JPH0633339B2 - Short fiber composite sheet - Google Patents

Short fiber composite sheet

Info

Publication number
JPH0633339B2
JPH0633339B2 JP2186093A JP18609390A JPH0633339B2 JP H0633339 B2 JPH0633339 B2 JP H0633339B2 JP 2186093 A JP2186093 A JP 2186093A JP 18609390 A JP18609390 A JP 18609390A JP H0633339 B2 JPH0633339 B2 JP H0633339B2
Authority
JP
Japan
Prior art keywords
sheet
short fibers
orientation
fiber composite
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2186093A
Other languages
Japanese (ja)
Other versions
JPH0472332A (en
Inventor
務 塩山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bando Chemical Industries Ltd
Original Assignee
Bando Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bando Chemical Industries Ltd filed Critical Bando Chemical Industries Ltd
Priority to JP2186093A priority Critical patent/JPH0633339B2/en
Priority to CA002046722A priority patent/CA2046722A1/en
Priority to US07/727,967 priority patent/US5281380A/en
Priority to EP95100058A priority patent/EP0657272B1/en
Priority to DE69113552T priority patent/DE69113552T2/en
Priority to DE69131720T priority patent/DE69131720T2/en
Priority to EP91111621A priority patent/EP0468306B1/en
Publication of JPH0472332A publication Critical patent/JPH0472332A/en
Publication of JPH0633339B2 publication Critical patent/JPH0633339B2/en
Priority to US08/238,338 priority patent/US5522719A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ベースとなるエラストマー又は熱可塑性樹脂
に対して短繊維が含有される短繊維複合シートに関す
る。
TECHNICAL FIELD The present invention relates to a staple fiber composite sheet in which staple fibers are contained in a base elastomer or thermoplastic resin.

(従来の技術) 従来より、短繊維複合シートとしては、カレンダ成形に
より短繊維を長さ方向に配向したもの、押出成形により
長さ方向(押出方向)に配向したもの、押出成形により
(環状ダイス)により幅方向に配向したもの(例えば特
公昭53−14269号公報参照)、押出成形(環状ダ
イス)により厚さ方向に配向したもの(例えば特公昭5
8−29231号公報参照)が知られている。
(Prior Art) Conventionally, as a short fiber composite sheet, short fibers are oriented in the length direction by calendering, those in the length direction (extrusion direction) are extruded, and by extrusion molding (annular die ) Oriented in the width direction (see, for example, Japanese Patent Publication No. 53-14269) and one oriented in the thickness direction by extrusion molding (annular die) (for example, Japanese Examined Patent Publication No.
No. 8-29231) is known.

(発明が解決しようとする課題) ところが、上述したものは、いずれも、シート全体に亘
り一様の短繊維配向形態であるので、シート表面とシー
ト内中央部の補強方向が異なる複合シートを得るために
は配向形態の異なる2つ以上の材料を組合わせる必要が
あった。
(Problems to be Solved by the Invention) However, since all of the above-mentioned ones have a uniform short fiber orientation form over the entire sheet, a composite sheet in which the reinforcing directions of the sheet surface and the central portion in the sheet are different is obtained. For this purpose, it is necessary to combine two or more materials having different orientations.

本発明の主たる目的は、表面層は主にシート長手方向
に、内部中央層はシート厚さ方向に短繊維が配向された
た短繊維複合シートを提供することである。
A main object of the present invention is to provide a short fiber composite sheet in which the surface layer is oriented mainly in the sheet longitudinal direction and the inner center layer is oriented in the sheet thickness direction.

(課題を解決するための手段) 本発明は、ベースとなるエラストマー又は熱可塑性樹脂
に対して短繊維が40容量%以下含有される短繊維複合
シートを前提とするもので、表面層では短繊維が主にシ
ート長さ方向に配向される一方、内部中央層では短繊維
が主にシート厚さ方向に配向されており、下記の式で示
される短繊維の配向率が、表面層でHx>50(%)、
内部中央層でHz>50(%)、表面層と内部中央層と
の間に位置する中間層でそれらの中間の配向率である構
成とする。
(Means for Solving the Problems) The present invention is premised on a short fiber composite sheet containing 40% by volume or less of short fibers with respect to an elastomer or a thermoplastic resin as a base, and a short fiber is used in a surface layer. Is mainly oriented in the sheet length direction, while the short fibers are mainly oriented in the sheet thickness direction in the inner central layer, and the orientation ratio of the short fibers represented by the following formula is Hx> in the surface layer. 50 (%),
The internal center layer is configured to have Hz> 50 (%), and the intermediate layer located between the surface layer and the internal center layer has an orientation ratio intermediate between them.

Hx={(1/Vx)/(1/Vx+1/Vy+1/Vz)}×100 Hz={(1/Vz)/(1/Vx+1/Vy+1/Vz)}×100 Hx;シート長さ方向の配向率 Hz;シート面に対し垂直(厚さ)方向の配向率 Vx;溶剤中でのシート長た方向の線膨張率 Vy;溶剤中でのシート幅方向の線膨張率 Vz;溶剤中でのシート面に対し垂直(厚さ)方向の線膨
張率 (作用) 表面層に相当する部分は短繊維が配向率Hx>500
(%)でもって主にシート長さ方向に配向され、内部中
央部に相当する部分は短繊維が配向率Hz>50(%)
でもって主にシート厚さ方向に配向されていることか
ら、その表面層のシート長さ方向の変形抵抗が内部中央
部に対して大きくなり、特異な力学的挙動を示す。ま
た、表面層と内部中央層との間に位置する中間層はそれ
らの中間の配向率であるので、短繊維の配向方向が連続
して自然に変化していくこととなり、応力集中部が発生
しない。
Hx = {(1 / Vx) / (1 / Vx + 1 / Vy + 1 / Vz)} × 100 Hz = {(1 / Vz) / (1 / Vx + 1 / Vy + 1 / Vz)} × 100 Hx: orientation rate in the sheet length direction Hz: orientation rate in the direction perpendicular to the sheet surface (thickness) Vx: linear expansion coefficient in the sheet length direction in a solvent Vy: linear expansion in the sheet width direction in a solvent Coefficient Vz; linear expansion coefficient in the direction perpendicular to the sheet surface in the solvent (thickness) (action) In the portion corresponding to the surface layer, the short fibers have an orientation ratio Hx> 500.
(%) Is mainly oriented in the sheet length direction, and the short fiber has an orientation rate Hz> 50 (%) in the portion corresponding to the inner central portion.
Therefore, since it is mainly oriented in the sheet thickness direction, the deformation resistance of the surface layer in the sheet length direction becomes large with respect to the inner central portion, and a peculiar mechanical behavior is exhibited. In addition, since the intermediate layer located between the surface layer and the inner central layer has an orientation ratio in the middle of them, the orientation direction of the short fibers changes continuously and naturally, and stress concentration portions occur. do not do.

(実施例) 以下、本発明の実施例を図面に沿って詳細に説明する。(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

本発明に係る短繊維複合シートを製造するのに用いる成
形型を示す第1図において、1は成形型で、その成形通
路1aの途中には該成形通路1aの通路面積を絞る絞り
部としてのダム部2が形成されて、該ダム部2の部位通
過後にダム部2の部位よりも通路面積の大きい空間部3
となるようになっている。この空間部3の通路長さは、
長さlに設定されている。
In FIG. 1 showing a molding die used for producing the short fiber composite sheet according to the present invention, reference numeral 1 is a molding die, which is provided in the middle of the molding passage 1a as a narrowing portion for narrowing the passage area of the molding passage 1a. The space portion 3 in which the dam portion 2 is formed and has a larger passage area than the portion of the dam portion 2 after passing through the portion of the dam portion 2
It is supposed to be. The passage length of this space 3 is
It is set to the length l.

この成形型1の成形通路1aに対し、短繊維を混入した
所定の配合の熱可塑性材料を供給すれば、成形型1のダ
ム部2を通過する際に短繊維がまず流れ方向に配向さ
れ、その後ダム部2に続いて該ダム部2の部位よりも通
路面積の大きい空間部3に流れると、熱可塑性材料の流
れ方向が通路面積の急拡大によって短繊維の配向が変化
せしめられ、短繊維が一様に主にシート厚さ方向に配向
されたシート11が製造される。ここで、空間部3の長
さlを長くすることにより成形通路1aの壁面に接する
材料表面付近の繊維配向が流れ方向(シート長さ方向)
に変化する傾向が強くなり、シート表面層とシート内部
中央層の異方性の差が拡大する。そのシートを冷却固化
あるいは加熱架橋することにより所望のシートが得られ
る。
If a thermoplastic material having a predetermined mixture of short fibers is supplied to the molding passage 1a of the mold 1, the short fibers are first oriented in the flow direction when passing through the dam portion 2 of the mold 1. After that, when flowing into the space portion 3 having a larger passage area than the portion of the dam portion 2 subsequently to the dam portion 2, the orientation of the short fibers is changed due to the rapid expansion of the passage area in the flow direction of the thermoplastic material. A sheet 11 is manufactured in which is uniformly oriented mainly in the sheet thickness direction. Here, by increasing the length l of the space portion 3, the fiber orientation near the material surface in contact with the wall surface of the forming passage 1a is in the flow direction (sheet length direction).
And the anisotropy difference between the surface layer of the sheet and the central layer inside the sheet increases. A desired sheet can be obtained by cooling and solidifying or heat-crosslinking the sheet.

これは、空間部3における成形通路1aの壁面と材料表
面との摩擦により、シート表面層に流れ方向の剪断歪が
生じ、シート表面に近いほど、短繊維12はシート長さ
方向に配向されると推定されるからである(第2図参
照)。
This is because the friction between the wall surface of the molding passage 1a and the material surface in the space 3 causes shear strain in the sheet surface layer in the flow direction, and the shorter the fiber is, the more the short fibers 12 are oriented in the sheet length direction. This is because it is estimated (see FIG. 2).

また、熱可塑性材料としては、ポリ塩化ビニル、ポリエ
チレン等の熱可塑性樹脂、オレフィン系、エステル系、
エーテル系、アミド系、ウレタン系等の熱可塑性エラス
トマー、天然ゴム、スチレンブタジエンゴム、クロロプ
レンゴム等の架橋ゴム、及びそれらの一般的コンパウン
ドが用いられる。
Further, as the thermoplastic material, polyvinyl chloride, thermoplastic resin such as polyethylene, olefin series, ester series,
Thermoplastic elastomers such as ether type, amide type and urethane type, crosslinked rubbers such as natural rubber, styrene butadiene rubber and chloroprene rubber, and general compounds thereof are used.

また、短繊維としては、綿、羊毛、パルプ等の天然繊
維、ポリエステル、ナイロン、アラミド等の合成繊維、
レーヨン等の半合成繊維、セラミック等の無機繊維、及
び金属繊維が用いられる。繊維容量が40容量%を越え
ると、短繊維と成形通路壁面との摩擦係数が低下すると
ともに、流動性が低下するため、表面層の長さ方向の配
向が阻害され、配向度が低下するからである。短繊維長
さはシート厚さの1/2以下が望ましい。
As the short fibers, natural fibers such as cotton, wool and pulp, synthetic fibers such as polyester, nylon and aramid,
Semi-synthetic fibers such as rayon, inorganic fibers such as ceramics, and metal fibers are used. If the fiber volume exceeds 40% by volume, the coefficient of friction between the short fibers and the wall surface of the molding passage decreases, and the fluidity also decreases, so that the orientation of the surface layer in the longitudinal direction is impaired and the orientation degree decreases. Is. The short fiber length is preferably 1/2 or less of the sheet thickness.

続いて、上記短繊維複合シートについて行った実験につ
いて説明する。
Next, the experiment conducted on the short fiber composite sheet will be described.

ダム部2の間隙が0.5mmで、空間部3の間隙が6mmの成
形型を用いて、次の配向材料を押出成形した後、加硫し
て加硫シートを作成した。
Using a mold having a gap of the dam portion 2 of 0.5 mm and a gap of the space portion 3 of 6 mm, the following oriented material was extrusion-molded and then vulcanized to prepare a vulcanized sheet.

クロロプレンゴム 100重量部 カーボンブラック 40 軟化剤 5 ステアリン酸 2 老化防止剤 1.5 酸化マグネシウム 4 酸化カルシウム 5 酸化亜鉛 5 加工助剤 3 ポリエステル短繊維 変量 (繊維長さ2mm) 本発明例1,2は、それぞれ熱可塑性材料に対して短繊
維を15容量%及び40容量%混合した配合物を、空間
部3の長さl=15mmの成形型を用いて押出成形した。
一方、比較例は、本発明例1と同一材料を、空間部3の
長さl=2.5mmの成形型を用いて押出成形した。
Chloroprene rubber 100 parts by weight Carbon black 40 Softener 5 Stearic acid 2 Anti-aging agent 1.5 Magnesium oxide 4 Calcium oxide 5 Zinc oxide 5 Processing aid 3 Polyester short fiber Variable amount (fiber length 2 mm) A mixture prepared by mixing 15% by volume and 40% by volume of short fibers with respect to the thermoplastic material was extruded using a mold having a space portion 3 having a length of l = 15 mm.
On the other hand, in the comparative example, the same material as that of the first example of the present invention was extrusion-molded using a molding die in which the length l of the space 3 was 2.5 mm.

本発明例1,2はいずれも約7mmの厚さのシートとな
り、加硫シートを約1mmの厚さにスライスしたものを室
温で、トルエン中に48時間浸漬し、線膨張率を測定し
た。その測定結果に基づく短繊維の配向率は、第3図及
び第4図に示す通りである。
Each of Inventive Examples 1 and 2 was a sheet having a thickness of about 7 mm, and a vulcanized sheet sliced to a thickness of about 1 mm was immersed in toluene at room temperature for 48 hours to measure the linear expansion coefficient. The orientation rate of the short fibers based on the measurement result is as shown in FIGS. 3 and 4.

本発明例1,2は、表面層では主にシート長さ方向に配
向し、内部中央層では主にシート表面に垂直に配向して
いる。また、短繊維量の増大により表面層のシート長さ
方向への配向度が低下していることがわかる。一方、比
較例では、全体に亘って略均一な配向状態となってい
る。即ち、本発明例1,2では、シート11において短
繊維12が第5図に示すように、表面層で押出方向(シ
ート長手方向)の配向が高く(Hx>50%)、内部中
央層でシート厚さ方向の配向が高くなっており(Hz>
50%)、表面層と内部中央層との間に位置する中間層
でそれらの中間の配向率である。比較例では、シートa
において短繊維bが第6図に示すようになっている。
尚、シート長さ方向の配向率Hx及びシート面に対し垂
直(厚さ)方向の配向率Hzは次の式により定義され
る。
In Invention Examples 1 and 2, the surface layer is mainly oriented in the sheet length direction, and the inner central layer is mainly oriented perpendicular to the sheet surface. Further, it can be seen that the degree of orientation of the surface layer in the sheet length direction decreases due to the increase in the amount of short fibers. On the other hand, in the comparative example, the alignment state is substantially uniform throughout. That is, in Inventive Examples 1 and 2, the short fibers 12 in the sheet 11 have a high orientation in the extrusion direction (sheet longitudinal direction) in the surface layer (Hx> 50%) and the inner central layer in the sheet 11 as shown in FIG. Higher orientation in the sheet thickness direction (Hz>
50%), which is an intermediate layer located between the surface layer and the inner central layer and has an intermediate orientation ratio therebetween. In the comparative example, the sheet a
In Fig. 6, the short fibers b are as shown in Fig. 6.
The orientation rate Hx in the sheet length direction and the orientation rate Hz in the direction perpendicular to the sheet surface (thickness) are defined by the following equations.

Hx={(/Vx)/(1/Vx+1/Vy+1/Vz)}×100(%) Hz={(1/Vz)/(1/Vx+1/Vy+1/Vz)}×100(%) Vx;溶剤中でのシート長さ方向の線膨張率 Vy;溶剤中でのシート幅方向の線膨張率 Vz;溶剤中でのシート面に対し垂直(厚さ)方向の線膨
張率 かくして、形成された短繊維複合シートは、単独あるい
は2つを重ね合わせて緩衝材として使用する場合、表面
層に相当する部分は、短繊維がシート長さ方向に配向率
Hx>50%でもって配向されていることから、そのシ
ート長さ方向の変形抵抗が大きくなり、特異な力学的挙
動を示すことが可能となる。それと共に、表面層と内部
中央層との間に位置する中間層それらの中間の配向率と
なっており、短繊維の配向方向が連続して自然に変化す
るようになっているため、応力集中部が発生せず、静的
用途だけでなく、動的用途に対して長寿命が期待でき
る。
Hx = {(/ Vx) / (1 / Vx + 1 / Vy + 1 / Vz)} × 100 (%) Hz = {(1 / Vz) / (1 / Vx + 1 / Vy + 1 / Vz)} × 100 (%) Vx; linear expansion coefficient in the sheet length direction in solvent Vy; linear expansion coefficient in the sheet width direction in solvent Vz; line in the direction perpendicular to the sheet surface (thickness) in solvent Expansion rate Thus, when the short fiber composite sheet thus formed is used alone or two of them are used as a cushioning material, in the portion corresponding to the surface layer, the short fibers have an orientation rate Hx> 50% in the sheet length direction. Since it is oriented in this way, the deformation resistance in the sheet length direction becomes large, and it becomes possible to exhibit a unique mechanical behavior. At the same time, the intermediate layer located between the surface layer and the inner central layer has an intermediate orientation ratio between them, and the orientation direction of the short fibers changes continuously, resulting in stress concentration. No parts are generated, and long life can be expected not only for static applications but also for dynamic applications.

(発明の効果) 本発明は、上記のように、表面層に相当する部分は短繊
維が配向率Hx>50%でもって主にシート長さ方向に
配向され、内部中央部が配向率Hz>50%でもつて主
にシート厚さ方向に配向されているので、その表面層の
シート長さ方向の変形抵抗が内部中央部に対して大きく
なり、特異な力学的挙動を示させることが可能となり、
また、表面層と内部中央層との間に位置する中間層でそ
れらの中間の配向率となっているので、短繊維の配向方
向が連続して自然に変化していくこととなり、応力集中
部が発生せず、静的用途は勿論、動的用途に対しても長
寿命が期待できる。また、表面層を除去することにより
シート厚さ方向に短繊維が高度に配向された短繊維複合
シートを得ることもできる。
(Effect of the invention) As described above, in the present invention, in the portion corresponding to the surface layer, the short fibers are mainly oriented in the sheet length direction with the orientation rate Hx> 50%, and the inner central portion has the orientation rate Hz>. Since it is mainly oriented in the sheet thickness direction at 50%, the deformation resistance of the surface layer in the sheet length direction becomes large with respect to the center of the inside, and it becomes possible to exhibit unique mechanical behavior. ,
In addition, since the intermediate layer located between the surface layer and the inner central layer has an intermediate orientation ratio, the orientation direction of the short fibers changes continuously and naturally. Does not occur, and long life can be expected not only for static applications but also for dynamic applications. Further, by removing the surface layer, it is possible to obtain a short fiber composite sheet in which short fibers are highly oriented in the sheet thickness direction.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第5図は本発明の実施例を示し、第1図は成形
型の断面図、第2図は同要部拡大図、第3図及び第4図
はそれぞれ試験結果の説明図、第5図は短繊維複合シー
トの斜視図である。 第6図は比較例の短繊維複合シートの斜視図である。 1……成形型、1a……成形通路、2……ダム部、3…
…空間部
1 to 5 show an embodiment of the present invention, FIG. 1 is a cross-sectional view of a molding die, FIG. 2 is an enlarged view of relevant parts, and FIGS. 3 and 4 are explanatory views of test results. 5 is a perspective view of a short fiber composite sheet. FIG. 6 is a perspective view of a short fiber composite sheet of a comparative example. 1 ... Mold, 1a ... Mold passage, 2 ... Dam section, 3 ...
… Space

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ベースとなるエラストマー又は熱可塑性樹
脂に対して短繊維が40容量%以下含有される短繊維複
合シートであって、 表面層では短繊維が主にシート長さ方向に配向される一
方、内部中央層では短繊維が主にシート厚さ方向に配向
されており、 下記の式で示される短繊維の配向率が、表面層でHx>
50(%)、内部中央層でHz>50(%)、表面層と
内部中央層との間に位置する中間層でそれらの中間の配
向率であることを特徴とする短繊維複合シート。 Hx={(1/Vx)/(1/Vx+1/Vy+1/Vz)}×100(%) Hz={(1/Vz)/(1/Vx+1/Vy+1/Vz)}×100(%) Hx;シート長さ方向の配向率 Hz;シート面に対し垂直(厚さ)方向の配向率 Vx;溶剤中でのシート長さ方向の線膨張率 Vy;溶剤中でのシート幅方向の線膨張率 Vz;溶剤中でのシート面に対し垂直(厚さ)方向の線膨
張率
1. A short fiber composite sheet containing 40% by volume or less of short fibers with respect to a base elastomer or thermoplastic resin, wherein the short fibers are mainly oriented in the sheet length direction in the surface layer. On the other hand, in the inner central layer, the short fibers are mainly oriented in the sheet thickness direction, and the orientation ratio of the short fibers represented by the following formula is Hx> in the surface layer.
50 (%), Hz> 50 (%) in the inner central layer, and an intermediate layer positioned between the surface layer and the inner central layer, and the orientation ratio intermediate between them is a short fiber composite sheet. Hx = {(1 / Vx) / (1 / Vx + 1 / Vy + 1 / Vz)} × 100 (%) Hz = {(1 / Vz) / (1 / Vx + 1 / Vy + 1 / Vz)} × 100 ( %) Hx; Orientation rate in the sheet length direction Hz; Orientation rate in the direction perpendicular to the sheet surface (thickness) Vx; Linear expansion coefficient in the sheet length direction in solvent Vy; In the sheet width direction in solvent Linear expansion coefficient Vz; linear expansion coefficient in the direction perpendicular to the sheet surface (thickness) in the solvent
JP2186093A 1990-07-12 1990-07-12 Short fiber composite sheet Expired - Fee Related JPH0633339B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2186093A JPH0633339B2 (en) 1990-07-12 1990-07-12 Short fiber composite sheet
CA002046722A CA2046722A1 (en) 1990-07-12 1991-07-10 Method for manufacturing fiber reinforced elastic sheet, apparatus for manufacturing the same and mold to be used
US07/727,967 US5281380A (en) 1990-07-12 1991-07-10 Method for manufacturing fiber reinforced elastic sheet, apparatus for manufacturing the same and mold to be used
DE69131720T DE69131720T2 (en) 1990-07-12 1991-07-12 Process for the production of a fiber-reinforced elastic film, device for its production and tool to be used
DE69113552T DE69113552T2 (en) 1990-07-12 1991-07-12 Process for the production of a fiber-reinforced elastic film, device for its production and tool to be used in the process.
EP95100058A EP0657272B1 (en) 1990-07-12 1991-07-12 Method for manufacturing fiber reinforced elastic sheet, apparatus for manufacturing the same and mold to be used
EP91111621A EP0468306B1 (en) 1990-07-12 1991-07-12 Method for manufacturing fiber reinforced elastic sheet, apparatus for manufacturing the same and mold to be used
US08/238,338 US5522719A (en) 1990-07-12 1994-05-04 Apparatus for manufacturing fiber reinforced elastic sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2186093A JPH0633339B2 (en) 1990-07-12 1990-07-12 Short fiber composite sheet

Publications (2)

Publication Number Publication Date
JPH0472332A JPH0472332A (en) 1992-03-06
JPH0633339B2 true JPH0633339B2 (en) 1994-05-02

Family

ID=16182246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2186093A Expired - Fee Related JPH0633339B2 (en) 1990-07-12 1990-07-12 Short fiber composite sheet

Country Status (1)

Country Link
JP (1) JPH0633339B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019031026A (en) * 2017-08-08 2019-02-28 三菱エンジニアリングプラスチックス株式会社 Resin molded body

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000005049A1 (en) * 1998-07-22 2000-02-03 Koichi Okano Fiber-reinforced plastic and denture base made therefrom
JP2015160317A (en) * 2014-02-26 2015-09-07 ニッタ株式会社 Rubber molded body and resin molded body
JP6641036B2 (en) * 2019-01-11 2020-02-05 キヤノン電子株式会社 Rotating member and holding member for light amount adjusting device, light amount adjusting device, and optical device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51142071A (en) * 1975-05-15 1976-12-07 Asahi Chemical Ind Fiberrreinfoeced sheet moulding material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019031026A (en) * 2017-08-08 2019-02-28 三菱エンジニアリングプラスチックス株式会社 Resin molded body

Also Published As

Publication number Publication date
JPH0472332A (en) 1992-03-06

Similar Documents

Publication Publication Date Title
EP0657272A1 (en) Method for manufacturing fiber reinforced elastic sheet, apparatus for manufacturing the same and mold to be used
US4627472A (en) Hose reinforced with discontinuous fibers oriented in the radial direction
US7281547B2 (en) Multi-layered flexible tube
KR20010034392A (en) Rubber composition for tire tread having improved running performance on ice and pneumatic tire using the same
US9464149B2 (en) Heat-shrinkable tube having tearability
TW483920B (en) Slider of fiber-reinforced thermoplastic resin for use in slide fastener
KR850006337A (en) Pneumatic Tire Flat Wire Reinforcement
JPH0633339B2 (en) Short fiber composite sheet
JPH06104772B2 (en) Thermoplastic polyurethane-elastomer and method for producing the same
Correa et al. Short fiber reinforced thermoplastic polyurethane elastomer composites
JP2885038B2 (en) Fiber reinforced thermoplastic resin sheet and method for producing the same
EP0461464A1 (en) Vibration-isolating material
JP2001065169A (en) Floor material and shock-absorbing material to be used for the same
JPH0651293B2 (en) Method for manufacturing short fiber composite sheet
JPH05262918A (en) Cured rubber composition excellent in vibrational energy-absorbing ability
JPH0929895A (en) Vibration-damping sheet-like material
JPH0280880A (en) Low-permeability hose
KR100344077B1 (en) Fastener having high silencing property
JP7410780B2 (en) Sealing material made of covered foam and method for manufacturing sealing material made of covered foam
DE3852361T2 (en) Impact-resistant, filler-containing composites made of polymers and elastomeric fibers.
JPH0641356A (en) Short fiber composite ruber composition
JPH11153227A (en) Manufacture of bellows
JP2005256365A (en) Rubber supporter for bridge
JP3119454B2 (en) Method of manufacturing elastic mat
JP2006021517A (en) Manufacturing method of two-layered rubber molded body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees