JPH06331454A - Temperature measuring apparatus - Google Patents

Temperature measuring apparatus

Info

Publication number
JPH06331454A
JPH06331454A JP12234993A JP12234993A JPH06331454A JP H06331454 A JPH06331454 A JP H06331454A JP 12234993 A JP12234993 A JP 12234993A JP 12234993 A JP12234993 A JP 12234993A JP H06331454 A JPH06331454 A JP H06331454A
Authority
JP
Japan
Prior art keywords
coil
temperature
thin film
temperature measuring
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12234993A
Other languages
Japanese (ja)
Inventor
Takashi Irie
隆史 入江
Jiro Tokita
二郎 鴇田
Yasuhiro Mitsui
泰裕 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12234993A priority Critical patent/JPH06331454A/en
Publication of JPH06331454A publication Critical patent/JPH06331454A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To precisely measure the temperature of a substrate surface or of a thin film spreading the substrate surface by making a surface coil approach a substrate surface or a thin film spreading the substrate surface and by concentrating detection sensitivities of nuclear quadruple resonance in a vicinity of the surface. CONSTITUTION:A substrate 13 such as a silicon wafer is spread with an insulating film such as a silicon oxide film, and this insulating film is topped with a coil 11 out of a copper or aluminum. The coil 11 has a structure of folding a wire in a plane. A radio wave is supplied to the coil 11 from a nuclear quadruple resonance excitation sensing circuit 6, and the radio wave is emitted from the coil 11. When this radio wave excites the quadruple resonance of a target nucleus in a thin film, the absorption of the radio wave occurs. This absorption is sensed by the coil 11. A signal of absorption is processed by the circuit 6, so that a frequency at this time is outputted as resonance frequency data. The information of the frequency is transmitted to a storage controller 7 and converted into a temperature from the relation between stored frequency and temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、核四重極共鳴を利用し
た温度測定装置に係り、特に、基板表面または基板表面
上に形成された薄膜の温度を計測するのに好適な装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature measuring device utilizing nuclear quadrupole resonance, and more particularly to a device suitable for measuring the temperature of a substrate surface or a thin film formed on the substrate surface.

【0002】[0002]

【従来の技術】従来、核四重極共鳴(NQR)を利用した
温度測定装置は、温度の測定精度が高いため、種々の温
度計の較正原器として利用されていた。なお、この種の
装置として、関連するものには、例えば、横河北辰電機
カタログ「電子計測器」'84,118頁および123
頁が挙げられる。また、膜状試料の場合に、高感度に共
鳴状態を検出するための方法として、サーフェスコイル
(Surface coil)法が知られている。この方法は、例え
ば、ジャーナル オブ マグネティック レゾナンス
第92巻 348から362頁、1991年(Journal
of Magnetic Resonance 92 348−362(19
91))に記載されている。
2. Description of the Related Art Conventionally, a temperature measuring device utilizing nuclear quadrupole resonance (NQR) has been used as a calibration standard for various thermometers because of its high temperature measuring accuracy. Note that, as a related device, for example, Yokogawa Hokushin Electric Catalog "Electronic Measuring Instruments"'84, 118 and 123
Page. In the case of a film sample, a surface coil method is known as a method for detecting a resonance state with high sensitivity. This method can be used, for example, in the Journal of Magnetic Resonance
92, 348-362, 1991 (Journal
of Magnetic Resonance 92 348-362 (19
91)).

【0003】[0003]

【発明が解決しようとする課題】半導体デバイスにおけ
る最小加工寸法がますます微細化されてくるにつれて、
極薄膜の形成技術が重要になっている。膜厚や、膜の物
理および化学的性質を制御するため、基板表面の温度あ
るいは基板表面上に形成された薄膜の温度を正確に測定
し、制御することが極めて重要である。温度精度として
は絶対値として±0.1℃ が要求されている。
[Problems to be Solved by the Invention] As the minimum feature size of semiconductor devices is further miniaturized,
Ultra thin film formation technology is becoming important. In order to control the film thickness and the physical and chemical properties of the film, it is extremely important to accurately measure and control the temperature of the substrate surface or the temperature of the thin film formed on the substrate surface. For the temperature accuracy, an absolute value of ± 0.1 ° C is required.

【0004】従来、半導体プロセスで主に使用されてい
た温度測定法には、熱電対,放射温度計があった。放射
温度計は、非接触で薄膜の温度を測定できる特徴を持つ
が、精度が1〜20℃であり不十分である。一方、熱電
対は、±0.1℃ の精度を持ち、装置そのものの精度と
しては一応要求を満足する。しかし、基板との接触状態
により温度の精度が劣化する問題がある。また、熱電対
を基板に埋め込んで接触の向上を図った場合でも、測定
されるのはあくまで熱電対付近の基板の温度であり、基
板表面や薄膜自身の温度を直接測定するものではない。
従って、時間をかけて基板と薄膜の温度を均一化させな
ければならない。もし均一でなければ、基板表面および
薄膜の温度を高精度に知ることは不可能である。
Conventionally, thermocouples and radiation thermometers have been used as temperature measuring methods mainly used in semiconductor processes. The radiation thermometer has a feature that it can measure the temperature of the thin film in a non-contact manner, but its accuracy is 1 to 20 ° C., which is insufficient. On the other hand, thermocouples have an accuracy of ± 0.1 ° C, which satisfies the requirements for the accuracy of the equipment itself. However, there is a problem that the temperature accuracy is deteriorated depending on the contact state with the substrate. Further, even when the thermocouple is embedded in the substrate to improve the contact, it is only the temperature of the substrate near the thermocouple that is measured, and the temperature of the substrate surface or the thin film itself is not directly measured.
Therefore, it is necessary to make the temperatures of the substrate and the thin film uniform over time. If it is not uniform, it is impossible to know the temperature of the substrate surface and the thin film with high accuracy.

【0005】一方、核四重極共鳴(NQR)を利用した
温度測定装置は、±0.005℃ という高い温度精度を
持つことが知られている。
On the other hand, it is known that a temperature measuring device utilizing nuclear quadrupole resonance (NQR) has a high temperature accuracy of ± 0.005 ° C.

【0006】図10に従来の核四重極共鳴(NQR)温
度計の構成を示す。従来の装置では、核四重極共鳴を励
起かつ検知するためのコイルを試料(塩素酸カリウム:
KClO3 )に埋没させ、さらに全体を密封する形でプ
ローブを形成している。この方法では、基板表面や薄膜
の温度を測定する場合には、このプローブを基板表面ま
たは薄膜に接触させて、基板からの熱伝導で塩素酸カリ
ウムの温度が上昇するのを検知する。基板とこのプロー
ブの接触する面積はプローブ全表面積のごく一部なの
で、プローブ全体の温度が均一になりにくく、かつ、基
板表面や薄膜の温度とは一般に一致しない。従って、基
板表面および薄膜の温度を高精度に知ることは不可能で
あった。
FIG. 10 shows the configuration of a conventional nuclear quadrupole resonance (NQR) thermometer. In a conventional device, a coil for exciting and detecting nuclear quadrupole resonance is used as a sample (potassium chlorate:
The probe is formed by burying it in KClO 3 ) and then sealing the whole. In this method, when the temperature of the substrate surface or the thin film is measured, this probe is brought into contact with the substrate surface or the thin film to detect that the temperature of potassium chlorate rises due to heat conduction from the substrate. Since the area of contact between the substrate and this probe is a small part of the total surface area of the probe, the temperature of the entire probe is less likely to be uniform, and generally does not match the temperature of the substrate surface or thin film. Therefore, it is impossible to know the temperature of the substrate surface and the thin film with high accuracy.

【0007】本発明の目的は、基板表面または基板表面
上に形成された薄膜の温度を高精度に測定する手段を提
供することにある。
An object of the present invention is to provide means for measuring the temperature of a substrate surface or a thin film formed on the substrate surface with high accuracy.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、コイルを基板表面または基板表面に形成
された薄膜に接近させ、かつ、コイル形状にサーフェス
コイル法を用いて、核四重極共鳴の検出感度を前記表面
付近に集中させることで実現できる。このために、基板
上に、温度の測定対象である薄膜と、核四重極共鳴を励
起かつ検知するコイルとを一体に形成したものである。
または、サーフェスコイルを基板に近接させるか接触さ
せることによって、基板表面または基板表面に形成され
た薄膜の温度を直接に観測することにしたものである。
In order to achieve the above-mentioned object, the present invention provides a core coil by bringing a coil close to a substrate surface or a thin film formed on the substrate surface and using a surface coil method for the coil shape. This can be realized by concentrating the detection sensitivity of the double pole resonance near the surface. Therefore, a thin film whose temperature is to be measured and a coil for exciting and detecting nuclear quadrupole resonance are integrally formed on a substrate.
Alternatively, the temperature of the substrate surface or the thin film formed on the substrate surface is directly observed by bringing the surface coil close to or in contact with the substrate.

【0009】[0009]

【作用】核四重極共鳴(NQR)は、核スピンが1以上
で、核四重極能率がゼロでない原子核に、ラジオ波を照
射した場合に起こる。また、共鳴周波数は、その原子核
の化学結合状態に固有の値であり、温度変化によって結
晶場が変化すると共鳴周波数は変化する。この共鳴周波
数の変化の測定から測定物質の温度を決定する方法がN
QR温度測定の原理である。
The nuclear quadrupole resonance (NQR) occurs when a nuclear spin having a nuclear spin of 1 or more and a nuclear quadrupole efficiency is not zero is irradiated with a radio wave. Further, the resonance frequency is a value specific to the chemical bond state of the atomic nucleus, and the resonance frequency changes when the crystal field changes due to temperature change. The method of determining the temperature of the substance to be measured from the measurement of the change in the resonance frequency is N
This is the principle of QR temperature measurement.

【0010】本発明は、この原理を基板表面の温度また
は基板上に形成された薄膜の温度を測定するために利用
したものである。基板または薄膜は、窒素14,塩素3
5,砒素75などの核四重極能率の大きい原子を含むも
のを使用する。これらの原子核は、核四重極共鳴を起こ
す。従って、これらの原子核の共鳴吸収を測定し、その
共鳴周波数の温度変化を利用することによって、薄膜の
温度を測定することができる。
The present invention utilizes this principle to measure the temperature of the substrate surface or the temperature of a thin film formed on the substrate. Substrate or thin film is nitrogen 14, chlorine 3
5, those containing atoms with high nuclear quadrupole efficiency such as arsenic 75 are used. These nuclei undergo nuclear quadrupole resonance. Therefore, the temperature of the thin film can be measured by measuring the resonance absorption of these atomic nuclei and utilizing the temperature change of the resonance frequency.

【0011】共鳴吸収を観測するための装置は基本的に
ラジオ波発生装置,周波数掃引回路,ラジオ波照射検知
用コイル,ラジオ波吸収測定装置,周波数カウンタで構
成される。すなわち、ラジオ波発生装置は薄膜中の原子
核に固有の吸収帯ラジオ波を発生し、ラジオ波照射検知
用コイルは、ラジオ波発生装置により発生したラジオ波
を高効率に被測定薄膜に照射する。ラジオ波の周波数
は、周波数掃引回路で掃引される。次に、照射したラジ
オ波が被測定薄膜によって共鳴吸収されたか否かを、ラ
ジオ波照射検知用コイルとラジオ波吸収測定装置によっ
て検査する。共鳴吸収があった場合には、周波数掃引回
路に対して吸収のおこる共鳴周波数に極めて近付けられ
るように帰還をかけてラジオ波の周波数を共鳴周波数に
固定する。周波数カウンタは、この共鳴周波数を読み取
って出力する。温度と共鳴周波数との間には一定の関係
があるため、この共鳴周波数の値から、温度を高精度に
知ることができる。
A device for observing resonance absorption is basically composed of a radio wave generator, a frequency sweep circuit, a radio wave irradiation detection coil, a radio wave absorption measuring device, and a frequency counter. That is, the radio frequency generator generates an absorption band radio wave peculiar to the atomic nuclei in the thin film, and the radio wave irradiation detection coil irradiates the radio wave generated by the radio wave generator to the thin film to be measured with high efficiency. The frequency of the radio wave is swept by the frequency sweep circuit. Next, whether or not the irradiated radio wave is resonantly absorbed by the thin film to be measured is inspected by the radio wave irradiation detection coil and the radio wave absorption measuring device. If there is resonance absorption, feedback is applied to the frequency sweep circuit so that the resonance frequency is extremely close to the resonance frequency at which absorption occurs, and the frequency of the radio wave is fixed to the resonance frequency. The frequency counter reads and outputs this resonance frequency. Since there is a fixed relationship between the temperature and the resonance frequency, the temperature can be known with high accuracy from the value of the resonance frequency.

【0012】この測定法は、原理的には非接触測定が可
能である。すなわち、コイルと基板表面または基板表面
上の薄膜は接触する必要はない。しかし、基板表面や薄
膜中の試料原子核の数は少ないので、共鳴吸収を観測し
温度を知るためには、検出感度の向上、すなわち、吸収
信号強度の増大とノイズの低減が必要になる。つまり、
コイルから被測定薄膜だけに効率良くラジオ波を照射す
ることと、吸収信号を効率良く検知できることが必要で
ある。このためには、ラジオ波照射検知コイルと被測定
薄膜の距離は短いほどよく、かつ、コイル形状にもサー
フェスコイルを利用するのが良い。本発明はコイルと基
板表面の距離を極めて短くする、好ましくはコイルと基
板表面を接触させるかまたはコイルと基板とを一体化し
て形成したものである。サーフェスコイルの隣合う線の
間隔をコイルと基板表面または薄膜の距離にほぼ等しく
することによって、基板表面または薄膜の部分に核四重
極共鳴検出の感度を集中させ信号強度の増大と基板表面
または薄膜以外からの信号(ノイズ)の低減が可能にな
る。
In principle, this measuring method allows non-contact measurement. That is, it is not necessary for the coil to contact the substrate surface or the thin film on the substrate surface. However, since the number of sample nuclei on the substrate surface or in the thin film is small, it is necessary to improve the detection sensitivity, that is, increase the absorption signal intensity and reduce the noise, in order to observe the resonance absorption and know the temperature. That is,
It is necessary to efficiently irradiate only the thin film to be measured with radio waves from the coil and to detect the absorption signal efficiently. For this purpose, the shorter the distance between the radio wave irradiation detection coil and the thin film to be measured, the better, and it is also preferable to use the surface coil for the coil shape. According to the present invention, the distance between the coil and the surface of the substrate is extremely short, preferably the coil and the surface of the substrate are brought into contact with each other, or the coil and the substrate are integrally formed. By making the distance between adjacent lines of the surface coil approximately equal to the distance between the coil and the substrate surface or thin film, the sensitivity of nuclear quadrupole resonance detection is concentrated on the substrate surface or thin film portion, increasing the signal strength and increasing the substrate surface or It is possible to reduce signals (noise) from other than the thin film.

【0013】[0013]

【実施例】本発明の一実施例を図1によって説明する。
本実施例は、薄膜作成装置1と加熱源5,加熱源制御部
4,温度プローブ2,核四重極共鳴励起検知回路6,記
憶制御部7からなる。温度プローブの構成を図2および
図3に示す。図2は断面図、図3は平面図を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG.
This embodiment comprises a thin film forming apparatus 1, a heating source 5, a heating source control unit 4, a temperature probe 2, a nuclear quadrupole resonance excitation detection circuit 6, and a storage control unit 7. The structure of the temperature probe is shown in FIGS. 2 is a sectional view and FIG. 3 is a plan view.

【0014】図2に示すように、シリコンウエハ等の基
板13上にシリコン酸化膜等の絶縁膜12を形成し、そ
の絶縁膜12上に銅あるいはアルミ等の導体でコイル1
1を形成する。コイル11は図3に示すように、平面内
では1本の線を折畳んだ構造になっている。コイル11
はさらに、シリコン酸化膜等の絶縁膜10で覆われる。
絶縁膜10上に温度測定の対象になる薄膜14を形成す
る。このようにして、コイル11は基板13や測定対象
薄膜14と電気的に絶縁された状態で形成される。ま
た、コイルの検知回路を薄膜の位置に集中させるため、
コイルの隣接する線間の距離L1はコイル面と薄膜間距
離L2とほぼ同程度に設定する。
As shown in FIG. 2, an insulating film 12 such as a silicon oxide film is formed on a substrate 13 such as a silicon wafer, and a coil 1 made of a conductor such as copper or aluminum is formed on the insulating film 12.
1 is formed. As shown in FIG. 3, the coil 11 has a structure in which one wire is folded in a plane. Coil 11
Is further covered with an insulating film 10 such as a silicon oxide film.
A thin film 14 which is a temperature measurement target is formed on the insulating film 10. In this way, the coil 11 is formed in a state of being electrically insulated from the substrate 13 and the thin film 14 to be measured. Also, in order to concentrate the coil detection circuit in the position of the thin film,
The distance L 1 between adjacent lines of the coil is set to be approximately the same as the distance L 2 between the coil surface and the thin film.

【0015】本実施例によって、薄膜14の温度は以下
のように測定される。まず、核四重極共鳴励起検知回路
6から、ラジオ波がコイル11に供給される。ラジオ波
は、コイル11から放射される。ラジオ波の周波数は、
核四重極共鳴励起検知回路6によって掃引されている。
このラジオ波が、薄膜14中の対象原子核の四重極共鳴
を励起すると、ラジオ波の吸収が起こる。この吸収はコ
イル11で検知される。吸収の信号は核四重極共鳴励起
検知回路6で処理され、その時の周波数が共鳴周波数デ
ータ8として出力される。周波数の情報は記憶制御部7
に送られ、あらかじめ記憶されている周波数と温度の関
係から温度に変換される。さらにあらかじめ設定されて
いる薄膜形成温度との比較が行われる。測定温度と設定
温度に差がある場合、記憶制御部7は加熱源制御部4に
制御信号9を送り、差を小さくするように加熱源5の出
力を制御する。以下、この動作を繰り返すことにより、
ウエハ表面に形成された薄膜の温度を所望の温度にする
ことができる。
According to this embodiment, the temperature of the thin film 14 is measured as follows. First, a radio wave is supplied from the nuclear quadrupole resonance excitation detection circuit 6 to the coil 11. Radio waves are radiated from the coil 11. The frequency of the radio wave is
Swept by the nuclear quadrupole resonance excitation detection circuit 6.
When this radio wave excites the quadrupole resonance of the target atomic nucleus in the thin film 14, absorption of the radio wave occurs. This absorption is detected by the coil 11. The absorption signal is processed by the nuclear quadrupole resonance excitation detection circuit 6, and the frequency at that time is output as resonance frequency data 8. The frequency information is stored in the storage controller 7
And is converted into temperature from the relationship between the frequency and the temperature stored in advance. Further, comparison with a preset thin film formation temperature is performed. If there is a difference between the measured temperature and the set temperature, the storage control unit 7 sends a control signal 9 to the heating source control unit 4 to control the output of the heating source 5 so as to reduce the difference. After that, by repeating this operation,
The temperature of the thin film formed on the wafer surface can be set to a desired temperature.

【0016】なお、所望の温度が達成されたときの加熱
源5の出力条件は、記憶制御部7に記憶しておく。この
条件は、コイルが埋め込まれていない通常の基板に薄膜
形成を行う場合の温度設定に対し、加熱源を制御する条
件として使用される。
The output condition of the heating source 5 when the desired temperature is achieved is stored in the storage controller 7. This condition is used as a condition for controlling the heating source with respect to the temperature setting when a thin film is formed on a normal substrate in which the coil is not embedded.

【0017】また、本実施例において、薄膜面内の温度
分布を測定したい場合には、コイルを分割して複数形成
すればよい。図4に11aから11dまで、4分割した
例を示す。この場合、核四重極共鳴の検知回路は、コイ
ルの個数分だけ準備しても良いが、一台の検知回路を複
数のコイルからの信号を切替えて処理することもでき
る。
In the present embodiment, when it is desired to measure the temperature distribution in the thin film surface, the coil may be divided into a plurality of parts. FIG. 4 shows an example in which 11a to 11d are divided into four. In this case, as many detection circuits for nuclear quadrupole resonance as the number of coils may be prepared, but one detection circuit may switch and process signals from a plurality of coils.

【0018】本実施例によれば、ウエハ表面に形成され
た薄膜の温度を直接計って加熱源の条件を較正できるた
め、薄膜形成プロセスの再現性向上に大きな効果があ
る。また、同じ薄膜形成プロセスに異なる装置が使用さ
れる場合、装置間の温度をウエハ表面に形成された薄膜
の温度によって比較できるため、より薄膜形成過程に直
結した比較が可能になる。このため、どの装置を用いて
も同じ性能の薄膜を形成することが可能になる。
According to the present embodiment, the temperature of the thin film formed on the wafer surface can be directly measured to calibrate the conditions of the heating source, which is very effective in improving the reproducibility of the thin film forming process. Further, when different devices are used in the same thin film forming process, the temperature between the devices can be compared by the temperature of the thin film formed on the wafer surface, so that a comparison directly connected to the thin film forming process becomes possible. Therefore, it is possible to form a thin film having the same performance by using any device.

【0019】図5に本発明の第二の実施例を示す。図5
では図1の温度プローブ2に相当する部分のみを平面図
で表現している。基板13は有効領域とダミー領域に分
けられ、ダミー領域のみにコイルが形成されている。基
板13上に膜形成を行いつつ、ダミー領域で温度を測定
する。温度測定が不要になった段階で、ダミー領域は切
り捨て、有効領域内の素子のみを製品として使用する。
本実施例では、実際に基板表面の温度を測定しつつ製品
の製作が出来るので、製品の品質管理に大きな効果があ
る。
FIG. 5 shows a second embodiment of the present invention. Figure 5
Then, only the portion corresponding to the temperature probe 2 in FIG. 1 is represented in a plan view. The substrate 13 is divided into an effective area and a dummy area, and the coil is formed only in the dummy area. While forming the film on the substrate 13, the temperature is measured in the dummy region. When the temperature measurement is no longer needed, the dummy area is cut off and only the elements in the effective area are used as products.
In this embodiment, since the product can be manufactured while actually measuring the temperature of the substrate surface, it has a great effect on the quality control of the product.

【0020】図6は本発明の第三の実施例を示す。本実
施例では、温度プローブ2が被測定物16から離れて設
置されており、温度プローブ2を移動させる手段15が
付加されていることに特徴がある。本実施例では温度プ
ローブ2を移動させながら、被測定物の面内の温度分布
を測定することが出来る。図6では温度プローブ2が被
測定物16から離れて設置されているが、温度プローブ
2を所望の位置に移動させた後、被測定物16に接触さ
せた状態で温度測定を行っても良い。
FIG. 6 shows a third embodiment of the present invention. The present embodiment is characterized in that the temperature probe 2 is installed apart from the object to be measured 16 and means 15 for moving the temperature probe 2 is added. In this embodiment, it is possible to measure the temperature distribution in the plane of the object to be measured while moving the temperature probe 2. Although the temperature probe 2 is installed apart from the object to be measured 16 in FIG. 6, the temperature measurement may be performed in a state where the temperature probe 2 is in contact with the object to be measured 16 after moving the temperature probe 2 to a desired position. .

【0021】図7は本発明の第四の実施例を示す。本実
施例では、温度プローブ2が被測定物16に一体化して
設置されており、支持台3を移動させる手段17が付加
されていることに特徴がある。支持台3を移動させるこ
とによって被測定物の加熱源5に対する相対的位置を変
えられるため、薄膜作成装置1内部の被測定物の位置に
よる温度の相違を測定できる。
FIG. 7 shows a fourth embodiment of the present invention. The present embodiment is characterized in that the temperature probe 2 is installed integrally with the object to be measured 16, and means 17 for moving the support base 3 is added. Since the relative position of the object to be measured with respect to the heating source 5 can be changed by moving the support base 3, it is possible to measure the difference in temperature depending on the position of the object to be measured inside the thin film forming apparatus 1.

【0022】図8と図9は、図6および図7に記載され
ている温度プローブ2の構成を示す。コイル11が基板
19上に形成され、さらに絶縁膜18で覆われている。
コイルは金属で出来ているため、半導体製造上の汚染源
になる可能性がある。しかし、本実施例ではコイル11
が絶縁膜で覆われているため、汚染の心配がない。絶縁
膜18及び基板19は、絶縁膜10や基板13と同じ材
質の物である必要はない。
FIGS. 8 and 9 show the construction of the temperature probe 2 shown in FIGS. 6 and 7. The coil 11 is formed on the substrate 19 and is covered with the insulating film 18.
Since the coil is made of metal, it can be a source of contamination in semiconductor manufacturing. However, in this embodiment, the coil 11
Is covered with an insulating film, so there is no risk of contamination. The insulating film 18 and the substrate 19 do not have to be made of the same material as the insulating film 10 and the substrate 13.

【0023】[0023]

【発明の効果】本発明によれば、シリコンウエハやガリ
ウム砒素ウエハなどの基板表面および基板上に形成した
薄膜の温度を高精度に測定することが可能になり、薄膜
形成プロセスの再現性向上をはかり、かつ装置個体差に
よって生じる膜特性の差を低減することができる。
According to the present invention, it becomes possible to measure the temperature of a substrate such as a silicon wafer or a gallium arsenide wafer and the temperature of a thin film formed on the substrate with high accuracy, and improve the reproducibility of the thin film forming process. It is possible to reduce the difference in the film characteristics caused by the balance and the individual device difference.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すブロック図。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】本発明の温度プローブの断面図。FIG. 2 is a sectional view of the temperature probe of the present invention.

【図3】本発明の温度プローブの平面図。FIG. 3 is a plan view of the temperature probe of the present invention.

【図4】本発明の温度プローブにおいてコイルを複数個
置いた場合の平面図。
FIG. 4 is a plan view when a plurality of coils are placed in the temperature probe of the present invention.

【図5】本発明の温度プローブを、基板上のごく一部の
領域にのみ形成する場合の第二の実施例の平面図
FIG. 5 is a plan view of a second embodiment in which the temperature probe of the present invention is formed only on a very small area on a substrate.

【図6】本発明の第三の実施例を示す装置の説明図。FIG. 6 is an explanatory view of an apparatus showing a third embodiment of the present invention.

【図7】本発明の第四の実施例を示す装置の説明図。FIG. 7 is an explanatory view of an apparatus showing a fourth embodiment of the present invention.

【図8】図6および図7の温度プローブの一例を示す平
面図。
FIG. 8 is a plan view showing an example of the temperature probe shown in FIGS. 6 and 7.

【図9】図6および図7の温度プローブの一例を示す断
面図。
FIG. 9 is a cross-sectional view showing an example of the temperature probe of FIGS. 6 and 7.

【図10】従来例を示す装置の断面図。FIG. 10 is a sectional view of an apparatus showing a conventional example.

【符号の説明】[Explanation of symbols]

1…薄膜作成装置、2…温度プローブ、3…支持台、4
…加熱源制御部、5…加熱源、6…核四重極共鳴励起検
知回路、7…記憶制御部、8…共鳴周波数データ、9…
制御信号。
1 ... Thin film forming apparatus, 2 ... Temperature probe, 3 ... Support base, 4
... Heating source control unit, 5 ... Heating source, 6 ... Nuclear quadrupole resonance excitation detection circuit, 7 ... Storage control unit, 8 ... Resonance frequency data, 9 ...
Control signal.

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】基板表面または前記基板表面に形成された
薄膜を被測定物とし、前記被測定物の温度を核四重極共
鳴の共鳴周波数の温度変化を利用して測定することを特
徴とする温度測定装置。
1. A substrate surface or a thin film formed on the substrate surface is used as an object to be measured, and the temperature of the object to be measured is measured by utilizing a temperature change of a resonance frequency of nuclear quadrupole resonance. Temperature measuring device.
【請求項2】請求項1において、前記温度測定装置は、
少なくとも一つの核四重極共鳴の励起と検知を行うコイ
ルと核四重極共鳴検知回路からなる温度測定装置。
2. The temperature measuring device according to claim 1,
A temperature measuring device comprising a coil for exciting and detecting at least one nuclear quadrupole resonance and a nuclear quadrupole resonance detection circuit.
【請求項3】請求項2において、前記コイルは、ミアン
ダーライン型の表面コイルである温度測定装置。
3. The temperature measuring device according to claim 2, wherein the coil is a meander line type surface coil.
【請求項4】請求項2において、前記コイルは絶縁性物
質で包埋されている温度測定装置。
4. The temperature measuring device according to claim 2, wherein the coil is embedded with an insulating material.
【請求項5】請求項2において、前記コイルは、銅ある
いはアルミニウムの薄膜をエッチングによって形成する
温度測定装置。
5. The temperature measuring device according to claim 2, wherein the coil is formed by etching a thin film of copper or aluminum.
【請求項6】請求項4において、前記コイルは、前記被
測定物から離れて設置される温度測定装置。
6. The temperature measuring device according to claim 4, wherein the coil is installed separately from the object to be measured.
【請求項7】請求項2,3または4において、前記コイ
ルは、前記被測定物に接して設置される温度測定装置。
7. The temperature measuring device according to claim 2, 3 or 4, wherein the coil is installed in contact with the object to be measured.
【請求項8】請求項2,3または4において、前記コイ
ルは、前記被測定物と一体に形成する温度測定装置。
8. The temperature measuring device according to claim 2, wherein the coil is formed integrally with the object to be measured.
【請求項9】請求項8において、前記コイルは、前記被
測定物の全面積を覆うように形成されている温度測定装
置。
9. The temperature measuring device according to claim 8, wherein the coil is formed so as to cover the entire area of the object to be measured.
【請求項10】請求項8において、前記コイルは、前記
被測定物の全面積のうちの一部分を覆うように形成され
ている温度測定装置。
10. The temperature measuring device according to claim 8, wherein the coil is formed so as to cover a part of the entire area of the object to be measured.
【請求項11】請求項8,9または10において、前記
基板上に絶縁膜を形成し、前記絶縁膜上にコイルを形成
し、さらに前記コイルを絶縁膜でおおった上に、前記被
測定物を形成する温度測定装置。
11. The method according to claim 8, 9 or 10, wherein an insulating film is formed on the substrate, a coil is formed on the insulating film, and the coil is covered with an insulating film. Temperature measuring device for forming.
【請求項12】請求項1において、前記基板は、シリコ
ンウエハまたはガリウム砒素ウエハである温度測定装
置。
12. The temperature measuring device according to claim 1, wherein the substrate is a silicon wafer or a gallium arsenide wafer.
【請求項13】請求項1において、前記被測定物は、窒
素原子,塩素原子あるいは砒素原子を含む化合物からな
る薄膜である温度測定装置。
13. The temperature measuring device according to claim 1, wherein the measured object is a thin film made of a compound containing a nitrogen atom, a chlorine atom or an arsenic atom.
JP12234993A 1993-05-25 1993-05-25 Temperature measuring apparatus Pending JPH06331454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12234993A JPH06331454A (en) 1993-05-25 1993-05-25 Temperature measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12234993A JPH06331454A (en) 1993-05-25 1993-05-25 Temperature measuring apparatus

Publications (1)

Publication Number Publication Date
JPH06331454A true JPH06331454A (en) 1994-12-02

Family

ID=14833741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12234993A Pending JPH06331454A (en) 1993-05-25 1993-05-25 Temperature measuring apparatus

Country Status (1)

Country Link
JP (1) JPH06331454A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001065224A1 (en) * 2000-02-29 2001-09-07 Tokyo Electron Limited Method and apparatus for measuring the temperature of a semiconductor substrate by means of a resonant circuit
JP2009123744A (en) * 2007-11-12 2009-06-04 Kelk Ltd Measuring substrate, and temperature measuring substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001065224A1 (en) * 2000-02-29 2001-09-07 Tokyo Electron Limited Method and apparatus for measuring the temperature of a semiconductor substrate by means of a resonant circuit
US6773158B2 (en) 2000-02-29 2004-08-10 Tokyo Electron Limited Resonant circuit for measuring temperature profile of a semiconductor substrate
JP2009123744A (en) * 2007-11-12 2009-06-04 Kelk Ltd Measuring substrate, and temperature measuring substrate

Similar Documents

Publication Publication Date Title
US9029728B2 (en) Methods of and apparatuses for measuring electrical parameters of a plasma process
JP2702807B2 (en) Method and apparatus for measuring deep impurity level in semiconductor
KR101252885B1 (en) Methods and apparatus for optimizing an electrical response to a conductive layer on a substrate
US7275865B2 (en) Temperature measuring apparatus using change of magnetic field
JP3787644B2 (en) Silicon wafer element processing condition detection apparatus, monitor element and detection method
JP2008191123A (en) Crystallinity measuring instrument for thin film semiconductor, and method therefor
US3805160A (en) Method for non-contact semiconductor resistivity measurement
JP2000074862A (en) Method for measuring seebeck coefficient by alternating current heating, and structure of measuring sample used therefor
Ball et al. An improved thermometric method of measuring local power dissipation
JPH06331454A (en) Temperature measuring apparatus
Inglis A method for the determination of AC-DC transfer errors in thermoelements
US20040124865A1 (en) Method and structure for wafer-level reliability electromigration and stress migration test by isothermal heater
JP3337013B2 (en) Non-contact measurement equipment for large-scale integrated circuits
WO2006103832A1 (en) Method for evaluating semiconductor wafer dopant contamination
US5434505A (en) Method and apparatus for low temperature HEMT-like material testing
JPS61173171A (en) Method for measuring resistivity of semiconductor wafer
JPH0820418B2 (en) Non-contact current density measurement probe
JPH05152389A (en) Probe card
JP3995800B2 (en) Inspection method of semiconductor device
SU1763960A1 (en) Relative humidity and temperature detector
JPS62165325A (en) Lump annealing device
JPH0547889A (en) Evaluation of reliability of metal lic wiring
JPS5821395B2 (en) How do you know what to do?
PL243746B1 (en) Structure of a thermoelectric detector and method of making the structure of the thermoelectric detector
SU1290095A1 (en) Device for measuring temperature of conducting objects