JPH06337355A - Optical communication optical device - Google Patents

Optical communication optical device

Info

Publication number
JPH06337355A
JPH06337355A JP5152691A JP15269193A JPH06337355A JP H06337355 A JPH06337355 A JP H06337355A JP 5152691 A JP5152691 A JP 5152691A JP 15269193 A JP15269193 A JP 15269193A JP H06337355 A JPH06337355 A JP H06337355A
Authority
JP
Japan
Prior art keywords
mirror
communication
optical
sub
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5152691A
Other languages
Japanese (ja)
Inventor
Masaharu Suzuki
正治 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP5152691A priority Critical patent/JPH06337355A/en
Publication of JPH06337355A publication Critical patent/JPH06337355A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To attain the miniaturization of the whole device by appropriately arranging each element, to enhance the reliability by increasing the quantity of allowable error in an assembling adjustment on a design, and to provide an optical communication optical device capable of always executing the good optical communication. CONSTITUTION:A submirror 2 is arranged opposite to a master mirror 1, the device is provided with a communication signal means for performing the optical communication by a 1st luminous flux which is reflected on both of the master mirror 1 and the submirror 2 and a position signal means 3 for detecting information on the position of each communication partner by a 2nd luminous flux which is reflected on the master mirror 1 and transmitted through the submirror 2 and whose wavelengh is different from that of the 1st luminous flux.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光通信光学装置に関し、
特に通信相手の捕捉や追尾をすることにより、常に良好
な光通信が行えるようにした、例えば人工衛星と他の人
工衛星との間の光通信や、人工衛星と地上局との間の光
通信等に好適な光通信光学装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical communication optical device,
Especially, by capturing and tracking the communication partner, good optical communication can always be performed, for example, optical communication between an artificial satellite and another artificial satellite or optical communication between an artificial satellite and a ground station. The present invention relates to an optical communication optical device suitable for the above.

【0002】[0002]

【従来の技術】一般に人工衛星間又は人工衛星と地上局
との間で行われる光通信に於いて、良好な通信状態を確
保する為には、送信側より射出する通信信号光束の方向
と受信アンテナの向きを正確に一致させる必要がある。
2. Description of the Related Art Generally, in optical communication performed between artificial satellites or between an artificial satellite and a ground station, in order to ensure a good communication state, the direction of a communication signal light beam emitted from a transmission side and the reception direction The orientation of the antenna must match exactly.

【0003】このとき信号伝達に使用する通信信号光束
はアンテナゲインを大きくする為に、光束の広がりを約
1/1000秒程度に狭めて使用している。これに対
し、人工衛星の姿勢制御能力は1/10〜1/100秒
程度であり、そのままでは通信信号光束の射出方向と受
信アンテナの向きとを一致させることは不可能に近い。
At this time, in order to increase the antenna gain, the communication signal light flux used for signal transmission is used by narrowing the spread of the light flux to about 1/1000 second. On the other hand, the attitude control capability of the artificial satellite is about 1/10 to 1/100 seconds, and it is almost impossible to match the emission direction of the communication signal light beam with the direction of the receiving antenna as it is.

【0004】そこで受信者側がまず自分の正確な位置を
送信者に知らせる為、送信者が捕捉し易いよう若干広が
りを持たせた光束をビーコンビームとして送信者側に射
出し、これを送信側が受信してビーコンビームの到来方
向を正確に検出し、その方向に通信信号光束を射出して
いる。
Therefore, in order for the receiver side to inform the sender of his / her exact position, a light beam with a slight spread so that the sender can easily capture it is emitted to the sender side as a beacon beam, which is received by the sender side. Then, the arrival direction of the beacon beam is accurately detected, and the communication signal light beam is emitted in that direction.

【0005】また、送信者或は受信者が地球の周りを周
回している場合は、相対位置関係が常に変化してしま
う。このとき、単にビーコンビームに基づいて通信信号
光束を射出しても受信者に届くまでの時間に通信相手が
移動して通信信号光束の光束外に出てしまい、通信でき
なくなる場合がある(以下、これを光行差エラーと呼
ぶ)。
Further, when the sender or the receiver orbits the earth, the relative positional relationship always changes. At this time, even if the communication signal luminous flux is simply emitted based on the beacon beam, the communication partner may move and go out of the luminous flux of the communication signal luminous flux before reaching the receiver. , This is called optical aberration error).

【0006】従って通信信号光束をこの時間差と、相手
の衛星との相対位置変化とを考慮して射出する必要があ
り、高精度の位置検出装置や、相対位置計算システム等
を用いたポインティング機構を必要としている。
Therefore, it is necessary to emit the communication signal light beam in consideration of this time difference and the relative position change with respect to the satellite of the other party. Therefore, a highly accurate position detection device, a pointing mechanism using a relative position calculation system or the like is used. In need of.

【0007】図3(A)は従来の光通信光学装置40の
要部光路図、図3(B)は図3(A)の一部分の拡大説
明図である。
FIG. 3A is an optical path diagram of a main part of a conventional optical communication optical device 40, and FIG. 3B is an enlarged explanatory view of a part of FIG. 3A.

【0008】図中、20は主鏡であり、通信相手側に凹
面を向けた放物状の反射面である。21は副鏡であり、
主鏡20側に凸状の反射面を向けて設けている。主鏡2
0と副鏡21は所謂カセグレン式の反射光学系43を構
成している。22は正のパワーを持つコリメーターレン
ズであり、焦点位置が反射光学系43の焦点位置Pと光
軸La上で一致するように配置されている。
In the figure, reference numeral 20 denotes a primary mirror, which is a parabolic reflecting surface having a concave surface facing the communication partner. 21 is a secondary mirror,
It is provided with a convex reflecting surface facing the main mirror 20 side. Primary mirror 2
0 and the sub mirror 21 constitute a so-called Cassegrain type reflection optical system 43. Reference numeral 22 denotes a collimator lens having a positive power, which is arranged so that the focal position coincides with the focal position P of the reflective optical system 43 on the optical axis La.

【0009】通信相手からの通信信号光束は略平行光に
なっており、反射光学系43で焦点位置Pに収斂され、
コリトメーターレンズ22により再び平行光に変換され
る。この際、光束の径は反射光学系43及びコリメータ
レンズ22の焦点距離と以下の式によって決定される。
The communication signal light flux from the communication partner is substantially parallel light and is converged at the focal point P by the reflection optical system 43.
The collimator lens 22 converts the parallel light again. At this time, the diameter of the light beam is determined by the focal lengths of the reflective optical system 43 and the collimator lens 22 and the following equation.

【0010】[0010]

【数1】 44はポインティング手段であり、全反射ミラー34,
35を有している。ポインティング手段44は全反射ミ
ラー34と全反射ミラー35とを相対的に傾けることに
より、ビームスプリッター23以降の光学要素が成す光
軸Lbと反射光学系43やコリメーターレンズ22の成
す光軸Laとの傾きを調整し、射出する通信信号光束の
方向を通信相手の方向に正確に向けている。
[Equation 1] A total reflection mirror 34,
35. The pointing means 44 tilts the total reflection mirror 34 and the total reflection mirror 35 relative to each other so that the optical axis Lb formed by the optical elements after the beam splitter 23 and the optical axis La formed by the reflection optical system 43 and the collimator lens 22. By adjusting the inclination of, the direction of the outgoing communication signal light beam is accurately directed to the direction of the communication partner.

【0011】23,26,29は光束を波長により透過
光と、反射光とに分割するビームスプリッタである。
Reference numerals 23, 26 and 29 denote beam splitters for splitting a light beam into a transmitted light and a reflected light depending on the wavelength.

【0012】ビームスプリッター23は通信相手からの
ビーコンビームを、捕捉センサー25側に導光してい
る。24は集光レンズであり、ビームスプリッター23
で反射分離されたビーコンビームを捕捉センサー25上
に集光させている。
The beam splitter 23 guides a beacon beam from a communication partner to the capture sensor 25 side. 24 is a condenser lens, which is a beam splitter 23
The beacon beam reflected and separated by the above is condensed on the capture sensor 25.

【0013】ビームスプリッター26はビームスプリッ
ター23からのビーコンビームを、追尾センサー28側
に導光している。27は集光レンズであり、ビームスプ
リッター26で反射分離されたビーコンビームを追尾セ
ンサー28上に集光させている。
The beam splitter 26 guides the beacon beam from the beam splitter 23 to the tracking sensor 28 side. Reference numeral 27 denotes a condenser lens that focuses the beacon beam reflected and separated by the beam splitter 26 on the tracking sensor 28.

【0014】31はビーコンビーム発光部であり、自分
が受信者の場合に、通信の送信者側に自分の正確な位置
を知らせる為のビーコンビームを発している。30は凸
レンズであり、ビーコンビーム発光部31から射出され
たビーコンビームを略平行光に変換している。尚、ビー
コンビーム発光部31は凸レンズ30の焦点位置より光
軸L´上の少しずれた位置に配置されており、通信信号
光束と比べやや広がりを有した平行光を放射している。
Reference numeral 31 denotes a beacon beam emitting portion, which emits a beacon beam for notifying the sender side of the communication of his / her exact position when he / she is the receiver. Reference numeral 30 denotes a convex lens, which converts the beacon beam emitted from the beacon beam emitting section 31 into substantially parallel light. The beacon beam emitting unit 31 is arranged at a position slightly displaced from the focal position of the convex lens 30 on the optical axis L ', and radiates parallel light having a little spread as compared with the communication signal light flux.

【0015】29はビームスプリッターであり、ビーコ
ン信号発生部31からのビーコンビームを反射光学系4
3側へ導光している。
Reference numeral 29 denotes a beam splitter, which reflects the beacon beam from the beacon signal generator 31 into the reflection optical system 4
Light is guided to the 3 side.

【0016】33は通信信号手段であり、ハーフミラー
49や、通信用光束発光部(レーザダイオード)41、
通信信号受信器42等を有している。
Reference numeral 33 is a communication signal means, which includes a half mirror 49, a communication luminous flux emitting section (laser diode) 41,
It has a communication signal receiver 42 and the like.

【0017】レーザダイオード41から射出される通信
用光束は凸レンズ32により平行光とされ、ビームスプ
リッター29,26,23を透過して、コリメータレン
ズ22によって再び収斂され、副鏡21と主鏡20で反
射されてから非常に精度の高い平行光になり、通信相手
に向けて射出される。
The luminous flux for communication emitted from the laser diode 41 is made into parallel light by the convex lens 32, passes through the beam splitters 29, 26 and 23, is converged again by the collimator lens 22, and is then converged by the sub mirror 21 and the main mirror 20. After being reflected, it becomes highly accurate parallel light and is emitted toward the communication partner.

【0018】又、通信相手側からの通信信号光束は先ず
主鏡20と副鏡21とで焦点位置Pに集光され、コリメ
ーターレンズ22で平行光とされる。そして、ポインテ
ィング手段44を介し、ビームスプリッタ23,26,
29を透過して、集光レンズ32で通信信号手段33の
受光素子42上に集光されている。
Further, a communication signal light beam from the other end of communication is first focused on the focal point P by the main mirror 20 and the sub mirror 21, and is collimated by the collimator lens 22. Then, through the pointing means 44, the beam splitters 23, 26,
After passing through 29, it is condensed by the condenser lens 32 on the light receiving element 42 of the communication signal means 33.

【0019】光通信を行う場合、先ず自分と通信相手の
起動位置及び、姿勢方向を計算で算出し、本装置40が
略通信相手方向に向くよう姿勢制御を行う。次に受信側
は送信側に自分の正確な位置を伝える為に、ビーコンビ
ームを射出する。
In the case of optical communication, first, the starting position and the attitude direction of the communication partner and the communication partner are calculated, and the attitude control is performed so that the device 40 faces substantially the direction of the communication partner. The receiver then emits a beacon beam to inform the sender of its exact location.

【0020】そして、送信側は受信側から送られてきた
ビーコンビームを補足センサー25及び追尾センサー2
8上に導光する。捕捉センサー25は出力信号を通信相
手の大まかな位置及び方角を計算する制御システムコン
トローラーに提供する。
Then, the transmitting side uses the beacon beam sent from the receiving side for the supplemental sensor 25 and the tracking sensor 2.
8. The capture sensor 25 provides the output signal to a control system controller that calculates the approximate position and orientation of the communication partner.

【0021】制御システムコントローラーは通信信号光
束を射出する自分の光学系の向きと通信相手の方向との
ズレを計算し、衛星全体の姿勢を制御して該ズレを解消
する。同様に、追尾センサー28からの出力信号を制御
システムコントローラーに提供する。
The control system controller calculates the deviation between the direction of its own optical system emitting the communication signal light beam and the direction of the communication partner, and controls the attitude of the entire satellite to eliminate the deviation. Similarly, the output signal from the tracking sensor 28 is provided to the control system controller.

【0022】そして制御システムコントローラーはポイ
ンティング手段44を調節することによって、光軸のズ
レを高精度に補正する。この時、自分の衛星の振動、通
信相手及び自分の衛星の運動による光行差エラーを補正
する動きも行う。
Then, the control system controller adjusts the pointing means 44 to correct the deviation of the optical axis with high accuracy. At this time, the movement of correcting the optical misalignment error due to the vibration of the own satellite, the communication partner and the movement of the own satellite is also performed.

【0023】追尾センサー28により、通信相手の方向
に自分の通信用光学系の光軸が正確に向いたことを確認
した後、通信信号手段33から通信信号光束を射出す
る。
After it is confirmed by the tracking sensor 28 that the optical axis of its own communication optical system is correctly oriented toward the communication partner, the communication signal means 33 emits a communication signal light beam.

【0024】[0024]

【発明が解決しようとする課題】図3に示す光通信光学
装置に於いて入射角0度で射出する光束は、図4の実線
で示すように光軸L上での光束として進むが、図4の点
線で示すような斜入射光束の場合、射出瞳位置より後ろ
側では、射出瞳位置から離れるほど、光束は光軸から離
れてしまう。該射出光束の傾き量は入射光束の傾きに比
例し、次の式で表される。
In the optical communication optical device shown in FIG. 3, a light beam emitted at an incident angle of 0 degree advances as a light beam on the optical axis L as shown by the solid line in FIG. In the case of the obliquely incident light flux as indicated by the dotted line 4 in FIG. 4, the light flux is farther from the optical axis on the rear side of the exit pupil position as the distance from the exit pupil position increases. The inclination amount of the emitted light beam is proportional to the inclination of the incident light beam and is represented by the following equation.

【0025】[0025]

【数2】 尚、一般に装置全体の小型化の為、反射光学系43とコ
リメーターレンズ22の焦点距離の比は約20倍前後が
多く採用されている。また、光束の入射角度は±0.5
度程度が要求されている。
[Equation 2] In general, in order to reduce the size of the entire apparatus, the ratio of the focal lengths of the reflective optical system 43 and the collimator lens 22 is often about 20 times. The incident angle of the light flux is ± 0.5
Degree is required.

【0026】この場合コリメータレンズ22より射出側
の射出光束角度は最大で10度にもなり、コリメーター
レンズ22の後ろ側に配置された各種の光学素子(ビー
ムスプリッターや、結像用の凸レンズ等)の径を大きく
しなければならない。又、入射角変化が大きく成りビー
ム分割特性が悪化する等システムの小型化、高性能化に
非常に大きな影響を与えるという問題点があった。
In this case, the exit light beam angle on the exit side of the collimator lens 22 is 10 degrees at the maximum, and various optical elements (beam splitter, convex lens for image formation, etc.) arranged behind the collimator lens 22. ) Must be increased in diameter. Further, there is a problem that the change of the incident angle becomes large and the beam splitting characteristic is deteriorated, which has a great influence on the miniaturization and high performance of the system.

【0027】本発明は各要素を適切に配置することによ
り、装置全体の小型化を図りつつ、設計上、組立て調整
上の誤差の許容量を増大して信頼性を向上させ、常に良
好な光通信を可能とした光通信光学装置の提供を目的と
している。
According to the present invention, by appropriately arranging the respective elements, it is possible to reduce the size of the entire apparatus, increase the allowable amount of error in design, assembly and adjustment, and improve the reliability, and always obtain a good optical quality. An object is to provide an optical communication optical device that enables communication.

【0028】[0028]

【課題を解決するための手段】本発明の光通信光学装置
は主鏡に対して副鏡を対向配置し、該主鏡と副鏡の双方
で反射した第1光束で光通信を行なう通信信号手段と、
該主鏡で反射し副鏡を透過した該第1光束とは波長の異
なる第2光束で通信相手の位置情報を検出する位置信号
手段とを有したことを特徴としている。
According to the optical communication optical device of the present invention, a sub-mirror is arranged opposite to a main mirror, and a communication signal for performing optical communication with a first light flux reflected by both the main mirror and the sub-mirror. Means and
The first light flux reflected by the main mirror and transmitted through the sub-mirror has position signal means for detecting position information of a communication partner with a second light flux having a different wavelength.

【0029】この他、主鏡に対して副鏡を対向配置し、
該主鏡と副鏡の双方で反射した第1光束で光通信を行な
う通信信号手段と、該主鏡で反射し該副鏡を透過した該
第1光束とは波長の異なる第2光束で通信相手の位置情
報を検出する位置信号手段Eaと、該主鏡と該副鏡の双
方で反射した第2光束で通信相手の位置情報を検出する
位置信号手段Ebとを有したことを特徴としている。
In addition, the secondary mirror is arranged to face the primary mirror,
The communication signal means for performing optical communication with the first light flux reflected by both the main mirror and the sub mirror and the second light flux having a different wavelength from the first light flux reflected by the main mirror and transmitted through the sub mirror Position signal means Ea for detecting the position information of the partner and position signal means Eb for detecting the position information of the communication partner by the second light flux reflected by both the primary mirror and the secondary mirror are provided. .

【0030】特に、前記副鏡は前記第2光束が射出する
射出面が射出側に凹面を向けた非球面であることを特徴
としている。
In particular, the secondary mirror is characterized in that the exit surface from which the second light flux exits is an aspherical surface with a concave surface facing the exit side.

【0031】[0031]

【実施例】図1は本発明の実施例1の一部分の要部概略
図であり、図2(A)は実施例1の光路図、図2(B)
は図2(A)の一部分の拡大説明図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic view of a part of a first embodiment of the present invention, FIG. 2 (A) is an optical path diagram of the first embodiment, and FIG. 2 (B).
FIG. 3 is an enlarged explanatory view of a part of FIG.

【0032】本実施例では通信信号光束(第1光束)で
光通信を行なう際に、該通信信号光束と波長の異なるビ
ーコンビーム(第2光束)で通信相手の位置を確認して
ポインティング操作を行なうようにしている。
In this embodiment, when optical communication is performed with the communication signal light flux (first light flux), the position of the communication partner is confirmed by the beacon beam (second light flux) having a wavelength different from that of the communication signal light flux, and the pointing operation is performed. I am trying to do it.

【0033】図中、1は主鏡であり、通信相手側に凹面
を向けた放物状の反射面である。2は副鏡であり、主鏡
1側に凸状の後述する分光特性を有する反射面を向けて
設けている。主鏡1と副鏡2は所謂カセグレン式の反射
光学系12を構成している。4は正のパワーを持つコリ
メーターレンズであり、焦点位置が反射光学系12の焦
点位置Pと光軸La上で一致するように配置されてい
る。
In the figure, reference numeral 1 denotes a primary mirror, which is a parabolic reflecting surface having a concave surface facing the communication partner. Reference numeral 2 denotes a secondary mirror, which is provided on the primary mirror 1 side with a convex reflecting surface having a spectral characteristic described later. The primary mirror 1 and the secondary mirror 2 constitute a so-called Cassegrain type reflective optical system 12. Reference numeral 4 denotes a collimator lens having a positive power, which is arranged so that the focal position coincides with the focal position P of the reflective optical system 12 on the optical axis La.

【0034】副鏡2の反射面2aは入射光束を波長によ
り分割するビームスプリッターとしての作用を有してお
り、通信信号光束に対しては略100%の反射特性を持
ち、ビーコンビームに対しては略50%の反射率と透過
率を持っている。
The reflecting surface 2a of the sub-mirror 2 has a function as a beam splitter for splitting an incident light beam according to a wavelength, has a reflection characteristic of about 100% with respect to a communication signal light beam, and has a beacon beam. Has a reflectance and transmittance of approximately 50%.

【0035】通信相手からの通信信号光束は略平行光と
なっており、主鏡1に入射し副鏡2で反射されて焦点位
置Pに収斂し、コリメーターレンズ4により再び平行光
に変換される。又、通信信号光束の波長と異なる波長の
ビーコンビームは主鏡1に入射し副鏡2の反射面2aを
透過して捕捉センサ3に入射している。
The communication signal light flux from the communication partner is substantially parallel light, which is incident on the primary mirror 1, reflected by the secondary mirror 2 and converged at the focal point P, and is again converted into parallel light by the collimator lens 4. It Further, a beacon beam having a wavelength different from the wavelength of the communication signal light flux enters the primary mirror 1, passes through the reflecting surface 2 a of the secondary mirror 2, and enters the capture sensor 3.

【0036】13はポインティング手段であり、全反射
ミラー34,35等を有している。ポインティング手段
13は全反射ミラー34と全反射ミラー35とを相対的
に傾けることにより、ビームスプリッター26以降の光
学要素が成す光軸Lbと反射光学系12やコリメーター
レンズ4の成す光軸Laとの傾きを調整し、射出する通
信信号光束の方向を通信相手の方向へ正確に向けてい
る。
Reference numeral 13 is a pointing means, which has total reflection mirrors 34, 35 and the like. The pointing means 13 tilts the total reflection mirror 34 and the total reflection mirror 35 relative to each other so that the optical axis Lb formed by the optical elements after the beam splitter 26 and the optical axis La formed by the reflection optical system 12 and the collimator lens 4 are formed. By adjusting the inclination of, the direction of the outgoing communication signal light beam is accurately directed toward the communication partner.

【0037】26,29は光束を波長により透過光と反
射光とに分割するビームスプリッタである。
Reference numerals 26 and 29 are beam splitters for splitting a light beam into transmitted light and reflected light according to wavelength.

【0038】ビームスプリッター26は、通信相手から
のビーコンビームを、追尾センサー28に導光してい
る。27は集光レンズであり、ビームスプリッター26
で反射分離されたビーコンビームを追尾センサー28上
に集光させている。
The beam splitter 26 guides the beacon beam from the communication partner to the tracking sensor 28. 27 is a condenser lens, which is a beam splitter 26
The beacon beam reflected and separated by is focused on the tracking sensor 28.

【0039】31はビーコンビーム発光部であり、自分
が受信者の場合に、通信の送信者側に自分の正確な位置
を知らせる為のビーコンビームを発している。30は凸
レンズであり、ビーコンビーム発光部31から射出され
たビーコンビームを略平行光に変換している。尚、ビー
コンビーム発光部31は凸レンズ30の焦点位置より光
軸L´上の少しずれた位置に配置されており、通信信号
光束と比べてやや広がりを有した平行光と成っている。
Reference numeral 31 denotes a beacon beam emitting portion, which emits a beacon beam for notifying the sender side of communication of its own accurate position when the receiver is the receiver. Reference numeral 30 denotes a convex lens, which converts the beacon beam emitted from the beacon beam emitting section 31 into substantially parallel light. The beacon beam emitting unit 31 is arranged at a position slightly displaced from the focal position of the convex lens 30 on the optical axis L ', and is a parallel light which is slightly wider than the communication signal light flux.

【0040】29はビームスプリッターであり、ビーコ
ン信号発生部31からのビーコンビームを反射光学系1
2側へ導光している。
Reference numeral 29 is a beam splitter, which reflects the beacon beam from the beacon signal generator 31 into the reflection optical system 1.
Light is guided to the 2 side.

【0041】33は通信信号手段であり、ハーフミラー
49や通信光束発光部(レーザダイオード)41、通信
信号受信器42等を有している。
Reference numeral 33 is a communication signal means, which has a half mirror 49, a communication light beam emitting section (laser diode) 41, a communication signal receiver 42 and the like.

【0042】通信光束発光部41から射出される通信信
号光束は凸レンズ32により平行光とされ、ビームスプ
リッター29,26を透過して、コリメータレンズ4に
よって再び収斂され、副鏡2と主鏡1で反射されてから
非常に精度の高い平行光と成って射出される。
The communication signal light beam emitted from the communication light beam emitting section 41 is collimated by the convex lens 32, passes through the beam splitters 29 and 26, is converged again by the collimator lens 4, and then is split by the secondary mirror 2 and the primary mirror 1. After being reflected, it is emitted as highly parallel light.

【0043】又、通信相手側からの通信信号光束は先ず
主鏡1と副鏡2とで焦点位置Pに集光され、コリメータ
ーレンズ4で平行光とされる。そして、ポインティング
手段13を介し、ビームスプリッタ26,29を透過し
て、集光レンズ32で通信信号手段33の受光素子42
上に集光されている。
Further, the communication signal light beam from the other end of communication is first focused on the focal position P by the primary mirror 1 and secondary mirror 2, and is collimated by the collimator lens 4. Then, the light is transmitted through the beam splitters 26 and 29 through the pointing means 13, and the light receiving element 42 of the communication signal means 33 is transmitted by the condenser lens 32.
It is focused on the top.

【0044】本実施例に於いて光通信を行う場合、先ず
自分と通信相手の軌道位置及び、姿勢方向を計算で算出
し、本装置10が略通信相手方向に向くよう姿勢制御を
行う。次に受信側は送信側に自分の正確な位置を伝える
為に、ビーコンビームを射出する。
In the case of performing optical communication in this embodiment, first, the orbital position and the posture direction of the communication partner and that of the communication partner are calculated, and the posture control is performed so that the apparatus 10 is oriented substantially in the direction of the communication partner. The receiver then emits a beacon beam to inform the sender of its exact location.

【0045】そして、送信側は受信側から送られてきた
ビーコンビームを捕捉センサー3及び追尾センサー28
上に導光する。捕捉センサー3は出力信号を通信相手の
大まかな位置及び方角を計算する制御システムコントロ
ーラー(不図示)に提供する。
Then, the transmitting side captures the beacon beam sent from the receiving side by the capturing sensor 3 and the tracking sensor 28.
Guide light to the top. The capture sensor 3 provides an output signal to a control system controller (not shown) that calculates the rough position and orientation of the communication partner.

【0046】制御システムコントローラーは通信信号光
束を射出する自分の光学系の向きと通信相手の方向との
ズレを計算し、衛星全体の姿勢を制御してズレを解消す
る。
The control system controller calculates the deviation between the direction of its own optical system emitting the communication signal light beam and the direction of the communication partner, and controls the attitude of the entire satellite to eliminate the deviation.

【0047】更に、追尾センサー28からの出力信号を
制御システムコントローラーに提供し、ポインティング
手段13を調節することによって、光軸のズレを高精度
に補正する。この時、自分の衛星の振動、相手及び自分
の衛星の運動による光行差エラーを補正する動きも行
う。
Further, the output signal from the tracking sensor 28 is provided to the control system controller and the pointing means 13 is adjusted to correct the deviation of the optical axis with high accuracy. At this time, the movement of correcting the optical misalignment error due to the vibration of the own satellite and the movement of the other party and the own satellite is also performed.

【0048】そして追尾センサー28により、通信相手
の方向に自分の通信用光学系の光軸が正確に向いたこと
を確認した後、通信信号手段33から通信信号光束を射
出し光通信を開始する。
After it is confirmed by the tracking sensor 28 that the optical axis of its own communication optical system is correctly oriented in the direction of the communication partner, a communication signal light beam is emitted from the communication signal means 33 to start optical communication. .

【0049】尚、本実施例に於いて副鏡2の射出面2b
を捕捉センサ側に凹面を向けた非球面とする事により、
光学系の収差を良好に補正することができる。図5,図
6,図7は夫々後述の反射光学系の数値実施例1,2,
3に於ける捕捉センサ3上の結像性能をスポットダイヤ
グラムで示した説明図であり、図中(A)は射出面2b
を非球面にした場合、(B)は射出面2bを平面にした
場合で、夫々入射角度を変えて比較している。これより
結像性能が大幅に向上し、位置検出が高精度に行なえる
ことが確認できる。
Incidentally, in this embodiment, the exit surface 2b of the secondary mirror 2 is
Is an aspherical surface with the concave surface facing the capture sensor side,
It is possible to satisfactorily correct the aberration of the optical system. 5, 6, and 7, respectively, are numerical examples 1, 2 of the reflection optical system described later.
3 is an explanatory view showing the image forming performance on the capture sensor 3 in FIG. 3 by a spot diagram, in which FIG.
Is an aspherical surface, and (B) is a case where the exit surface 2b is a flat surface, and the incident angles are changed for comparison. From this, it can be confirmed that the imaging performance is significantly improved and the position can be detected with high accuracy.

【0050】以上のように本実施例によれば、コリメー
ターレンズ4の後ろ側に配置する光学素子の数を減らせ
る為、光学系の小型化が可能と成る。また最も広視野が
必要な捕捉センサーがコリメーターレンズ4の後側でな
くなった為、反射光学系12やコリメーターレンズ4に
要求される視野角が半分以下に成り、設計上、組立調整
上の許容量が増大し、信頼性も非常に高く成る。
As described above, according to this embodiment, since the number of optical elements arranged behind the collimator lens 4 can be reduced, the optical system can be downsized. Further, since the capture sensor that requires the widest field of view is not provided on the rear side of the collimator lens 4, the viewing angle required for the reflective optical system 12 and the collimator lens 4 is reduced to less than half, and the design and assembly adjustment Increased capacity and very high reliability.

【0051】次に本発明の反射光学系12の数値実施例
を示す。数値実施例においてRiは物体側からの光束の
反射又は通過順に第i番目の屈折面の曲率半径、Diは
物体側より第i番目の屈折面の間隔、そしてNiは物体
側より順に第i番目の媒質の屈折率である。
Next, numerical examples of the reflective optical system 12 of the present invention will be shown. In the numerical example, Ri is the radius of curvature of the i-th refracting surface in the order of reflection or passage of a light beam from the object side, Di is the distance between the i-th refracting surface from the object side, and Ni is the i-th order from the object side. Is the refractive index of the medium.

【0052】ここでR1,R2の非球面形状は光軸方向
にX軸、光軸と垂直方向にh軸、光の進行方向を正と
し、k,R,B,C,D,Eを非球面係数としたとき
Here, the aspherical shapes of R1 and R2 are such that the X axis is in the optical axis direction, the h axis is in the direction perpendicular to the optical axis, and the traveling direction of light is positive, and k, R, B, C, D, and E are non-uniform. When using spherical coefficient

【0053】[0053]

【数3】 なる式で表わしている。[Equation 3] It is expressed by

【0054】また、R3の非球面形状は光軸方向にX
軸、光軸と垂直方向にh軸、光の進行方向を正とし、
R,A,B,C,D,Eを非球面係数としたとき
The aspherical shape of R3 is X in the optical axis direction.
Axis, the h-axis perpendicular to the optical axis, the traveling direction of light is positive,
When R, A, B, C, D and E are aspherical coefficients

【0055】[0055]

【数4】 なる式で表わしている。 (数値実施例1) 合成焦点距離 469.18mm R1 有効径 φ300mm 番 号 曲率半径Ri 間隔Di 屈折率Ni 1 -1004.000 -390.0 -1.0 2 -329.412 -20.0 -1.45319 3 ∞ -1.0 非球面係数 R1 R=-1004.0 B=0 C=0 K= -1.0 D=0 E=0 R2 R= -329.412 B=0 C=0 K= -3.76817 D=0 E=0 R3 R=0 B=-1.28263×10-7 A=0 C=0 D=0 E=0 (数値実施例2) 合成焦点距離 378.12mm R1 有効径 φ300mm 番 号 曲率半径Ri 間隔Di 屈折率Ni 1 -840.000 -350.0 -1.0 2 -189.000 -20.0 -1.45319 3 ∞ -1.0 非球面係数 R1 R=-840.0 B=0 C=0 K= -1.0 D=0 E=0 R2 R=-189.000 B=0 C=0 K= -2.89 D=0 E=0 R3 R=0 B=0 C=0 A=-1.16777E-3 D=0 E=0 (数値実施例3) 合成焦点距離 357.59mm R1 有効径 φ300mm 番 号 曲率半径Ri 間隔Di 屈折率Ni 1 -700.000 -280.0 -1.0 2 -200.000 -20.0 -1.45319 3 ∞ -1.0 非球面係数 R1 R=-700.0 K=0.0 B=2.78207E-10 C=4.05590E-16 D=4.73434E-22 E=7.20895E-28 R3 R=0 B=0 C=0 A=-1.16777E-3 D=0 E=0[Equation 4] It is expressed by Numerical Example 1 Synthetic focal length 469.18 mm R1 Effective diameter φ300 mm No. Curvature radius Ri Interval Di Refractive index Ni 1 -1004.000 -390.0 -1.0 2 -329.412 -20.0 -1.45319 3 ∞ -1.0 Aspherical coefficient R1 R = -1004.0 B = 0 C = 0 K = -1.0 D = 0 E = 0 R2 R = -329.412 B = 0 C = 0 K = -3.76817 D = 0 E = 0 R3 R = 0 B = -1.28263 × 10 - 7 A = 0 C = 0 D = 0 E = 0 (Numerical Example 2) Composite focal length 378.12 mm R1 Effective diameter φ300 mm No. Curvature radius Ri Interval Di Refractive index Ni 1 -840.000 -350.0 -1.0 2 -189.000- 20.0 -1.45319 3 ∞ -1.0 Aspherical coefficient R1 R = -840.0 B = 0 C = 0 K = -1.0 D = 0 E = 0 R2 R = -189.000 B = 0 C = 0 K = -2.89 D = 0 E = 0 R3 R = 0 B = 0 C = 0 A = -1.16777E-3 D = 0 E = 0 (Numerical Example 3) Composite focal length 357.59 mm R1 Effective diameter φ300mm No. Curvature radius Ri Spacing Di Refractive index Ni 1 -700.000 -280.0 -1.0 2 -200.000 -20.0 -1.45319 3 ∞ -1.0 Aspheric coefficient R1 R = -700.0 K = 0.0 B = 2.78207E-10 C = 4.05590E-16 D = 4.73434E-22 E = 7.20895E-28 R3 R = 0 B = 0 C = 0 A = -1.16777E-3 D = 0 E = 0

【0056】[0056]

【発明の効果】本発明によれば前述の如く各要素を適切
に配置することにより、装置全体の小型化を図りつつ信
頼性を向上させ、常に良好な光通信を可能とした光通信
光学装置を達成することができる。
According to the present invention, by appropriately arranging the respective elements as described above, the optical communication optical device capable of improving the reliability while improving the miniaturization of the entire device and always performing good optical communication. Can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例の要部概略図FIG. 1 is a schematic view of a main part of an embodiment of the present invention.

【図2】 本発明の一実施例の光路図FIG. 2 is an optical path diagram of an embodiment of the present invention.

【図3】 従来の光通信光学装置の要部概略図FIG. 3 is a schematic view of a main part of a conventional optical communication optical device.

【図4】 図3の一部分の拡大説明図FIG. 4 is an enlarged explanatory view of a part of FIG.

【図5】 本発明の数値実施例1の収差図FIG. 5 is an aberration diagram of Numerical example 1 of the present invention.

【図6】 本発明の数値実施例2の収差図FIG. 6 is an aberration diagram of Numerical example 2 of the present invention.

【図7】 本発明の数値実施例3の収差図FIG. 7 is an aberration diagram of Numerical example 3 of the present invention.

【符号の説明】[Explanation of symbols]

1 主鏡 2 副鏡 3 捕捉センサ(位置信号手段Ea) 4 コリメーターレンズ 12 反射光学系 13 ポインティング手段 16 通信信号手段 28 追尾センサ(位置信号手段Eb) 1 Primary Mirror 2 Secondary Mirror 3 Capture Sensor (Position Signal Means Ea) 4 Collimator Lens 12 Reflective Optical System 13 Pointing Means 16 Communication Signal Means 28 Tracking Sensor (Position Signal Means Eb)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 主鏡に対して副鏡を対向配置し、該副鏡
と主鏡の双方で反射した第1光束で光通信を行なう通信
信号手段と、該主鏡で反射し副鏡を透過した該第1光束
とは波長の異なる第2光束で通信相手の位置情報を検出
する位置信号手段とを有したことを特徴とする光通信光
学装置。
1. A communication signal means for arranging a sub-mirror opposite to a main mirror, for performing optical communication with a first light flux reflected by both the sub-mirror and the main mirror, and a sub-mirror for reflecting the sub-mirror by the main mirror. An optical communication optical device, comprising: position signal means for detecting position information of a communication partner by a second light beam having a wavelength different from that of the transmitted first light beam.
【請求項2】 主鏡に対して副鏡を対向配置し、該副鏡
と主鏡の双方で反射した第1光束で光通信を行なう通信
信号手段と、該主鏡で反射し該副鏡を透過した該第1光
束とは波長の異なる第2光束で通信相手の位置情報を検
出する位置信号手段Eaと、該主鏡と該副鏡の双方で反
射した第2光束で通信相手の位置情報を検出する位置信
号手段Ebとを有したことを特徴とする光通信光学装
置。
2. A communication signal means for arranging a sub-mirror opposite to the main mirror, for performing optical communication with the first light flux reflected by both the sub-mirror and the main mirror, and the sub-mirror reflecting by the main mirror. Position signal means Ea for detecting the position information of the communication partner with a second light beam having a wavelength different from that of the first light beam that has passed through, and the position of the communication partner with the second light beam reflected by both the primary mirror and the secondary mirror. An optical communication optical device comprising position signal means Eb for detecting information.
【請求項3】 前記副鏡は前記第2光束が射出する射出
面が射出側に凹面を向けた非球面であることを特徴とす
る請求項1又は2の光通信光学装置。
3. The optical communication optical device according to claim 1, wherein the secondary mirror is an aspherical surface whose exit surface from which the second light flux exits has a concave surface facing the exit side.
JP5152691A 1993-05-31 1993-05-31 Optical communication optical device Pending JPH06337355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5152691A JPH06337355A (en) 1993-05-31 1993-05-31 Optical communication optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5152691A JPH06337355A (en) 1993-05-31 1993-05-31 Optical communication optical device

Publications (1)

Publication Number Publication Date
JPH06337355A true JPH06337355A (en) 1994-12-06

Family

ID=15546032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5152691A Pending JPH06337355A (en) 1993-05-31 1993-05-31 Optical communication optical device

Country Status (1)

Country Link
JP (1) JPH06337355A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09116915A (en) * 1995-10-20 1997-05-02 Nikon Corp Spectral system
JP2004505529A (en) * 2000-07-28 2004-02-19 テラビーム・コーポレーション System and method for using holographic optical elements in a wireless telecommunications system receiver
WO2009041307A1 (en) * 2007-09-25 2009-04-02 Nikon Corporation Alignment device and method for optical system
JP2009075031A (en) * 2007-09-25 2009-04-09 Nikon Corp Alignment apparatus of optical system and its method
JP2009121981A (en) * 2007-11-15 2009-06-04 National Institute Of Information & Communication Technology Light acquiring/tracking apparatus
JP2009121952A (en) * 2007-11-15 2009-06-04 Nikon Corp Apparatus and method for aligning optical system
CN107101589A (en) * 2016-02-23 2017-08-29 西门子公司 A kind of device and method of robot collision detection

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09116915A (en) * 1995-10-20 1997-05-02 Nikon Corp Spectral system
JP2004505529A (en) * 2000-07-28 2004-02-19 テラビーム・コーポレーション System and method for using holographic optical elements in a wireless telecommunications system receiver
WO2009041307A1 (en) * 2007-09-25 2009-04-02 Nikon Corporation Alignment device and method for optical system
JP2009075031A (en) * 2007-09-25 2009-04-09 Nikon Corp Alignment apparatus of optical system and its method
EP2192433A1 (en) * 2007-09-25 2010-06-02 Nikon Corporation Alignment device and method for optical system
EP2192433A4 (en) * 2007-09-25 2011-03-23 Nikon Corp Alignment device and method for optical system
US8085400B2 (en) 2007-09-25 2011-12-27 Nikon Corporation Alignment device and method for optical system
JP2009121981A (en) * 2007-11-15 2009-06-04 National Institute Of Information & Communication Technology Light acquiring/tracking apparatus
JP2009121952A (en) * 2007-11-15 2009-06-04 Nikon Corp Apparatus and method for aligning optical system
CN107101589A (en) * 2016-02-23 2017-08-29 西门子公司 A kind of device and method of robot collision detection

Similar Documents

Publication Publication Date Title
EP0666656B1 (en) Free space optical communication apparatus
US7059781B2 (en) Optical detection device and optical device
EP1223454A3 (en) Optical scanning apparatus and image forming apparatus using the same
JPH0820510B2 (en) Optical communication system Optical system alignment adjustment system
US5760905A (en) Distance measuring apparatus
US8666697B2 (en) Light condensing lens and three-dimensional distance measuring apparatus
US20070030474A1 (en) Optical range finder
EP1019773B1 (en) Displaced aperture beamsplitter for laser transmitter/receiver opto mechanical system
CN109728855B (en) Bidirectional same-frequency-band self-adaptive optical laser communication optical terminal
US10859348B1 (en) System for active telescope alignment, focus and beam control
JPS6230214A (en) Optical system for scanning light beam
EP0433613A1 (en) Microscopic spectrometer with Cassegrain objective
JP2000068934A (en) Optical communication device mounted on satellite
US20060114448A1 (en) Multiple optical channels
JP2000193748A (en) Laser distance-measuring device for large measurement range
JPH06337355A (en) Optical communication optical device
US4850694A (en) Alignment means for a light source emitting invisible laser light
US20050237511A1 (en) Optical beam detection device and optical beam detection system using therewith
US20050237642A1 (en) Decentering optical system, optical transmitting device, optical receiving device, and optical system
WO2022209137A1 (en) Optical system and light scanning device
JP2006173688A (en) Spatial light transmission apparatus
JP2005003804A (en) Eccentric optical system, light transmitting device, light receiving device and optical system
JPH08152554A (en) Optical branching optical system
JPH07175021A (en) Optical spatial communication device
JPH0784186A (en) Optical communication device