JPH06341776A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH06341776A
JPH06341776A JP15621193A JP15621193A JPH06341776A JP H06341776 A JPH06341776 A JP H06341776A JP 15621193 A JP15621193 A JP 15621193A JP 15621193 A JP15621193 A JP 15621193A JP H06341776 A JPH06341776 A JP H06341776A
Authority
JP
Japan
Prior art keywords
porous body
pipes
fluid
heat
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15621193A
Other languages
Japanese (ja)
Inventor
Tatsuji Tamura
達二 田村
Nobuo Araki
伸夫 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP15621193A priority Critical patent/JPH06341776A/en
Publication of JPH06341776A publication Critical patent/JPH06341776A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/003Arrangements for modifying heat-transfer, e.g. increasing, decreasing by using permeable mass, perforated or porous materials

Abstract

PURPOSE:To enhance a heat exchanging efficiency of a heat exchanger and to simplify it. CONSTITUTION:A plurality of pipes 2 each having a small diameter are arranged at a suitable interval in a casing 1, the pipes 1 are supported through porous element 3 filled except penetrating parts of the pipes 2 in the casing 1, and porous elements 4 are also filled in the pipes. The element is formed by integrally connecting cuttings, particles, powder, etc., of metal having high thermal conductivity by diffusion connection, brazing, etc., and solidifying it. Relatively low temperature fluid, for example, flows in the pipes 2, relatively high temperature fluid flows through the element 3 in the casing 1 to transfer heat between the fluids through the elements 3 and 4 and walls of the pipes 1. Thus, a large heat transfer can be conducted by a compact heat exchanger which has an extremely wide contact area of the fluid with the elements.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱交換器に関し、特
に、複数の流体を流体通路内で仕切り部材を介して熱交
換を行わせるようにした熱交換器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger, and more particularly to a heat exchanger adapted to exchange heat between a plurality of fluids in a fluid passage through a partition member.

【0002】[0002]

【従来の技術】従来、空調設備に於ける熱の授受や、各
種工業分野に於いて、低温流体の加熱/蒸発や高温流体
の冷却/凝縮を行う際に種々の熱交換器が用いられてい
る。そのような熱交換器にあっては、熱交換効率を高め
ることが望まれている。
2. Description of the Related Art Conventionally, various heat exchangers have been used to exchange heat in air-conditioning equipment and to heat / evaporate low-temperature fluid and cool / condense high-temperature fluid in various industrial fields. There is. In such a heat exchanger, it is desired to improve heat exchange efficiency.

【0003】従来の熱交換器に於いて例えば表面式熱交
換器の熱交換効率を高めるめには、温度の異なる2流体
間の伝熱用壁の表面積を広くすることが考えられるが、
その結果、熱交換器が大型化し、かつ高騰化するという
問題があった。
In the conventional heat exchanger, for example, in order to improve the heat exchange efficiency of the surface heat exchanger, it is conceivable to increase the surface area of the heat transfer wall between two fluids having different temperatures.
As a result, there is a problem that the heat exchanger becomes large in size and soars.

【0004】[0004]

【発明が解決しようとする課題】このような従来技術の
問題点に鑑み、本発明の主な目的は、熱交換効率を高め
得ると共にコンパクト化し得る熱交換器を提供すること
にある。
SUMMARY OF THE INVENTION In view of the above problems of the prior art, a main object of the present invention is to provide a heat exchanger which can improve heat exchange efficiency and can be made compact.

【0005】[0005]

【課題を解決するための手段】このような目的は、本発
明によれば、熱交換を行わせるための複数の流体を通す
流体通路を熱伝導率の高い仕切り部材により少なくとも
2つ以上に分割し、前記流体通路の分割された各分割通
路内にそれぞれ熱伝導率の高い多孔質体を充填したこと
を特徴とする熱交換器を提供することにより達成され
る。特に、前記多孔質体が前記仕切り部材と接合されて
いると良い。
According to the present invention, a fluid passage for passing a plurality of fluids for heat exchange is divided into at least two or more parts by a partition member having a high thermal conductivity. However, it is achieved by providing a heat exchanger characterized in that each of the divided passages of the fluid passage is filled with a porous body having a high thermal conductivity. Particularly, it is preferable that the porous body is joined to the partition member.

【0006】[0006]

【作用】このようにすれば、多孔質体内を通る流体と接
触する多孔質体の各孔の表面積が大きく、かつ各孔が入
り組んでいるため、流体と多孔質体との接触が極めて多
くなり、両者間で多くの熱の授受を行い得る。
By doing so, since the surface area of each hole of the porous body that comes into contact with the fluid passing through the porous body is large and each hole is intricate, the contact between the fluid and the porous body becomes extremely large. , A lot of heat can be exchanged between them.

【0007】[0007]

【実施例】以下、本発明の好適実施例を添付の図面につ
いて詳しく説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will now be described in detail with reference to the accompanying drawings.

【0008】図1は、本発明が適用された熱交換器の第
1の実施例を示す正面図(a)及びその直径にて破断し
た側断面図(b)である。この第1の実施例では、熱交
換器の流体通路としての扁平パイプ形状のケーシング1
内に、その軸線に沿って複数の分割通路を形成するべく
小径の各パイプ2が例えば互いに平行にかつ適度な間隔
をおいて配設されている。各パイプ2は、ケーシング1
内に各パイプ2貫通部分を除いて充填された多孔質体3
を介して支持されている。また、各パイプ2内にも、多
孔質体3のケーシング1の軸線方向長さに対応する範囲
に渡って多孔質体4が充填されている。
FIG. 1 is a front view (a) showing a first embodiment of a heat exchanger to which the present invention is applied and a side sectional view (b) taken along the diameter thereof. In the first embodiment, a casing 1 having a flat pipe shape as a fluid passage of a heat exchanger
In order to form a plurality of divided passages along the axis, pipes 2 having a small diameter are arranged in parallel with each other and at appropriate intervals. Each pipe 2 is a casing 1
Porous body 3 filled inside each pipe 2 excluding the penetrating portion
Is supported through. Also, each pipe 2 is filled with the porous body 4 over a range corresponding to the axial length of the casing 1 of the porous body 3.

【0009】各多孔質体3・4は、例えば同一構造のも
のであって良く、熱伝導率の高い金属(銅など)の切り
粉や粒体や粉体などのコア材を拡散接合またはろう付け
などにより一体的に接合して固形化したものを用いると
良いが、金網や金属メッシュを圧縮して固めるように形
成したものであっても良い。例えば粒体を素材として用
いた場合には、図2の要部拡大断面図に示されるよう
に、各粒体3aが、拡散接合により隣合う者同士の間で
一部融合させるように接合されるようになる。従って、
各粒体3a間の伝熱が、粒体を詰めただけの場合の単な
る点接触状態に対して、一体化することにより極めて大
量に行われる。
The respective porous bodies 3 and 4 may have the same structure, for example, by diffusion bonding or brazing of a cutting material of a metal (copper or the like) having a high thermal conductivity or a core material such as granules or powder. It is preferable to use a solidified product which is integrally joined by attachment or the like, but a metal mesh or a metal mesh may be formed so as to be compressed and solidified. For example, when granules are used as the raw material, as shown in the enlarged cross-sectional view of the main part of FIG. 2, the granules 3a are joined by diffusion joining so as to be partially fused between adjacent persons. Become so. Therefore,
The heat transfer between the particles 3a is performed in an extremely large amount by being integrated with the mere point contact state when the particles are simply packed.

【0010】上記各パイプ2内には、例えば比較的低温
の流体が図1bの矢印Aに示すように流れ、ケーシング
1内の各パイプ2を除いた部分すなわち多孔質体3には
比較的高温の流体が図1bの矢印Bに示すように通るよ
うにされている。パイプ2内を通る流体の熱が、対応す
る多孔質体4に伝わり、その多孔質体4からパイプ2に
伝わり、そしてパイプ2を介して他方の流体を通す多孔
質体3に伝わる。このように仕切り部材としてのパイプ
2の壁を介して熱の授受が行われるため、パイプ2を、
比較的熱伝導率の高い材料にて形成する。
A relatively low temperature fluid flows in each of the pipes 2 as shown by an arrow A in FIG. 1b, and a relatively high temperature is applied to a portion of the casing 1 excluding the pipes 2, that is, the porous body 3. Fluid is allowed to pass as indicated by arrow B in FIG. 1b. The heat of the fluid passing through the pipe 2 is transmitted to the corresponding porous body 4, is transmitted from the porous body 4 to the pipe 2, and is transmitted via the pipe 2 to the porous body 3 passing the other fluid. In this way, since heat is transferred via the wall of the pipe 2 as a partition member, the pipe 2 is
It is made of a material having a relatively high thermal conductivity.

【0011】本発明によれば、前記したように、パイプ
2の壁を介してのみ熱の授受が行われるだけではなく、
パイプ2内を通る流体及びパイプ2外を通る流体を、そ
れぞれ各多孔質体3・4内を通すようにしていることか
ら、パイプ内を通る流体全体が多孔質体と接触すること
になる。さらに、多孔質体内を蛇行して流体が通ること
になり、流体と多孔質体との接触がより一層好適に行わ
れると共に、多孔質体を構成するコア材同士が前記した
ように一部融合状態に接合されているため、コア材間の
伝熱も良好に行われ、熱交換の効率を極めて向上し得
る。
According to the present invention, as described above, heat is not only transferred and received only through the wall of the pipe 2, but
Since the fluid passing through the pipe 2 and the fluid passing outside the pipe 2 are passed through the respective porous bodies 3 and 4, the entire fluid passing through the pipe comes into contact with the porous body. Further, the fluid meanders through the porous body, so that the contact between the fluid and the porous body is more suitably performed, and the core materials constituting the porous body are partially fused as described above. Since they are joined in a state, the heat transfer between the core materials is also excellent, and the efficiency of heat exchange can be significantly improved.

【0012】なお、多孔質構造に形成された各孔の大き
さなどにあっては、通過する流体の流れを大きく阻害し
ない程度にする必要があるが、通す流体の種類に応じ
て、それぞれの大きさや一体化した後の密度を適宜設計
することにより、大きな損失を生じることなく流体を何
等問題なく通し得る。
The size of each hole formed in the porous structure needs to be such that the flow of the fluid passing therethrough is not significantly hindered. By appropriately designing the size and the density after integration, the fluid can be passed without any problem without causing a large loss.

【0013】また、多孔質体の材質には銅製が適当であ
るが、熱伝導率の高いものであれば他の材質のものにし
ても良い。なお、流体の種類によっては多孔質体が侵食
される虞が生じるが、そのような場合には、その流体に
侵食されない種類の材質により多孔質体を形成すれば良
く、また、流体と接触する表面を耐食性のめっき処理を
行うなどしても良い。
Copper is suitable for the material of the porous body, but other materials may be used as long as they have high thermal conductivity. Depending on the type of fluid, the porous body may be eroded. In such a case, the porous body may be formed of a material that is not eroded by the fluid, and the porous body may come into contact with the fluid. The surface may be subjected to corrosion-resistant plating.

【0014】図3は、本発明に基づく第2の実施例を示
す図1と同様の図である。この第2の実施例では、図1
と同様のケーシング1内に、仕切り部材として図3aに
示されるように同心円の複数の環状壁5a〜5dが設け
られている。従って、この第2の実施例にあっては、ケ
ーシング1内が、ケーシング1及び各環状壁5a〜5d
により同心円的に分割されて、各分割通路が画定されて
いる。
FIG. 3 is a view similar to FIG. 1 showing a second embodiment according to the present invention. In this second embodiment, FIG.
In a casing 1 similar to the above, a plurality of concentric annular walls 5a to 5d are provided as partition members as shown in FIG. 3a. Therefore, in the second embodiment, the inside of the casing 1 is the casing 1 and the annular walls 5a to 5d.
Are divided into concentric circles to define each divided passage.

【0015】これら各分割流体通路内には、図3bに示
されるように、前記実施例と同様の多孔質体6a〜6e
が充填されかつケーシング1内周面及び各環状壁5a〜
5dに前記実施例と同様にそれぞれ接合されている。各
多孔質体6a〜6eは、前記実施例の多孔質体3・4と
同様のものであり、またそれぞれ同一構造のものであっ
て良い。
In each of these divided fluid passages, as shown in FIG. 3b, the same porous bodies 6a to 6e as in the above-mentioned embodiment are used.
And the inner peripheral surface of the casing 1 and each annular wall 5a.
5d are respectively joined in the same manner as in the above embodiment. Each of the porous bodies 6a to 6e is the same as the porous bodies 3 and 4 of the above-mentioned embodiment, and may have the same structure.

【0016】そして、図3bに示されるように、例えば
中心部の最小円形状の環状壁5a内と、両環状壁5b・
5c間と、環状壁5d及びケーシング1内周面間とのそ
れぞれに、例えば比較的低温の流体が図3bの矢印Aに
示すように流れ、両環状壁5a・5b間と両環状壁5c
・5d間とには、比較的高温の流体が図3bの矢印Bに
示すように流れるようになっており、それぞれ隣合う流
体間で各多孔質体及び環状壁を介して前記実施例と同様
に熱の授受が行われる。
Then, as shown in FIG. 3b, for example, the inside of the annular wall 5a having the smallest circular shape at the center and both annular walls 5b.
5c and between the annular wall 5d and the inner peripheral surface of the casing 1, for example, a fluid having a relatively low temperature flows as shown by an arrow A in FIG. 3b, and the two annular walls 5a and 5b and the both annular walls 5c.
A relatively high temperature fluid flows between 5d as shown by an arrow B in FIG. 3b, and is similar to the above-described embodiment via the porous body and the annular wall between adjacent fluids. Transfer of heat is performed.

【0017】この第2の実施例に於いても、前記実施例
と同様に各多孔質体6a〜6e毎に適宜振り分けて2種
類以上の流体を通すことができ、また、通す流体の種類
に応じて各多孔質体6a〜6eの材質や孔の大きさや密
度を変更することにより、熱交換の効率をより一層向上
し得る。
Also in the second embodiment, two or more kinds of fluids can be appropriately distributed to each of the porous bodies 6a to 6e as in the case of the above embodiment, and the kind of the fluid to be passed can be changed. Accordingly, the efficiency of heat exchange can be further improved by changing the material of each porous body 6a to 6e and the size and density of the holes.

【0018】図4に第3の実施例を示す。この第3の実
施例にあっては、図4aに示されるようにケーシング1
の中央部に小円形の環状壁7が同心的に設けられている
と共に、その環状壁7の外周面とケーシング1の内周面
との間に、中心から放射状になるように配置された複数
の仕切り部材としての半径方向壁8が設けられている。
そして、環状壁7及びケーシング1と各半径方向壁8と
により画定された各部分により分割通路が形成されてお
り、各分割通路内に、前記実施例と同様の多孔質体9a
〜9lがそれぞれ充填されかつ各半径方向壁8に第1の
実施例と同様に接合されている。
FIG. 4 shows a third embodiment. In this third embodiment, as shown in FIG.
A small circular annular wall 7 is concentrically provided in the central part of the, and a plurality of radial walls are arranged from the center between the outer peripheral surface of the annular wall 7 and the inner peripheral surface of the casing 1. A radial wall 8 is provided as a partition member.
Then, a divided passage is formed by each portion defined by the annular wall 7 and the casing 1 and each radial wall 8, and in each divided passage, a porous body 9a similar to that in the above embodiment is formed.
.About.9 l are each filled and joined to each radial wall 8 as in the first embodiment.

【0019】この第3の実施例にあっては、各多孔質体
9a〜9lの1つおきに、例えば多孔質体9a・9c・
9e・9g・9i・9kのそれぞれに例えば比較的低温
の流体が図4bの矢印Aに示すように流れ、残りの多孔
質体9b・9d・9f・9h・9j・9lのそれぞれに
例えば比較的高温の流体が図4bの矢印Bに示すように
流れ、それぞれ隣合う流体間で各多孔質体及び各半径方
向壁8を介して前記実施例と同様に熱の授受が行われ
る。
In the third embodiment, every other porous body 9a-9l, for example, porous bodies 9a.9c.
For example, a relatively low-temperature fluid flows in each of 9e, 9g, 9i, and 9k as shown by an arrow A in FIG. 4b, and relatively flows in each of the remaining porous bodies 9b, 9d, 9f, 9h, 9j, and 9l. The high-temperature fluid flows as shown by the arrow B in FIG. 4b, and heat is transferred between adjacent fluids via the respective porous bodies and the radial walls 8 in the same manner as in the above embodiment.

【0020】この第3の実施例に於いても、前記実施例
と同様に各多孔質体9a〜9l毎に適宜振り分けて2種
類以上の流体を通すことができ、また、通す流体の種類
に応じて各多孔質体9a〜9lの材質や孔の大きさや密
度を変更することにより、熱交換の効率をより一層向上
し得る。
Also in the third embodiment, two or more kinds of fluids can be passed by appropriately distributing to each of the porous bodies 9a to 9l similarly to the above-mentioned embodiment, and the kind of the fluid to be passed can be changed. Accordingly, the heat exchange efficiency can be further improved by changing the material and the size and density of the pores of the porous bodies 9a to 9l.

【0021】図5に第4の実施例を示す。この第4の実
施例にあっては、図5aに示されるようにケーシング1
の中央部に仕切り部材としての小円形の環状壁11が同
心的に設けられている。環状壁7内と、環状壁7及びケ
ーシング1間の環状部分との各部分により2つの分割通
路が形成されており、各分割通路内に前記第1の実施例
と同様の多孔質体12a・12bがそれぞれ充填され、
かつ環状壁7に各多孔質体12a・12bが第1の実施
例と同様に接合されている。
FIG. 5 shows a fourth embodiment. In this fourth embodiment, as shown in FIG.
A small circular annular wall 11 as a partition member is concentrically provided in the central portion of the. Two divided passages are formed by the inside of the annular wall 7 and the annular portion between the annular wall 7 and the casing 1, and in each divided passage, the same porous body 12a as in the first embodiment is formed. 12b are filled respectively,
Moreover, the porous bodies 12a and 12b are joined to the annular wall 7 in the same manner as in the first embodiment.

【0022】この第4の実施例にあっては、環状壁7内
の多孔質体12aに例えば比較的低温の流体が図5bの
矢印Aに示すように流れ、環状壁7及びケーシング1間
の多孔質体12bに例えば比較的高温の流体が図5bの
矢印Bに示すように流れ、それぞれ隣合う流体間で各多
孔質体12a・12b及び環状壁11を介して前記実施
例と同様に熱の授受が行われる。この第4の実施例に於
いても、通す流体の種類に応じて各多孔質体12a・1
2bの材質や孔の大きさや密度を変更することにより、
熱交換の効率をより一層向上し得る。
In the fourth embodiment, for example, a relatively low temperature fluid flows through the porous body 12a in the annular wall 7 as shown by an arrow A in FIG. For example, a relatively high temperature fluid flows in the porous body 12b as shown by an arrow B in FIG. 5b, and heat is generated between adjacent fluids via the porous bodies 12a and 12b and the annular wall 11 in the same manner as in the above embodiment. Will be exchanged. Also in the fourth embodiment, each porous body 12a.1 is selected depending on the type of fluid to be passed.
By changing the material of 2b and the size and density of holes,
The efficiency of heat exchange can be further improved.

【0023】図6に第5の実施例を示す。この第5の実
施例にあっては、図6aに示されるようにケーシング1
の中心を通る径方向壁13が仕切り部材として設けられ
ている。この径方向壁13によりケーシング1内が図に
於ける上下に2分割されており、それら各部分により分
割通路が形成されており、各分割通路内に前記第1の実
施例と同様の多孔質体14a・14bがそれぞれ充填さ
れ、かつ径方向壁13に各多孔質体14a・14bが第
1の実施例と同様に接合されている。
FIG. 6 shows a fifth embodiment. In this fifth embodiment, as shown in FIG. 6a, the casing 1
A radial wall 13 passing through the center of is provided as a partition member. The radial wall 13 divides the inside of the casing 1 into upper and lower parts in the drawing, and each of these parts forms a divided passage, and each divided passage has a porous structure similar to that of the first embodiment. The bodies 14a and 14b are respectively filled, and the porous bodies 14a and 14b are joined to the radial wall 13 in the same manner as in the first embodiment.

【0024】この第5の実施例にあっては、上側の多孔
質体14aに例えば比較的低温の流体が図6bの矢印A
に示すように流れ、下側の多孔質体14bに例えば比較
的高温の流体が図6bの矢印Bに示すように流れ、それ
ぞれ隣合う流体間で各多孔質体14a・14b及び径方
向壁13を介して前記実施例と同様に熱の授受が行われ
る。この第5の実施例に於いても、通す流体の種類に応
じて各多孔質体14a・14bの材質や孔の大きさや密
度を変更することにより、熱交換の効率をより一層向上
し得る。
In the fifth embodiment, for example, a fluid having a relatively low temperature is applied to the upper porous body 14a by the arrow A in FIG. 6b.
6b, a relatively high temperature fluid flows to the lower porous body 14b as shown by an arrow B in FIG. 6b, and the respective porous bodies 14a and 14b and the radial wall 13 between adjacent fluids. The heat is exchanged via the same as in the above embodiment. Also in the fifth embodiment, the efficiency of heat exchange can be further improved by changing the material of the porous bodies 14a and 14b and the size and density of the pores according to the type of fluid to be passed.

【0025】[0025]

【発明の効果】このように本発明によれば、熱交換を行
う流体を熱伝導率の高い多孔質体に通していることか
ら、流体と多孔質体との接触面積が極めて広く、流体と
多孔質体との間の単位体積当たりの熱授受効率が高くな
り、熱交換の効率を大きく向上し得る。さらに、複数の
流体を通す部分を分けるための仕切り部材に多孔質体を
接合することにより、多孔質体と仕切り部材との間の熱
伝導効率も高くなり、熱交換の効率をより一層向上し得
る。従って、熱交換器のコンパクト化がを可能であり、
低廉化し得る。また、多孔質体の材質や孔の大きさ及び
密度を、通す流体に応じて適宜変更することができ、特
性の選択自由度が大きいばかりでなく、仕切り部材を多
数設けて、各多孔質体に通す流体の種類を2種類以上に
して、多種類の流体間に於ける熱交換も容易に行い得る
など、その効果は極めて大である。
As described above, according to the present invention, since the fluid for heat exchange is passed through the porous body having high thermal conductivity, the contact area between the fluid and the porous body is extremely wide, The heat transfer efficiency per unit volume with the porous body becomes high, and the heat exchange efficiency can be greatly improved. Furthermore, by joining the porous body to the partition member for separating the portions through which a plurality of fluids pass, the heat transfer efficiency between the porous body and the partition member is also increased, and the efficiency of heat exchange is further improved. obtain. Therefore, it is possible to make the heat exchanger compact,
Can be cheaper. In addition, the material of the porous body and the size and density of the pores can be appropriately changed according to the fluid to be passed, and not only the degree of freedom in selecting the characteristics is large, but also a large number of partition members are provided so that each porous body The effect is extremely large, for example, by making the number of kinds of fluids to be passed through two or more, heat exchange between various kinds of fluids can be easily performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は、本発明に基づく熱交換器の正面図で
あり、(b)は、(a)の直径で破断した側断面図。
FIG. 1 (a) is a front view of a heat exchanger according to the present invention, and FIG. 1 (b) is a side sectional view taken along the diameter of (a).

【図2】本発明に基づく熱交換器の要部拡大断面図。FIG. 2 is an enlarged sectional view of a main part of a heat exchanger according to the present invention.

【図3】第2の実施例を示し、(a)は図1aに対応す
る図であり、(b)は図1bに対応する図。
FIG. 3 shows a second embodiment, (a) is a diagram corresponding to FIG. 1a, and (b) is a diagram corresponding to FIG. 1b.

【図4】第3の実施例を示し、(a)は図1aに対応す
る図であり、(b)は図1bに対応する図。
FIG. 4 shows a third embodiment, (a) is a diagram corresponding to FIG. 1a, and (b) is a diagram corresponding to FIG. 1b.

【図5】第4の実施例を示し、(a)は図1aに対応す
る図であり、(b)は図1bに対応する図。
FIG. 5 shows a fourth embodiment, (a) is a diagram corresponding to FIG. 1a, and (b) is a diagram corresponding to FIG. 1b.

【図6】第5の実施例を示し、(a)は図1aに対応す
る図であり、(b)は図1bに対応する図。
FIG. 6 shows a fifth embodiment, (a) is a diagram corresponding to FIG. 1a, and (b) is a diagram corresponding to FIG. 1b.

【符号の説明】[Explanation of symbols]

1 ケーシング 2 パイプ 3 多孔質体 3a 粒体 4 多孔質体 5a〜5d 環状壁 6a〜6e 多孔質体 7 環状壁 8 半径方向壁 9a〜9l 多孔質体 11 環状壁 12a・12b 多孔質体 13 径方向壁 14a・14b 多孔質体 DESCRIPTION OF SYMBOLS 1 Casing 2 Pipe 3 Porous body 3a Granular body 4 Porous body 5a-5d Annular wall 6a-6e Porous body 7 Annular wall 8 Radial wall 9a-9l Porous body 11 Annular wall 12a / 12b Porous body 13 Diameter Directional wall 14a ・ 14b Porous body

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱交換を行わせるための複数の流体を通
す流体通路を熱伝導率の高い仕切り部材により少なくと
も2つ以上に分割し、前記流体通路の分割された各分割
通路内にそれぞれ熱伝導率の高い多孔質体を充填したこ
とを特徴とする熱交換器。
1. A fluid passage for passing a plurality of fluids for heat exchange is divided into at least two or more portions by a partition member having a high thermal conductivity, and heat is generated in each divided passage of the fluid passage. A heat exchanger characterized by being filled with a porous body having high conductivity.
【請求項2】 前記多孔質体が前記仕切り部材と接合さ
れていることを特徴とする請求項1に記載の熱交換器。
2. The heat exchanger according to claim 1, wherein the porous body is joined to the partition member.
JP15621193A 1993-06-01 1993-06-01 Heat exchanger Pending JPH06341776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15621193A JPH06341776A (en) 1993-06-01 1993-06-01 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15621193A JPH06341776A (en) 1993-06-01 1993-06-01 Heat exchanger

Publications (1)

Publication Number Publication Date
JPH06341776A true JPH06341776A (en) 1994-12-13

Family

ID=15622796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15621193A Pending JPH06341776A (en) 1993-06-01 1993-06-01 Heat exchanger

Country Status (1)

Country Link
JP (1) JPH06341776A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012511120A (en) * 2008-12-08 2012-05-17 ファイアースター エンジニアリング,エルエルシー Regenerative cooling jacket using porous media
US8858224B2 (en) 2009-07-07 2014-10-14 Firestar Engineering, Llc Detonation wave arrestor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012511120A (en) * 2008-12-08 2012-05-17 ファイアースター エンジニアリング,エルエルシー Regenerative cooling jacket using porous media
US8858224B2 (en) 2009-07-07 2014-10-14 Firestar Engineering, Llc Detonation wave arrestor

Similar Documents

Publication Publication Date Title
US3289756A (en) Heat exchanger
JP4267823B2 (en) 3 circuit plate heat exchanger
US6170568B1 (en) Radial flow heat exchanger
US3262190A (en) Method for the production of metallic heat transfer bodies
US3323586A (en) Concentric tube heat exchanger with sintered metal matrix
US4832118A (en) Heat exchanger
TWI764487B (en) Block style heat exchanger for heat pipe reactor
US20220400537A1 (en) Heating element with open-cell structure
JPH06341776A (en) Heat exchanger
EP3091323A1 (en) Heat exchanger member and heat exchanger
US20200080789A1 (en) Shell and tube heat exchanger with perforated fins interconnecting the tubes
JP2002066720A (en) Metal composite member and method of manufacturing it
US3334400A (en) Method of producing heat exchangers
JPH0634283A (en) Manufacture of heat exchanger for use in space
JP2004177059A (en) Refrigerant flow divider
JP2007085594A (en) Cross flow core type plate heat exchanger
WO1993004333A1 (en) A shell and tube heat exchanger and a process for the manufacture of perforated manifold end plates for such heat exchanger
US3333318A (en) Method of fabricating a tubular heat exchanger
JP2003139480A (en) Laminated type oil cooler made of aluminum
JP2007085594A5 (en)
JPS5974496A (en) Plate-type heat exchanger
JPH01247991A (en) Heat exchanger and manufacture thereof
US20020092643A1 (en) Confined bed metal particulate heat exchanger
JP3959428B2 (en) Stereo heat pipe radiator
US3289750A (en) Heat exchanger