JPH0633489B2 - Electrode for dilute salt water electrolysis - Google Patents

Electrode for dilute salt water electrolysis

Info

Publication number
JPH0633489B2
JPH0633489B2 JP59171259A JP17125984A JPH0633489B2 JP H0633489 B2 JPH0633489 B2 JP H0633489B2 JP 59171259 A JP59171259 A JP 59171259A JP 17125984 A JP17125984 A JP 17125984A JP H0633489 B2 JPH0633489 B2 JP H0633489B2
Authority
JP
Japan
Prior art keywords
electrode
mol
oxide
electrolysis
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59171259A
Other languages
Japanese (ja)
Other versions
JPS6152385A (en
Inventor
弘之 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP59171259A priority Critical patent/JPH0633489B2/en
Publication of JPS6152385A publication Critical patent/JPS6152385A/en
Publication of JPH0633489B2 publication Critical patent/JPH0633489B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は希薄塩水電解用電極に関し、さらに詳しくは、
希薄塩水を電解して、殺菌や漂白用などに用いられる次
亜塩素酸を生成させるのに好適に使用される、耐久性及
び電流効率の良好な電極に関するものである。
TECHNICAL FIELD The present invention relates to an electrode for dilute salt water electrolysis, and more specifically,
The present invention relates to an electrode excellent in durability and current efficiency, which is suitably used for electrolyzing dilute salt water to generate hypochlorous acid used for sterilization and bleaching.

海水を利用し、これを電解して次亜塩素酸を発生させ、
上水道や下水道などの滅菌を行う方法はすでに知られて
おり、従来の塩素ガスを用いる滅菌方法は、逐次これに
置き換えられつつある。ところで、この海水を用いる電
解方法(以下海水電解法という)は、海水が容易に入手
できる地域においては、十分にその機能を発揮しうる
が、海水の利用が困難な地域では、海水の代りに食塩水
溶液を用いる電解方法(以下塩水電解法というが行われ
ている。
Utilizing seawater, electrolyzing this to generate hypochlorous acid,
A method for sterilizing water supply or sewer is already known, and the conventional sterilization method using chlorine gas is being gradually replaced by this method. By the way, this electrolysis method using seawater (hereinafter referred to as seawater electrolysis method) can sufficiently perform its function in areas where seawater can be easily obtained, but instead of seawater in areas where it is difficult to use seawater. An electrolysis method using a saline solution (hereinafter referred to as a salt water electrolysis method is performed.

このような電解において、通常無隔膜電解装置を用い
て、その陽極に塩素を発生させ、この塩素と水酸イオン
との反応により次亜塩素酸イオンが生成する。このよう
にして得られた次亜塩素酸は、前記のような滅菌に用い
られたり、あるいは漂白用などに利用される。
In such electrolysis, chlorine is usually generated at the anode of the diaphragmless electrolysis device, and hypochlorite ion is generated by the reaction between the chlorine and hydroxide ion. The hypochlorous acid thus obtained is used for sterilization as described above, or for bleaching.

従来の技術 希薄塩水電解法の類似技術の1つとして食塩電解法があ
り、この際の電極としてはRuO2型のものが知られてい
る。このRuO2型電極の代表的な例としては、(Ru−Ti)
O2固溶体の被覆層を弁金属基材上に形成したもの(特公
昭46−21884号公報)や、SnO250モル%以上の(Ru−S
n)O2固溶体の被覆層を有する電極(特公昭50−11330号
公報)などが挙げられる。これらの電極は、食塩電解法
に使用した場合、その優れた耐久性は広く認められてお
り、金属電極の代表例として実用化されている。しかし
ながら、これらの電極を希薄塩水電解法に用いた場合、
次亜塩素酸発生効率は比較的良好であるが、耐食性が低
いことから、該電極は希薄塩水電解用として、とうてい
実用に供しえない。
2. Description of the Related Art The salt electrolysis method is one of the similar technologies to the dilute salt water electrolysis method, and the RuO 2 type electrode is known as an electrode in this case. A typical example of this RuO 2 type electrode is (Ru-Ti)
An O 2 solid solution coating layer formed on a valve metal substrate (Japanese Patent Publication No. 46-21884) or SnO 2 of 50 mol% or more (Ru-S
n) An electrode having a coating layer of O 2 solid solution (Japanese Examined Patent Publication No. 50-11330) and the like. These electrodes are widely recognized for their excellent durability when used in the salt electrolysis method, and have been put to practical use as typical examples of metal electrodes. However, when these electrodes are used in the dilute salt water electrolysis method,
The efficiency of hypochlorous acid generation is relatively good, but the corrosion resistance is low, and therefore the electrode cannot be practically used for dilute salt water electrolysis.

また、白金、二酸化ルテニウム、酸化パラジウム及び二
酸化チタンから成る被覆層を有する陽極(特公昭55−35
473号公報)、白金及び酸化パルジウムから成る被覆層
を有する陽極(特公昭55−8595号公報)などの酸化パラ
ジウム系陽極も提案されている。しかしながら、これら
の酸化パラジウム系陽極は、次亜塩素酸発生効率につい
ては高い値を示すものの、耐久性に問題があり、特に低
温時の耐久性は極端に悪いという欠点がある。
Further, an anode having a coating layer composed of platinum, ruthenium dioxide, palladium oxide and titanium dioxide (Japanese Patent Publication No. 55-35).
No. 473), an anode having a coating layer composed of platinum and pardium oxide (Japanese Patent Publication No. 558595) is also proposed. However, although these palladium oxide-based anodes show a high value for hypochlorous acid generation efficiency, they have a problem in durability and have a drawback that durability is extremely poor especially at low temperatures.

さらに、海水電解用電極として、白金又は白金族金属の
合金を耐食性基材上にメツキした電極が知られている
が、このものは、比較的消耗度が大きい上に、操業時の
電解電圧が高く、電流効率についても満足しうるもので
はない。
Furthermore, as an electrode for seawater electrolysis, an electrode in which an alloy of platinum or a platinum group metal is plated on a corrosion resistant substrate is known, but this one has a relatively large degree of wear and has an electrolytic voltage during operation. It is high and the current efficiency is not satisfactory either.

その他、白金と酸化イリジウムとから成る被覆層を有す
る希薄塩水電解用電極(特公昭55−50479号公報)、白
金、酸化イリジウム及び酸化ルテニウムから成る被覆層
を有する海水電解用電極(特開昭59−25988号公報)な
どの電極が提案されている。しかしながら、前者の電極
は、耐食性に関しては良好であるものの、使用に伴い性
能が劣化するという傾向を有する。また、後者の電極
は、低温度海水電解における耐食性が十分でないという
欠点を有している。
In addition, an electrode for dilute salt water electrolysis having a coating layer made of platinum and iridium oxide (Japanese Patent Publication No. 55-50479), and an electrode for seawater electrolysis having a coating layer made of platinum, iridium oxide and ruthenium oxide (JP-A-59-59). No. 25988), electrodes have been proposed. However, although the former electrode has good corrosion resistance, it tends to deteriorate in performance with use. Further, the latter electrode has a drawback that the corrosion resistance in low temperature seawater electrolysis is not sufficient.

発明が解決しようとする問題点 本発明の目的は、このような希薄塩水電解法における従
来の電極が有する欠点を克服し、低温度海水電解におい
ても、比較的低い陽極電位と高い電流効率を示し、かつ
耐久性や耐食性に優れた電極を提供することにある。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The object of the present invention is to overcome the drawbacks of the conventional electrodes in such a dilute salt water electrolysis method and to show a relatively low anode potential and high current efficiency even in low temperature seawater electrolysis. And to provide an electrode having excellent durability and corrosion resistance.

問題点を解決するための手段 本発明者らは鋭意研究を重ねた結果、導電性基材上に、
特定組成の酸化ルテニウム、酸化イリジウム、白金及び
酸化スズ又はスズが一部アンチモンで置換された酸化ス
ズら成る被覆層を設けた電極が、その目的に適合しうる
ことを見出し、この知見に基づいて本発明を完成する至
つた。
Means for Solving the Problems As a result of intensive studies by the present inventors, on the conductive substrate,
Based on this finding, it was found that an electrode provided with a coating layer composed of ruthenium oxide, iridium oxide, platinum of specific composition and tin oxide or tin oxide in which tin or tin is partially substituted with antimony can meet the purpose. The present invention has been completed.

すなわち、本発明は、導電性基材上に、白金族金属酸化
物触媒の被覆層を有する電解用電極において、該被覆層
が、酸化スズ10〜50モル%と、酸化ルテニウム、酸化イ
リジウム及び白金の合計90〜50モル%とから成ることを
特徴とする希薄塩水電解用電極及び前記の酸化スズ中の
スズの10モル%を超えない量がアンチモンに置換されて
いる希薄塩水電解用電極を提供するものである。
That is, the present invention, in an electrode for electrolysis having a coating layer of a platinum group metal oxide catalyst on a conductive substrate, the coating layer, tin oxide 10 to 50 mol%, ruthenium oxide, iridium oxide and platinum. And a dilute salt water electrolysis electrode in which an amount of not more than 10 mol% of tin in the tin oxide is replaced with antimony. To do.

本発明の電極に用いられる導電性基材としては、例えば
チタン、タンタル、ジルコニウム、ニオブなどの弁金属
が挙げられるが、これらの中で特にチタンが好適であ
る。また、その形状などは用途に応じ適宜変更可能であ
る。
Examples of the conductive base material used for the electrode of the present invention include valve metals such as titanium, tantalum, zirconium, and niobium. Among these, titanium is particularly preferable. Further, its shape and the like can be appropriately changed according to the application.

本発明の電極においては、このような導電性基材上に、
酸化ルテニウム、酸化イリジウム、白金、及び酸化スズ
又はスズが一部アンチモンで置換された酸化スズから成
る被覆層が設けられている。
In the electrode of the present invention, on such a conductive substrate,
A coating layer is provided which consists of ruthenium oxide, iridium oxide, platinum and tin oxide or tin oxide in which tin is partly replaced by antimony.

該被覆層中の酸化スズの含有量は10〜50モル%の範
囲にあることが必要であり、また酸化スズは通常SnO2
形で含有されている。この酸化スズは酸素過電圧のコン
トロールを容易にし、かつ導電性基材に対する被覆層の
密着強度を高める効果がある。酸化スズの含有量が10
モル%未満では前記の効果が発揮されず、また被覆層の
機械的強度が低下し、一方50モル%を超えると陽極電
位が上昇し、耐久性及び電流効率が低下する。
The content of tin oxide in the coating layer needs to be in the range of 10 to 50 mol%, and tin oxide is usually contained in the form of SnO 2 . This tin oxide has the effects of facilitating the control of oxygen overvoltage and enhancing the adhesion strength of the coating layer to the conductive substrate. The content of tin oxide is 10
If it is less than mol%, the above effect is not exhibited, and the mechanical strength of the coating layer is lowered. On the other hand, if it exceeds 50 mol%, the anode potential is increased and durability and current efficiency are lowered.

本発明においては、また導電性を高め、電流効率を向上
させるるために、前記酸化スズは、必要に応じ、スズの
10モル%以下、好ましくは5モル%以下のアンチモン
でで置換されてもよい。この場合、アンチモンは、通常
スズを置換してSbO3の形でドーパントとしてSnO2中に含
有される。アンチモンの置換量が10モル%を超える
と、アンチモン置換の効果が逆に減少し、むしろ耐食性
の劣化をもたらす。
In the present invention, in order to enhance conductivity and current efficiency, the tin oxide may be optionally substituted with 10 mol% or less, preferably 5 mol% or less, of antimony of tin. Good. In this case, antimony is usually contained in SnO 2 as a dopant in the form of SbO 3 replacing tin. If the amount of substitution of antimony exceeds 10 mol%, the effect of antimony substitution is reduced, and rather the corrosion resistance deteriorates.

酸化スズ以外の成分、すなわち酸化ルテニウム、酸化イ
リジウム及び白金は、これらの合計が90〜50モル%の割
合で含有されている。この合計量が50モル%よりも少な
いと陽極電位を上昇して電流効率が低下するし、また90
モル%よりも多くなると酸素過電圧が減少して酸素発生
量が上昇したり、導電性基材に対する被覆層の密着性が
低下する。
Components other than tin oxide, that is, ruthenium oxide, iridium oxide, and platinum, are contained in a proportion of 90 to 50 mol% in total. If this total amount is less than 50 mol%, the anode potential will increase and the current efficiency will decrease.
When it is more than mol%, the oxygen overvoltage decreases, the amount of oxygen generated increases, and the adhesiveness of the coating layer to the conductive substrate decreases.

酸化イリジウムは通常IrO2の形で存在し、低温時におけ
る耐久性を向上し、電極寿命を長くするために加えられ
るが、この量があまり少ないとその効果が発揮されず、
またあまり多すぎると電流効率をそこなうので、全量に
基づき5〜40モル%の範囲が好ましい。
Iridium oxide is usually present in the form of IrO 2 and is added to improve durability at low temperature and prolong electrode life, but if this amount is too small, its effect will not be exhibited,
Further, if it is too much, the current efficiency is impaired, so the range of 5 to 40 mol% is preferable based on the total amount.

酸化ルテニウムは通常RuO2の形で存在し、陽極電位を低
下させるために加えられるが、その量があまり少ないと
効果が発揮されないし、またその量が多すぎると電流効
率や耐久性の悪化の原因になるので、通常3〜40モル%
の範囲で用いるのが好ましい。
Ruthenium oxide is usually present in the form of RuO 2 and is added to reduce the anode potential, but if the amount is too small, the effect is not exerted, and if it is too large, the current efficiency and durability deteriorate. As a cause, it is usually 3-40 mol%
It is preferable to use in the range of.

さらに白金は、陽極電位を低下させる作用を有するが、
この量があまり少ないとその効果が認められないし、ま
たこの量があまり多すぎると低温における電流効率の低
下が著しくなるので、通常3〜50モル%の範囲で用いる
のが好ましい。
Furthermore, platinum has the effect of lowering the anode potential,
If the amount is too small, the effect is not recognized, and if the amount is too large, the current efficiency is significantly lowered at low temperature. Therefore, it is usually preferable to use it in the range of 3 to 50 mol%.

なお、該被覆層中においては、通常酸化ルテニウムと酸
化イリジウムと酸化スズは固溶体を形成すると考えられ
ている。
Incidentally, it is generally considered that ruthenium oxide, iridium oxide and tin oxide form a solid solution in the coating layer.

本発明における該被覆層の厚さは、通常0.5〜10μm
程度であればよい。
The thickness of the coating layer in the present invention is usually 0.5 to 10 μm.
It only has to be about.

次に、本発明の希薄塩水電解用電極の好適な製造方法の
1例について説明すると、まず、熱分解によつて酸化ル
テニウムとなる化合物、例えば塩化ルテニウム(RuCl3
・3H2O)などと、熱分解によつて酸化イリジウムとなる
化合物、例えば塩化イリジウム酸(H2IrCl6・6H2O)な
どと、熱分解によつて白金となる化合物、例えばハロゲ
ン化白金酸、特に塩化白金酸(H2PtCl6・6H2O)など
と、熱分解によつて酸化スズとなる化合物、例えば塩化
第一スズなどのハロゲン化第一スズや、オクテン酸のよ
うなカルボン酸、ホスホン酸、ホスホカルボン酸などの
第一スズ錯塩などと、さらに必要に応じ、熱分解によつ
て酸化アンチモンとなる塩、例えば塩化アンチモンのよ
うなハロゲン化アンチモンなどとを、所定の割合で適当
の溶媒に溶解して塗布液を調製する。次いでこの塗布液
を導電性基材上に塗布し、乾燥したのち、酸素の存在下
450〜650℃の温度で焼成することにより、本発明の電極
が得られる。また、これら成分のうち1種又は2種以上
を含む塗布液を2種以上調製し、これらを導電性基材上
に多層塗布したのち、乾燥、焼成してもよい。
Next, one example of a preferred method for producing the electrode for dilute salt water electrolysis of the present invention will be described. First, a compound which becomes ruthenium oxide by thermal decomposition, for example, ruthenium chloride (RuCl 3
3H 2 O) and the like, and compounds that become iridium oxide by thermal decomposition, such as iridium chloride (H 2 IrCl 6 · 6H 2 O), and compounds that become platinum by thermal decomposition, such as platinum halides Acids, especially chloroplatinic acid (H 2 PtCl 6・ 6H 2 O), and compounds that become tin oxide by thermal decomposition, such as stannous halides such as stannous chloride and carboxylic acids such as octenoic acid. Acid, phosphonic acid, stannous complex salt such as phosphocarboxylic acid, and further, if necessary, a salt that becomes antimony oxide by thermal decomposition, for example, antimony halide such as antimony chloride, in a predetermined ratio. A coating solution is prepared by dissolving in a suitable solvent. Next, this coating solution is applied on a conductive substrate and dried, and then in the presence of oxygen.
The electrode of the present invention is obtained by firing at a temperature of 450 to 650 ° C. In addition, two or more kinds of coating liquids containing one or more of these components may be prepared, and these may be dried and baked after being multilayer-coated on the conductive substrate.

なお、酸化スズのドーパントとして三塩化アンチモンを
用いる場合、このものは焼成時にに多量揮発損失するた
めに、塗布液を調製する際、最終的ドープしたい量より
も数倍ほど多く加えておく必要がある。
When antimony trichloride is used as a dopant for tin oxide, a large amount of this compound is volatilized and lost during firing, so it is necessary to add several times more than the desired final dope when preparing the coating solution. is there.

発明の効果 本発明の電極は、海水電解法や塩水電解法などの希薄塩
水の電解における陽極に有効にに用いられる。
Effect of the Invention The electrode of the present invention is effectively used as an anode in the electrolysis of dilute salt water such as the seawater electrolysis method and the saltwater electrolysis method.

すなわち、本発明の電極を海水電解などの希薄塩水電解
に使用すると、槽電圧が低くて電流効率が高いという特
性を維持することができ、また機械的消耗にも強く、長
期間の使用に耐える。その上、10℃以下の低温度海水
の電解に使用した場合でも、低温による電流効率の低下
幅は比較的小さく、また酸素発生反応に対する耐食性に
も優れている。
That is, when the electrode of the present invention is used for dilute salt water electrolysis such as seawater electrolysis, it is possible to maintain the characteristics that the cell voltage is low and the current efficiency is high, and it is also resistant to mechanical wear and withstands long-term use. . In addition, even when used for electrolysis of low-temperature seawater of 10 ° C. or lower, the decrease in current efficiency due to low temperature is relatively small, and the corrosion resistance to oxygen generation reaction is excellent.

このように、本発明の電極は、希薄塩水電解用電極とし
て、実用上十分に満足しうるものである。
As described above, the electrode of the present invention is sufficiently satisfactory for practical use as an electrode for dilute salt water electrolysis.

実施例 次に実施例によつて本発明をさらに詳細に説明する。EXAMPLES Next, the present invention will be described in more detail with reference to examples.

実施例1 被覆層を形成させるための原料として、RuCl3・3H2O、H
2IrCl6・6H2O、H2PtCl6・6H2O及びC16H30O4Snを用い、
それぞれをブタノールに溶解して、金属換算濃度100g
/の各原料液を調製した。さらにC16H30O4SnとSbCl3
を用い、SbがSnに対して5モル%になるように、これら
をブタノールに溶解して、金属換算濃度100g/の原
料液を調製した。
Example 1 As a raw material for forming a coating layer, RuCl 3 .3H 2 O, H
2 IrCl 6・ 6H 2 O, H 2 PtCl 6・ 6H 2 O and C 16 H 30 O 4 Sn are used,
Dissolve each in butanol and convert to 100g metal
Each raw material liquid of / was prepared. In addition, C 16 H 30 O 4 Sn and SbCl 3
Were dissolved in butanol so that Sb was 5 mol% with respect to Sn, to prepare a raw material solution having a metal-concentration of 100 g /.

これらの各原料液をメスピペツトで所定の量比になるよ
うに採取して混合したのち、かきまぜて塗布液を調製し
た。
Each of these raw material liquids was sampled with a mespetet so as to have a predetermined amount ratio, mixed, and then stirred to prepare a coating liquid.

別に、チタン板を熱シユウ酸水溶液で洗浄し、その表面
に前記塗布液をフデを用いて塗布し、乾燥したのち、電
気炉に入れて500℃で10分間焼成した。
Separately, a titanium plate was washed with a hot oxalic acid aqueous solution, the surface of the titanium plate was coated with a coating solution, dried, and then placed in an electric furnace and baked at 500 ° C. for 10 minutes.

この操作を10回繰り返し、チタン板上に別表に示すよ
うな被覆層が形成されて成る電極を製造した。なお、該
表における組成はけい光X線分析によつて測定した。
This operation was repeated 10 times to produce an electrode in which a coating layer as shown in another table was formed on a titanium plate. The composition in the table was measured by fluorescent X-ray analysis.

次いで、これらの電極を用いて海水電解試験を行い、該
表に、電流密度15A/dm2における陽極電位を対水素電
極基準で示す。
Then, a seawater electrolysis test was conducted using these electrodes, and the anodic potential at a current density of 15 A / dm 2 is shown in the table on the basis of the hydrogen electrode.

実施例2 実施例1で作製した電極を用い塩素発生効率を測定し
た。
Example 2 The chlorine generation efficiency was measured using the electrode prepared in Example 1.

すなわち、海水電解の条件に近似させるため、3wt%Na
Cl水溶液150mlを電解液として、SUS304円板(直径30m
m)を陰極として、密閉した電解槽の中で、電流密度20
A/dm2、電気量100クーロンの条件下において電解し
たのち、電解液をふた付三角フラスコに取り出し、その
次亜塩素酸濃度をチオ硫酸ナトリウムを用いてヨウ素滴
定し、この結果から塩素発生効率(%)を計算した。
That is, in order to approximate the conditions for seawater electrolysis, 3 wt% Na
SUS304 disc (diameter 30m)
m) as the cathode and current density of 20
After electrolysis under conditions of A / dm 2 and 100 coulombs of electricity, the electrolytic solution was taken out to an Erlenmeyer flask with a lid, and the hypochlorous acid concentration was iodometrically titrated with sodium thiosulfate. (%) Was calculated.

この際、3wt%NaCl水溶液の温度を変化させ、該水溶液
の温度と塩素発生効率との関係を求めた。
At this time, the temperature of the 3 wt% NaCl aqueous solution was changed, and the relationship between the temperature of the aqueous solution and the chlorine generation efficiency was determined.

その結果を添付図面に示す。The results are shown in the attached drawings.

図において、曲線aは実施例1で作製した試料No.1、N
o.3の本発明の電極、曲線bはNo.6、曲線cはNo.8、
曲線dはNo.7及び曲線eはNo.5の電極である。
In the figure, the curve a is sample No. 1 or N produced in Example 1.
No. 6 of the present invention, curve b is No. 6, curve c is No. 8,
The curve d is the No. 7 electrode and the curve e is the No. 5 electrode.

実施例3 実施例1で作製した電極の試料No.1〜No.9を用い、6
0℃、1MH2SO4水溶液を、電流密度100A/dm2におい
てバツチ式で電解し、電極が使用不能となるまでの使用
時間(電極寿命と表現する)を求めた。その結果を別表
に示す。なお、電解によつて槽電圧が上昇し、8Vに達
した時点で電極は使用不能であると判断した。
Example 3 Using the electrode samples No. 1 to No. 9 produced in Example 1, 6
A 1 MH 2 SO 4 aqueous solution at 0 ° C. was electrolyzed by a batch method at a current density of 100 A / dm 2 to determine a use time (expressed as electrode life) until the electrode became unusable. The results are shown in the attached table. The electrode was judged to be unusable when the cell voltage increased by electrolysis and reached 8 V.

この表から明らかなように、酸化イリジウム、酸化ルテ
ニウム及び白金のうち、いずれかの成分を欠くNo.5,
6又は9の試料は、陽極電位が高かったり、電極寿命が
短いという欠点を有している。また、酸化スズ及び酸化
ルテニウムを欠くNo.7の試料は陽極電位が他の物に比
べて著しく高くなっている。
As is clear from this table, No. 5, which lacks any one of iridium oxide, ruthenium oxide, and platinum,
Samples 6 and 9 have the drawbacks of high anode potential and short electrode life. In addition, the sample No. 7 lacking tin oxide and ruthenium oxide has a significantly higher anodic potential than other samples.

他方、酸化スズ、酸化イリジウム、酸化ルテニウム及び
白金のすべての成分を含むものであっても酸化スズの量
が50モル%を超えているNo.8の試料は陽極電位が高
く、電極寿命が短い。
On the other hand, the sample of No. 8 containing all the components of tin oxide, iridium oxide, ruthenium oxide and platinum but having a tin oxide content of more than 50 mol% has a high anodic potential and a short electrode life. .

これに対し、本発明の構成要件を備えたNo..1〜4の試
料いずれも陽極電位が低く、電極寿命も長い。
On the other hand, all the samples of Nos. 1 to 4 having the constitutional requirements of the present invention have a low anode potential and a long electrode life.

実施例4 20モル%のRuO2、20モル%のIrO2、15モル%のPt及
び45モル%のSnO2から成る被覆層を有する本発明の電
極、及び比較のために、20モル%のRuO2、20モル%
のIrO2及び60モル%のPtから成る被覆層を有する電極
を作製した。
Example 4 An electrode according to the invention having a coating layer consisting of 20 mol% RuO 2 , 20 mol% IrO 2 , 15 mol% Pt and 45 mol% SnO 2 , and for comparison 20 mol% RuO 2 , 20 mol%
An electrode having a coating layer consisting of IrO 2 and 60 mol% Pt was prepared.

これら2種の電極について、電位走査法により分極特性
の測定を行つた。塩素過電圧の測定に当つては、30℃
に保つた30wt%NaCl水溶液(pH1に調整)中で、電流
密度20A/dm2における値を求めた。また、酸素過電
圧については、30℃、1MH2SO4水溶液中で、電流密度
2A/dm2における値を求めた。
The polarization characteristics of these two types of electrodes were measured by the potential scanning method. For measuring chlorine overvoltage, 30 ℃
The value at a current density of 20 A / dm 2 was determined in a 30 wt% NaCl aqueous solution (adjusted to pH 1) maintained at. Regarding the oxygen overvoltage, the value at a current density of 2 A / dm 2 was obtained in a 1 MH 2 SO 4 aqueous solution at 30 ° C.

その結果、45モル%のSnO2を含む本発明の電極は、酸
素過電圧が450mVであるのに対し、後者は350mVであつ
た。また、塩素過電圧は両者とも40mVであつた。
As a result, the electrode of the present invention containing 45 mol% SnO 2 had an oxygen overvoltage of 450 mV, while the latter had 350 mV. The chlorine overvoltages were both 40 mV.

次いで、20℃、1.5wt%NaCl水溶液を電解液として、
塩素発生効率を求めた。その結果、前者は88%である
のに対し、後者84%であつた。
Next, at 20 ° C., a 1.5 wt% NaCl aqueous solution is used as an electrolytic solution,
The chlorine generation efficiency was calculated. As a result, the former was 88%, while the latter was 84%.

これらの結果から、本発明の効果は明らかである。すな
わち、本発明の電極は、陽極電位及び電流効率などの特
性に優れ、また、酸素発生反応に対しても耐食性に優れ
ていることから、低温度海水電解用電極として用いて
も、長期の連続使用が可能である。
From these results, the effect of the present invention is clear. That is, the electrode of the present invention is excellent in characteristics such as anode potential and current efficiency, and also has excellent corrosion resistance to the oxygen generation reaction, and thus even when used as an electrode for low-temperature seawater electrolysis, long-term continuous use is possible. It can be used.

【図面の簡単な説明】[Brief description of drawings]

図は各種電極を用いた3重量%塩化ナトリウム水溶液の
電解において、該水溶液温度と電流効率との関係を示す
グラフである。
The figure is a graph showing the relationship between aqueous solution temperature and current efficiency in electrolysis of a 3 wt% sodium chloride aqueous solution using various electrodes.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】導電性基材に上、白金族金属酸化物触媒の
被覆層を有する電解用電極において、該被覆層が、酸化
スズ10〜50モル%と、酸化ルテニウム、酸化イリジウム
及び白金の合計90〜50モル%とから成ることを特徴とす
る希薄塩水電解用電極。
1. An electrode for electrolysis having a coating layer of a platinum group metal oxide catalyst on a conductive substrate, wherein the coating layer comprises 10 to 50 mol% of tin oxide, ruthenium oxide, iridium oxide and platinum. An electrode for dilute salt water electrolysis, which comprises 90 to 50 mol% in total.
【請求項2】導電性基材上に、白金族金属酸化物触媒の
被覆層を有する電解用電極において、該被覆層が、スズ
及びアンチモンの混合酸化物10〜50モル%と、酸化ルテ
ニウム、酸化イリジウム及び白金の合計90〜50モル%と
から成り、前記スズ及びアンチモンの混合酸化物中のア
ンチモン量はスズに対し10モル%を超えないことを特徴
とする希薄塩水電解用電極。
2. An electrode for electrolysis having a coating layer of a platinum group metal oxide catalyst on a conductive substrate, wherein the coating layer comprises 10 to 50 mol% of a mixed oxide of tin and antimony, ruthenium oxide, An electrode for dilute salt water electrolysis, which comprises 90 to 50 mol% of iridium oxide and platinum in total, and the amount of antimony in the mixed oxide of tin and antimony does not exceed 10 mol% with respect to tin.
JP59171259A 1984-08-17 1984-08-17 Electrode for dilute salt water electrolysis Expired - Lifetime JPH0633489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59171259A JPH0633489B2 (en) 1984-08-17 1984-08-17 Electrode for dilute salt water electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59171259A JPH0633489B2 (en) 1984-08-17 1984-08-17 Electrode for dilute salt water electrolysis

Publications (2)

Publication Number Publication Date
JPS6152385A JPS6152385A (en) 1986-03-15
JPH0633489B2 true JPH0633489B2 (en) 1994-05-02

Family

ID=15920003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59171259A Expired - Lifetime JPH0633489B2 (en) 1984-08-17 1984-08-17 Electrode for dilute salt water electrolysis

Country Status (1)

Country Link
JP (1) JPH0633489B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015172251A (en) * 2015-05-20 2015-10-01 三菱重工環境・化学エンジニアリング株式会社 Seawater electrolysis system and seawater electrolysis method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058432Y2 (en) * 1987-03-06 1993-03-03
IT1270649B (en) * 1994-10-11 1997-05-07 Solvay ELECTRODE FOR AN ELECTROCHEMICAL PROCEDURE AND USE OF THE ELECTRODE
KR100383269B1 (en) * 2000-12-26 2003-05-12 주식회사 포스코 Pt complex Electrode for seawater electrolysis
KR100414015B1 (en) * 2001-03-19 2004-01-07 (주)엔이텍 An electrolytic cell for producing Sodium Hypochloride
JP2003293178A (en) * 2002-04-04 2003-10-15 Daiso Co Ltd Method for preparing chemical for water treatment
EP1620582B1 (en) 2003-05-07 2016-12-21 De Nora Tech, Inc. Smooth surface morphology anode coatings
JP2012188706A (en) * 2011-03-11 2012-10-04 Japan Carlit Co Ltd:The Electrode for electrolysis and method for manufacturing the same
CN105200452B (en) * 2015-11-02 2017-06-30 扬州大学 A kind of preparation method of titanium-based insoluble anode

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3860754A (en) * 1973-05-07 1975-01-14 Univ Illinois Light beam position encoder apparatus
JPS5328262A (en) * 1976-08-30 1978-03-16 Nippon Electric Co Method of examining capacitor
JPS5925988A (en) * 1982-08-04 1984-02-10 Japan Carlit Co Ltd:The Electrode for electrolyzing sea water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015172251A (en) * 2015-05-20 2015-10-01 三菱重工環境・化学エンジニアリング株式会社 Seawater electrolysis system and seawater electrolysis method

Also Published As

Publication number Publication date
JPS6152385A (en) 1986-03-15

Similar Documents

Publication Publication Date Title
US4626334A (en) Electrode for electrolysis
US3810770A (en) Titanium or tantalum base electrodes with applied titanium or tantalum oxide face activated with noble metals or noble metal oxides
US5098546A (en) Oxygen-generating electrode
US4003817A (en) Valve metal electrode with valve metal oxide semi-conductive coating having a chlorine discharge in said coating
JPH0225994B2 (en)
JP2006515389A5 (en)
US4297195A (en) Electrode for use in electrolysis and process for production thereof
US4005004A (en) Electrode coating consisting of a solid solution of a noble metal oxide, titanium oxide, and zirconium oxide
JP3883597B2 (en) Novel stable coating solutions for producing improved electrocatalytic mixed oxide coatings on metal substrates or metal-coated conductive substrates, and dimensionally stable anodes produced from such solutions
US4318795A (en) Valve metal electrode with valve metal oxide semi-conductor face and methods of carrying out electrolysis reactions
JPH0633489B2 (en) Electrode for dilute salt water electrolysis
JP5105406B2 (en) Electrode for reverse electrolysis
JP4961825B2 (en) Anode for electrochemical reaction
JP2836840B2 (en) Electrode for chlorine generation and method for producing the same
US4072585A (en) Valve metal electrode with valve metal oxide semi-conductive coating having a chlorine discharge catalyst in said coating
JPH0841671A (en) Electrolytical reduction of disulfide compound
JPH0660427B2 (en) Oxygen generating electrode and method for manufacturing the same
HU199574B (en) Process for production of electrode suitable to electrolize of alkalchlorid watery solutions
JP2919169B2 (en) Electrode for oxygen generation and method for producing the same
EP0032819B1 (en) Method of preventing deterioration of palladium oxide anode in a diaphragm type alkali metal chloride electrolytic cell
KR0151393B1 (en) Metal electrodes for electrochemical processes
JPH0238672B2 (en)
CN1011989B (en) Electrode for electrolysis
JP3152499B2 (en) Electrode for oxygen generation and method for producing the same
JPS6152384A (en) Electrode for electrolyzing seawater

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term