat exchanger in which a bent refrigerant pipe is provided with a heat transfer member to cool the refrigerant discharged from a compressor. The piping is composed of an auxiliary heat radiation portion that introduces the discharged refrigerant, cools it, returns it to the compressor, and cools the compressor, and a main heat radiation portion that introduces the refrigerant returned from the auxiliary heat radiation portion to condense it. In addition, the two heat radiating parts are arranged so as to be separated from each other by a predetermined distance, and the heat transfer member is provided across the both heat radiating parts.

【0011】また、この発明は、伝熱部材を、両放熱部
位相互間における一部または全部を除いて設ける構成と
してもよい。
Further, the present invention may be arranged such that the heat transfer member is provided excluding a part or all between the two heat radiating portions.

【0012】[0012]

【作用】このような構成の熱交換器によれば、補助放熱
部位を流れる冷媒と主放熱部位を流れる冷媒には温度差
があるが、両放熱部位は相互に所定間隔離れて配置され
ているので、両者間での熱伝導は抑制される。
According to the heat exchanger having such a structure, although there is a temperature difference between the refrigerant flowing through the auxiliary heat radiating portion and the refrigerant flowing through the main heat radiating portion, both heat radiating portions are arranged at a predetermined distance from each other. Therefore, heat conduction between them is suppressed.

【0013】[0013]

【実施例】以下、この発明の実施例を図面に基づき説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】図1ないし図3は、この発明の第1実施例
を示している。図1は冷蔵庫の底部における機械室周辺
の内部構造例であり、図2は冷蔵庫の冷凍サイクル構成
図である。冷蔵庫後方下部に圧縮機15が配置され、冷
蔵庫底面に形成されたダクト17の内部に熱交換器とし
てのワイヤコンデンサ19が設置される。機械室内のダ
クト17から圧縮機15への空気流路の途中に冷却用フ
ァン21が配置され、冷却用ファン21による冷却空気
は、図1及び図2に示す矢印Aのように、ダクト17の
冷蔵庫前面側の入口17aから流入し、ワイヤコンデン
サ19、圧縮機15及び、内部に蒸発促進のための蒸発
皿パイプ23が配置される蒸発皿25を通る。
1 to 3 show a first embodiment of the present invention. FIG. 1 is an example of the internal structure around the machine room at the bottom of the refrigerator, and FIG. 2 is a refrigeration cycle configuration diagram of the refrigerator. The compressor 15 is arranged in the lower rear part of the refrigerator, and the wire condenser 19 as a heat exchanger is installed inside the duct 17 formed on the bottom surface of the refrigerator. A cooling fan 21 is arranged in the middle of the air flow path from the duct 17 to the compressor 15 in the machine room, and the cooling air by the cooling fan 21 is directed to the duct 17 as shown by an arrow A in FIGS. 1 and 2. It flows in from the inlet 17a on the front side of the refrigerator and passes through the wire condenser 19, the compressor 15, and the evaporation tray 25 in which the evaporation tray pipe 23 for promoting evaporation is arranged.

【0015】冷凍サイクル構成は、圧縮機15から吐出
される冷媒の流れる順に、冷媒を凝縮させるワイヤコン
デンサ19及びクリーンパイプ27、ドライヤ29、冷
媒を膨脹させるキャピラリチューブ31、冷媒を蒸発さ
せて周囲温度を低下させるエバポレータ33、液分離を
行うアキュムレータ35が接続されるものとなってい
る。
In the refrigeration cycle configuration, the wire condenser 19 for condensing the refrigerant, the clean pipe 27, the dryer 29, the capillary tube 31 for expanding the refrigerant, and the ambient temperature for evaporating the refrigerant are arranged in the order in which the refrigerant discharged from the compressor 15 flows. An evaporator 33 that lowers the temperature and an accumulator 35 that performs liquid separation are connected.

【0016】ワイヤコンデンサ19は、冷媒が通る冷媒
配管となる鉄パイプ36を、ほぼ同一平面上で繰り返し
折り曲げ、折り曲げた鉄パイプ36の同一平面部分を両
面から伝熱部材としての複数の鉄の細線(ワイヤ)37
で挟み込むようにして形成したものである。鉄パイプ3
6にワイヤ37を設けることで、伝熱面積が向上する。
このようなワイヤコンデンサ19は、冷媒配管部分が、
圧縮機15から吐出されたガス冷媒を冷却し圧縮機15
のオイルクーラ39に戻して圧縮機15を冷却する補助
放熱部位41と、この補助放熱部位41から圧縮機15
に戻った冷媒を導入して凝縮させる主放熱部位43とか
ら構成されている。これら両放熱部位41,43相互の
間隔は、各放熱部位41,43における鉄パイプ間の間
隔の約2倍となっており、これら両放熱部位41,43
に跨って前記ワイヤ37が設けられている。
In the wire condenser 19, an iron pipe 36, which serves as a refrigerant pipe through which a refrigerant passes, is repeatedly bent on substantially the same plane, and the same plane portion of the bent iron pipe 36 is covered with a plurality of fine iron wires as heat transfer members from both sides. (Wire) 37
It is formed so as to be sandwiched between. Iron pipe 3
The heat transfer area is improved by providing the wire 37 to the wire 6.
In such a wire condenser 19, the refrigerant pipe portion is
The gas refrigerant discharged from the compressor 15 is cooled to cool the compressor 15
Of the auxiliary heat radiating portion 41 for returning the oil to the oil cooler 39 to cool the compressor 15, and from the auxiliary heat radiating portion 41 to the compressor 15
And a main heat dissipation portion 43 for introducing and condensing the returned refrigerant. The distance between the two heat radiating portions 41 and 43 is about twice the distance between the iron pipes in the heat radiating portions 41 and 43.
The wire 37 is provided so as to extend over.

【0017】上記ワイヤコンデンサ19の製造方法を説
明する。補助放熱部位41及び主放熱部位43用に、そ
れぞれ所定に折り曲げられた二つの鉄パイプを、両放熱
部位41,43相互の間隔が、各放熱部位41,43に
おける鉄パイプ間の間隔の2倍となるよう治具にセット
する。この状態で、鉄パイプの上下に設置したコイル状
に巻かれたワイヤを順次繰り出し、繰り出したワイヤを
鉄パイプに溶接により固定する。
A method of manufacturing the wire capacitor 19 will be described. For the auxiliary heat dissipation part 41 and the main heat dissipation part 43, two iron pipes each bent in a predetermined manner are arranged such that the distance between the two heat dissipation parts 41, 43 is twice the distance between the iron pipes in each heat dissipation part 41, 43. Set it on the jig. In this state, the coiled wires installed above and below the iron pipe are sequentially drawn out, and the drawn out wire is fixed to the iron pipe by welding.

【0018】このような冷蔵庫においては、圧縮機15
からの高温,高圧のガス冷媒は、蒸発皿パイプ23を通
り、ワイヤコンデンサ19の補助放熱部位41に入り冷
却された状態で圧縮機15のオイルクーラ39に戻って
圧縮機15を冷却する。オイルクーラ39を出た冷媒
は、ワイヤコンデンサ19の主放熱部位43に入り冷却
され、さらにクリーンパイプ27でも冷却されて凝縮す
る。放熱され凝縮してエンタルピが減少した冷媒は、ド
ライヤ29、キャピラリチューブ31を通り膨脹して低
圧状態となり、エバポレータ33で蒸発してエバポレー
タ33周囲の温度を低下させる。エバポレータ33を出
た冷媒は、アキュムレータ35を経て圧縮機15に吸い
込まれ高温,高圧の加熱蒸気となってサイクル内を循環
する。
In such a refrigerator, the compressor 15
The high-temperature, high-pressure gas refrigerant from the above passes through the evaporation dish pipe 23, enters the auxiliary heat radiating portion 41 of the wire condenser 19, and returns to the oil cooler 39 of the compressor 15 in a cooled state to cool the compressor 15. The refrigerant discharged from the oil cooler 39 enters the main heat dissipation portion 43 of the wire condenser 19 and is cooled, and further cooled in the clean pipe 27 and condensed. The refrigerant, which has been radiated and condensed to reduce the enthalpy, expands through the dryer 29 and the capillary tube 31, expands to a low pressure state, evaporates in the evaporator 33, and lowers the temperature around the evaporator 33. The refrigerant discharged from the evaporator 33 is sucked into the compressor 15 via the accumulator 35 and becomes high-temperature, high-pressure heating vapor, and circulates in the cycle.

【0019】このような冷媒循環過程において、ワイヤ
コンデンサ19では、補助放熱部位41と主放熱部位4
3とは温度差が大きいが、これら両者は所定の間隔を置
いて離れており、しかも両者間におけるワイヤ37自体
が冷却されるので、高温の補助放熱部位41の熱が低温
の主放熱部位43に伝わりにくく、主放熱部位43での
冷媒の凝縮は所望になされる。また、ワイヤコンデンサ
19は、補助放熱部位41と主放熱部位43とがワイヤ
37により構造的に一体化しているため、設置スペース
が小さくて済み、また製造にあたっては両放熱部位4
1,43における鉄パイプ36に対しワイヤ37の溶接
固定を同時にできるので、製造が容易となる。
In such a refrigerant circulation process, in the wire condenser 19, the auxiliary heat radiating portion 41 and the main heat radiating portion 4 are formed.
3 has a large temperature difference, but these two are spaced apart from each other at a predetermined interval, and since the wire 37 itself between them is cooled, the heat of the high temperature auxiliary heat radiating portion 41 is the low temperature main heat radiating portion 43. Therefore, the condensation of the refrigerant in the main heat radiation portion 43 is desired. Further, in the wire capacitor 19, since the auxiliary heat radiating portion 41 and the main heat radiating portion 43 are structurally integrated by the wire 37, the installation space is small, and both heat radiating portions 4 are required for manufacturing.
Since the wire 37 can be welded and fixed to the iron pipes 36 of Nos. 1 and 43 at the same time, manufacturing becomes easy.

【0020】冷却用ファン21による冷却空気は、冷蔵
庫前面のダクト入口17aからダクト17内に流入し、
主放熱部位43をまず冷却する。次に、主放熱部位43
より高温の補助放熱器41を冷却して冷却用ファン21
に吸い込まれる。さらに、冷却用ファン21から出た冷
却空気は、圧縮機15をを冷却した後、冷蔵庫外部に排
出される。
The cooling air from the cooling fan 21 flows into the duct 17 from the duct inlet 17a on the front of the refrigerator,
First, the main heat radiation portion 43 is cooled. Next, the main heat dissipation part 43
Cooling the higher temperature auxiliary radiator 41 to cool the fan 21
Is sucked into. Further, the cooling air discharged from the cooling fan 21 cools the compressor 15 and is then discharged to the outside of the refrigerator.

【0021】このように、圧縮機15は、補助放熱器4
1を通って冷却される冷媒をオイルクーラ39に戻す、
いわゆるオイルクーラ方式で積極的に冷却され、さらに
冷却用ファン21による自然対流によっても冷却される
ので、冷蔵庫の大型化に伴う圧縮機の能力増大による必
要放熱量の増加及び、オゾン層破壊に対する代替フロン
R22の使用による圧縮機の必要放熱量増加に、充分対
応できるものとなる。図4ないし図6は、この発明の第
2実施例を示している。この実施例は、補助放熱部位4
1と主放熱部位43との間におけるワイヤ37に対し、
両放熱部位41,43相互を構造的に一体化するために
必要最小限のみ残して他は切断したものである。これに
より、両放熱部位41,43相互は熱的に分離した形と
なり、両者間での熱伝導は抑制される。なお、この場
合、両放熱部位41,43を構造的に一体化する必要が
なければ、両放熱部位41,43間におけるワイヤ37
をすべて切断してもよい。
As described above, the compressor 15 includes the auxiliary radiator 4
The refrigerant cooled through 1 is returned to the oil cooler 39,
Since it is actively cooled by a so-called oil cooler system and further cooled by natural convection by the cooling fan 21, it increases the required heat radiation amount due to the increase in the capacity of the compressor accompanying the enlargement of the refrigerator, and substitutes for ozone layer depletion. It becomes possible to sufficiently cope with the increase in the required heat radiation amount of the compressor due to the use of Freon R22. 4 to 6 show a second embodiment of the present invention. In this embodiment, the auxiliary heat dissipation part 4
1 to the wire 37 between the main heat dissipation portion 43,
In order to structurally integrate the two heat radiating portions 41 and 43 with each other, only the minimum necessary amount is left and the others are cut. As a result, the heat dissipating portions 41, 43 are thermally separated from each other, and heat conduction between them is suppressed. In this case, if it is not necessary to structurally integrate the heat radiating portions 41 and 43, the wire 37 between the heat radiating portions 41 and 43 is formed.
May be cut off.

【0022】[0022]

【発明の効果】以上説明してきたように、この発明によ
れば、圧縮機から吐出された冷媒を冷却した後圧縮機に
戻して圧縮機を冷却する補助放熱部位と、圧縮機に戻っ
た冷媒を導入して凝縮させる主放熱部位とを、所定間隔
離して配置する構成としたので、両放熱部位相互間での
熱伝導を抑制することができる。
As described above, according to the present invention, the auxiliary heat radiating portion for cooling the refrigerant discharged from the compressor and then returning it to the compressor to cool the compressor, and the refrigerant returned to the compressor. Since the main heat radiation portion for introducing and condensing the heat radiation material is arranged so as to be separated from the main heat radiation portion by a predetermined distance, heat conduction between the both heat radiation portions can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1実施例を示す冷蔵庫下部におけ
る機械室周囲の内部構造の斜視図である。
FIG. 1 is a perspective view of an internal structure around a machine room in a lower part of a refrigerator showing a first embodiment of the present invention.

【図2】図1の冷蔵庫の冷凍サイクル構成図である。FIG. 2 is a refrigeration cycle configuration diagram of the refrigerator of FIG.

【図3】図1の冷蔵庫に使用されるワイヤコンデンサの
平面図である。
FIG. 3 is a plan view of a wire capacitor used in the refrigerator of FIG.

【図4】この発明の第2実施例を示す冷蔵庫下部におけ
る機械室周囲の内部構造の斜視図である。
FIG. 4 is a perspective view of an internal structure around a machine room in a lower part of a refrigerator showing a second embodiment of the present invention.

【図5】図4の冷蔵庫の冷凍サイクル構成図である。5 is a refrigeration cycle configuration diagram of the refrigerator of FIG.

【図6】図4の冷蔵庫に使用されるワイヤコンデンサの
平面図である。
6 is a plan view of a wire capacitor used in the refrigerator of FIG.

【図7】従来例を示す小型の冷蔵庫における、冷蔵庫本
体を含めて立体的に示した冷凍サイクル構成図である。
FIG. 7 is a three-dimensional view of a refrigeration cycle configuration including a refrigerator main body in a small-sized refrigerator showing a conventional example.

【図8】図7の冷蔵庫の冷凍サイクル構成図である。8 is a refrigeration cycle block diagram of the refrigerator of FIG. 7. FIG.

【図9】他の従来例を示す圧縮機オイルクーラを備えた
冷蔵庫における、冷蔵庫本体を含めて立体的に示した冷
凍サイクル構成図である。
FIG. 9 is a three-dimensional view of a refrigeration cycle configuration including a refrigerator main body in a refrigerator including a compressor oil cooler showing another conventional example.

【図10】図9の冷蔵庫の冷凍サイクル構成図である。10 is a refrigeration cycle configuration diagram of the refrigerator of FIG.

【符号の説明】[Explanation of symbols]

15 圧縮機 19 ワイヤコンデンサ(熱交換器) 36 鉄パイプ(冷媒配管) 37 ワイヤ(伝熱部材) 41 補助放熱部位 43 主放熱部位 15 Compressor 19 Wire Capacitor (Heat Exchanger) 36 Iron Pipe (Refrigerant Piping) 37 Wire (Heat Transfer Member) 41 Auxiliary Heat Dissipation Site 43 Main Heat Dissipation Site

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 折り曲げた冷媒配管に伝熱部材が設けら
れ、圧縮機から吐出された冷媒を冷却させる熱交換器に
おいて、前記冷媒配管は、吐出された冷媒を導入して冷
却し圧縮機に戻して圧縮機を冷却する補助放熱部位と、
この補助放熱部位から圧縮機に戻った冷媒を導入して凝
縮させる主放熱部位とからなり、これら両放熱部位相互
は所定間隔離して配置されるとともに、両放熱部位に跨
って前記伝熱部材を設けたことを特徴とする熱交換器。
1. A heat exchanger in which a bent refrigerant pipe is provided with a heat transfer member to cool the refrigerant discharged from the compressor, wherein the refrigerant pipe introduces and cools the discharged refrigerant into the compressor. Auxiliary heat dissipation part that returns and cools the compressor,
The main heat radiating portion for introducing and condensing the refrigerant returned from the auxiliary heat radiating portion to the compressor is arranged. A heat exchanger characterized by being provided.
【請求項2】 伝熱部材は、両放熱部位相互間における
一部または全部を除いて設けられていることを特徴とす
る請求項1記載の熱交換器。
2. The heat exchanger according to claim 1, wherein the heat transfer member is provided except for a part or the whole between the two heat radiation parts.
JP18816492A 1992-07-15 1992-07-15 Heat exchanger Pending JPH0634257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18816492A JPH0634257A (en) 1992-07-15 1992-07-15 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18816492A JPH0634257A (en) 1992-07-15 1992-07-15 Heat exchanger

Publications (1)

Publication Number Publication Date
JPH0634257A true JPH0634257A (en) 1994-02-08

Family

ID=16218875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18816492A Pending JPH0634257A (en) 1992-07-15 1992-07-15 Heat exchanger

Country Status (1)

Country Link
JP (1) JPH0634257A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1872068A2 (en) * 2005-03-18 2008-01-02 Carrier Commercial Refrigeration, Inc. Multi-part heat exchanger
JP2016136082A (en) * 2015-01-05 2016-07-28 三星電子株式会社Samsung Electronics Co.,Ltd. Cooling system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1872068A2 (en) * 2005-03-18 2008-01-02 Carrier Commercial Refrigeration, Inc. Multi-part heat exchanger
EP1872068A4 (en) * 2005-03-18 2011-11-16 Carrier Comm Refrigeration Inc Multi-part heat exchanger
JP2016136082A (en) * 2015-01-05 2016-07-28 三星電子株式会社Samsung Electronics Co.,Ltd. Cooling system

Similar Documents

Publication Publication Date Title
KR101589303B1 (en) Heating device for refrigerant
JP2010260541A (en) Evaporator assembly for air conditioning system for vehicle, air conditioning system for vehicle, and hvac system for vehicle
US5586441A (en) Heat pipe defrost of evaporator drain
KR20170109462A (en) Dual pipe structure for internal heat exchanger
US20100018224A1 (en) Stirling cooler
KR20110087138A (en) Double pipe heat exchanger using condensation water
JP3616174B2 (en) Cooling device, refrigerator, showcase and vending machine
JP2009024884A (en) Refrigerating cycle device and cold insulation cabinet
JP2000304380A (en) Heat exchanger
JPH0634257A (en) Heat exchanger
JP2007078275A (en) Heat exchanger for stirling refrigerating machine
JP3703889B2 (en) Cooling device and refrigerator
JP3007455B2 (en) Refrigeration cycle device
JP2503315B2 (en) Absorption refrigerator
JP2003139416A (en) Cooling system
KR101797177B1 (en) Double pipe heat exchanger method of maufacturing and the double pipe
JP3256856B2 (en) Refrigeration system
JPH06207773A (en) Refrigerator
JP2003139417A (en) Cooling system
JP4001607B2 (en) Stirling refrigerator
JPH07318222A (en) Refrigerator
JPH061445Y2 (en) Vehicle cooling system
JP2004324935A (en) Refrigerating cycle and heat exchanger
KR101621565B1 (en) A condenser
KR0176887B1 (en) Evaporating apparatus of refrigeration cycle