JPH06330756A - Intake system of multicylinder internal combustion engine - Google Patents

Intake system of multicylinder internal combustion engine

Info

Publication number
JPH06330756A
JPH06330756A JP12269793A JP12269793A JPH06330756A JP H06330756 A JPH06330756 A JP H06330756A JP 12269793 A JP12269793 A JP 12269793A JP 12269793 A JP12269793 A JP 12269793A JP H06330756 A JPH06330756 A JP H06330756A
Authority
JP
Japan
Prior art keywords
resonance
intake
engine
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12269793A
Other languages
Japanese (ja)
Other versions
JP3191487B2 (en
Inventor
Kazuki Oishi
和貴 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP12269793A priority Critical patent/JP3191487B2/en
Publication of JPH06330756A publication Critical patent/JPH06330756A/en
Application granted granted Critical
Publication of JP3191487B2 publication Critical patent/JP3191487B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Characterised By The Charging Evacuation (AREA)

Abstract

PURPOSE:To provide an intake system of a multicylinder internal combustion engine capable of resonance supercharging over the whole rotational region of the engine and improving the volumetric efficiency and torque in the whole region. CONSTITUTION:Cylinders are classified into two group 2, 3 of cylinders not contiguously arranged in the intake order. In take ports 4 of the respective cylinder groups 2, 3 are respectively connected to surge chambers 5. The surge chambers 5 communicate with an intake system of a multicylinder internal combustion engine through a V-shaped resonating pipe 8 having one end as an intake port 7. Resonating pipe members 8 having an intake port 7 in common are respectively connected to both surge chambers 5. Three branch paths 11 are formed in parallel in the respective resonating pipe members 8 and provided at both ends with switch valves 12, 14 which are opened and closed controllably properly according to the rotational frequency of the engine. A controller is provided by which the respective branch paths 11 are opened and closed to communicate by being folded doubly in the low speed rotation and in one fold in the medium speed rotation, and all switch valves 12, 14 are opened in the high speed rotation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、共鳴過給を利用した多
気筒内燃機関の吸気装置に係り、特に、エンジン回転数
の高低に応じて共鳴管の管長および管径を適宜切り換
え、全回転域に亘ってトルクアップを図った多気筒内燃
機関の吸気装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake system for a multi-cylinder internal combustion engine which utilizes resonance supercharging, and more particularly, to a full rotation of the resonance pipe by appropriately switching the length and diameter of the resonance pipe in accordance with the engine speed. The present invention relates to an intake system for a multi-cylinder internal combustion engine that increases torque over a range.

【0002】[0002]

【従来の技術】近年、多気筒内燃機関には共鳴過給を利
用した吸気装置が取り付けられるようになってきた。図
8に示すようにこの種の共鳴過給吸気装置aは、多気筒
エンジンの吸気系を吸気順序が連続しない二つの気筒群
b,c(例えばV6エンジンの片バンク側や直6エンジ
ンの1,2,3 番気筒など)に分け、各気筒群b,cの吸気
ポートdをそれぞれ共鳴箱としてのサージチャンバeに
接続し、これらサージチャンバeに一端が空気吸入口f
であるY字状の共鳴管gを接続して構成されている。
2. Description of the Related Art In recent years, an intake system utilizing resonance supercharging has been installed in a multi-cylinder internal combustion engine. As shown in FIG. 8, a resonance supercharging intake system a of this type has two cylinder groups b and c (for example, one bank side of a V6 engine or one of a direct 6 engine) in which the intake system of a multi-cylinder engine is not continuous in intake order. , 2,3 cylinders), and the intake ports d of the cylinder groups b and c are connected to a surge chamber e as a resonance box, and one end of each of the surge chambers e is an air intake port f.
Is connected to a Y-shaped resonance tube g.

【0003】この構成によれば、サージチャンバeの容
積,共鳴管gの管断面積Sおよび管長Lによって決まる
共振周波数が3個のシリンダによる加振周波数と一致す
ると、サージチャンバe内に共鳴気柱が生じてチャンバ
e内圧力が高まる。このとき吸気弁を開き吸気を行えば
共鳴過給効果が得られる。各気筒によって加振される共
鳴圧力振動を上手く調整すると、比較的低回転でも大き
な共鳴過給効果が得られる。
According to this structure, when the resonance frequency determined by the volume of the surge chamber e, the cross-sectional area S of the resonance tube g and the tube length L matches the vibration frequency of the three cylinders, resonance gas is generated in the surge chamber e. The column is generated and the pressure in the chamber e is increased. At this time, the resonance supercharging effect can be obtained by opening the intake valve and performing intake. By properly adjusting the resonance pressure vibrations excited by each cylinder, a large resonance supercharging effect can be obtained even at a relatively low rotation speed.

【0004】[0004]

【発明が解決しようとする課題】かかる共鳴過給を利用
して低回転トルクを高めた例を図9に示す。この場合、
共鳴管gの管断面積Sや管長L等を低回転に合わせてチ
ューニングすると、図中一点鎖線hで示すように高回転
域の体積効率が低下してしまう。このため、共鳴過給性
能曲線hとベースエンジン性能曲線iとが交差する回転
で、双方のサージチャンバe1 ,e2 を短絡させる弁j
を開き、各サージチャンバe1 ,e2 内で生じる共鳴を
相殺させて共鳴過給を殺し、高回転域では共鳴過給なし
のベースエンジンの体積効率を確保するようにしてい
た。
FIG. 9 shows an example in which the low rotational torque is increased by utilizing such resonance supercharging. in this case,
If the tube cross-sectional area S, the tube length L, and the like of the resonance tube g are tuned for low rotation, the volume efficiency in the high rotation range will decrease as indicated by the chain line h in the figure. Therefore, the valve j that short-circuits both the surge chambers e 1 and e 2 at the rotation at which the resonance supercharging performance curve h and the base engine performance curve i intersect.
, The resonances generated in the surge chambers e 1 and e 2 are canceled to cancel the resonance supercharging, and the volumetric efficiency of the base engine without resonance supercharging is ensured in the high rotation speed range.

【0005】しかし、これでは共鳴過給性能曲線hとベ
ースエンジン性能曲線iとが交差する中速回転域で体積
効率が落ちてエンジンのトルク特性にトルクの谷がで
き、ドライバビリテイが低下してしまう。
However, in this case, the volumetric efficiency is lowered in the middle speed range where the resonance supercharging performance curve h and the base engine performance curve i intersect, a torque trough is formed in the torque characteristic of the engine, and the driver's ability is deteriorated. Will end up.

【0006】以上の事情を考慮して創案された本発明の
目的は、エンジンの全回転域に亘って共鳴過給すること
ができ、全域の体積効率・トルクを向上させることがで
きる多気筒内燃機関の吸気装置を提供することにある。
An object of the present invention, which was devised in view of the above circumstances, is a multi-cylinder internal combustion engine capable of supercharging resonance over the entire rotation range of the engine and improving the volumetric efficiency and torque of the entire area. To provide an intake device for an engine.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明は、気筒を吸気順序が連続しない二つの気筒群
に分け、各気筒群の吸気ポートを夫々サージチャンバに
接続し、該サージチャンバを一端が吸気口であるY字型
の共鳴管で連通した多気筒内燃機関の吸気装置におい
て、上記双方のサージチャンバに吸気口を共通する共鳴
管部材をそれぞれ接続し、各共鳴管部材の内部に三本の
分岐通路を並列に形成し、これら分岐通路の両端部に開
閉弁を設け、各開閉弁を機関回転数に応じて適宜開閉制
御し、低回転時には各分岐通路を二重に折り返して連通
するように開閉し、中回転時には一重に折り返すように
開閉し、高回転時には全開閉弁を開とするコントローラ
を設けて構成されている。
To achieve the above object, the present invention divides a cylinder into two cylinder groups in which the intake order is not continuous, and connects the intake ports of each cylinder group to a surge chamber, respectively. In an intake system for a multi-cylinder internal combustion engine in which the chambers are connected by a Y-shaped resonance tube having an intake port at one end, resonance pipe members having a common intake port are connected to both surge chambers, and Three branch passages are formed in parallel inside, and opening / closing valves are provided at both ends of these branch passages, and each opening / closing valve is appropriately opened / closed according to the engine speed. The controller is configured to be folded back and open to communicate with each other, to be opened and closed so as to be folded back once at middle rotation, and to be opened at all rotation valves at high rotation.

【0008】[0008]

【作用】低回転時には、コントローラが各開閉弁を開閉
制御し、共鳴管部材内の分岐通路を二重に折り返して連
通させる。よって、共鳴管部材の管長を1,管断面積を
1とすると、このときの実質的な共鳴管長は3,共鳴管
断面積は1/3となり、共鳴周波数が低回転側にシフト
する。
When the engine speed is low, the controller controls the opening and closing of each on-off valve to double-fold the branch passages in the resonance pipe member so that they communicate with each other. Therefore, assuming that the tube length of the resonance tube member is 1 and the tube cross-sectional area is 1, the substantial resonance tube length at this time is 3, the resonance tube cross-sectional area is 1/3, and the resonance frequency shifts to the low rotation side.

【0009】中回転時には、コントローラが各開閉弁を
開閉制御し、共鳴管部材内の分岐通路を一重に折り返し
て連通させる。よって、このときの実質的な共鳴管長は
1,共鳴管断面積は1/3となり、共鳴周波数が中回転
側にシフトする。
At the time of middle rotation, the controller controls opening / closing of each on-off valve so that the branch passage in the resonance pipe member is folded back and communicates with it. Therefore, the substantial resonance tube length at this time is 1, the resonance tube cross-sectional area is 1/3, and the resonance frequency shifts to the middle rotation side.

【0010】高回転時には、コントローラが全開閉弁を
開とし、共鳴管部材をその管長および管断面積のまま連
通させる。よって、このときの実質的な共鳴管長は1,
共鳴管断面積は1となり、共鳴周波数が高回転側にシフ
トする。
At the time of high rotation, the controller opens all the on-off valves to allow the resonance pipe member to communicate with each other while maintaining its pipe length and pipe cross-sectional area. Therefore, the substantial resonance tube length at this time is 1,
The resonance tube cross-sectional area becomes 1, and the resonance frequency shifts to the high rotation side.

【0011】[0011]

【実施例】以下に本発明の一実施例を添付図面に基づい
て説明する。
An embodiment of the present invention will be described below with reference to the accompanying drawings.

【0012】図1に本発明を直列6気筒エンジンに適用
したものを示す。図示するように、エンジン1の吸気系
が吸気順序を連続しない二つの気筒群2,3(すなわち
1,2,3番気筒群と 4,5,6番気筒群)に分けられ、これら
各気筒群2,3の吸気ポート4にそれぞれ共鳴箱として
のサージチャンバ5が接続されている。各サージチャン
バ5には、エンジン1の長手方向端部の上面に流入口6
が設けられている。
FIG. 1 shows the present invention applied to an in-line 6-cylinder engine. As shown in the drawing, the intake system of the engine 1 has two cylinder groups 2 and 3 (that is, two cylinder groups whose intake order is not continuous)
1, 2, 3 cylinder groups and 4, 5, 6 cylinder groups), and a surge chamber 5 as a resonance box is connected to each intake port 4 of each cylinder group 2, 3. Each surge chamber 5 has an inlet 6 on the upper surface of the longitudinal end of the engine 1.
Is provided.

【0013】これら流入口6には、共通した一つの吸気
口7を有する共鳴管部材8が接続されている。共鳴管部
材8は、内部が隔壁9によって左右に二分された箱体か
らなり、その隔壁9の上方に共通の吸気口7が形成され
ている。この吸気口7から吸い込まれた空気は、中央か
ら左右両端方向へ流れて、前記流入口6を通してサージ
チャンバ5へと導かれることになる。かかる共鳴管部材
8は、その共鳴管長がL,共鳴管断面積がSとなってい
る。
A resonance pipe member 8 having a common intake port 7 is connected to these inflow ports 6. The resonance tube member 8 is made up of a box whose inside is divided into two parts by a partition wall 9 and a common intake port 7 is formed above the partition wall 9. The air sucked from the intake port 7 flows from the center to both left and right ends and is guided to the surge chamber 5 through the inflow port 6. The resonance tube member 8 has a resonance tube length L and a resonance tube cross-sectional area S.

【0014】共鳴管部材8の内部には、仕切板10で水
平に仕切られた三本の分岐通路11が並列に形成されて
いる。各々の分岐通路11の管長はL、管断面積は1/
3Sとなっている。上仕切板10aと中央隔壁9との間
には第一開閉弁12(バタフライ弁)が設けられ、下仕
切板10bと両端内壁13との間には第二開閉弁14
(バタフライ弁)が設けられている。これら第一開閉弁
12および第二開閉弁14は、それぞれ図中水平に伸び
る第一開閉弁用の回転軸と第二開閉弁用の回転軸とに付
設されており、これら回転軸をエアシリンダやステップ
モータ等のアクチュエータで回転することにより開閉さ
れるようになっている。
Inside the resonance tube member 8, three branch passages 11 horizontally partitioned by a partition plate 10 are formed in parallel. The pipe length of each branch passage 11 is L, and the pipe cross-sectional area is 1 /
It is 3S. A first on-off valve 12 (butterfly valve) is provided between the upper partition plate 10a and the central partition wall 9, and a second on-off valve 14 is provided between the lower partition plate 10b and the inner walls 13 at both ends.
(Butterfly valve) is provided. The first opening / closing valve 12 and the second opening / closing valve 14 are attached to a rotary shaft for the first open / close valve and a rotary shaft for the second open / close valve, which extend horizontally in the figure, respectively, and these rotary shafts are connected to an air cylinder. It is designed to be opened and closed by being rotated by an actuator such as a step motor or a step motor.

【0015】これら第一および第二開閉弁12,14
は、コントローラに接続され、アクチュエータによりエ
ンジン1の回転数に応じて下表のように開閉される。
These first and second on-off valves 12, 14
Is connected to the controller and is opened / closed by an actuator according to the rotation speed of the engine 1 as shown in the table below.

【0016】 エンジン回転数 第一開閉弁12 第二開閉弁14 低回転域 閉 閉 中回転域 開 閉 高回転域 開 開 ところで、本実施例にあっては、上記サージチャンバ
5,共鳴管部材8,分岐通路11は別々に取り付けられ
るものではなく、次のようにして一体的に形成される。
まず、各気筒の吸気ポート4に垂直方向に高く形成され
た箱状のインレットカバー15を接続し、このインレッ
トカバー15内を 3番 4番気筒の間で垂直隔壁9で左右
に仕切って吸気順序を連続しない二つの気筒群2,3に
分け、水平隔壁16で上下仕切ってサージチャンバ5と
共鳴管部材8とに分け、共鳴管部材8内をさらに仕切板
10で仕切って分岐通路11を形成している。なお、図
中17はシリンダヘッド、18は排気マニホールドであ
る。
Engine speed 1st on-off valve 12 2nd on-off valve 14 Low rotation range Closed Medium rotation range Open Close High rotation range Open Open In the present embodiment, the surge chamber 5, the resonance tube member 8 The branch passages 11 are not separately attached, but are integrally formed as follows.
First, connect the intake port 4 of each cylinder with a box-shaped inlet cover 15 that is formed high in the vertical direction, and partition the inside of this inlet cover 15 between the 3rd and 4th cylinders with the vertical partition wall 9 to the left and right. Is divided into two cylinder groups 2 and 3 which are not continuous, and is divided into a surge chamber 5 and a resonance pipe member 8 by a horizontal partition 16 and is divided into a surge chamber 5 and a resonance pipe member 8, and the inside of the resonance pipe member 8 is further divided by a partition plate 10 to form a branch passage 11. is doing. In the figure, 17 is a cylinder head, and 18 is an exhaust manifold.

【0017】以上の構成からなる本実施例の作用につい
て述べる。
The operation of this embodiment having the above configuration will be described.

【0018】低回転時には、図2に示すようにコントロ
ーラが第一開閉弁12および第二開閉弁14を共に閉と
する。この結果、共鳴管部材8の吸気口7からサージチ
ャンバ5の流入口6への吸気通路が、分岐通路11によ
って二重に折り返された状態となる。よって、共鳴管部
材8の管長をL,管断面積をSとすると、このときの実
質的な共鳴管長は3L,共鳴管断面積は1/3Sとな
る。
At low rotation speed, the controller closes both the first on-off valve 12 and the second on-off valve 14 as shown in FIG. As a result, the intake passage from the intake port 7 of the resonance tube member 8 to the inflow port 6 of the surge chamber 5 is double-folded by the branch passage 11. Therefore, when the tube length of the resonance tube member 8 is L and the tube cross-sectional area is S, the substantial resonance tube length at this time is 3L and the resonance tube cross-sectional area is 1 / 3S.

【0019】中回転時には、図3に示すようにコントロ
ーラが第一開閉弁12を開とし、第二開閉弁を閉とす
る。この結果、共鳴管部材8の吸気口7(中央部)から
サージチャンバ5の流入口6(両端部)への吸気通路
が、分岐通路11によって一重に折り返された状態とな
る。よって、このときの実質的な共鳴管長はL,共鳴管
断面積は1/3Sとなる。
At the time of middle rotation, the controller opens the first on-off valve 12 and closes the second on-off valve as shown in FIG. As a result, the intake passage from the intake port 7 (center portion) of the resonance tube member 8 to the inflow port 6 (both ends) of the surge chamber 5 is in a state of being folded back by the branch passage 11. Therefore, the substantial resonance tube length at this time is L, and the resonance tube cross-sectional area is 1 / 3S.

【0020】高回転時には、図4に示すようにコントロ
ーラが第一開閉弁12および第二開閉弁14を共に開と
する。この結果、共鳴管部材8の吸気口7(中央部)か
らサージチャンバ5の流入口6(両端部)への吸気通路
は、共鳴管部材8の管長Lおよび管断面積Sとなる。す
なわち、このときの実質的な共鳴管長はL,共鳴管断面
積はSとなる。
At the time of high rotation, the controller opens both the first opening / closing valve 12 and the second opening / closing valve 14 as shown in FIG. As a result, the intake passage from the intake port 7 (center portion) of the resonance pipe member 8 to the inflow port 6 (both ends) of the surge chamber 5 has the pipe length L and the pipe cross-sectional area S of the resonance pipe member 8. That is, the substantial resonance tube length at this time is L, and the resonance tube cross-sectional area is S.

【0021】以上の結果をまとめると下表のようにな
る。
The above results are summarized in the table below.

【0022】 エンジン回転数 共鳴管長L 共鳴管断面積S 低回転域 3倍 1/3倍 中回転域 1倍 1/3倍 高回転域 1倍 1倍 ここで、共鳴管長Lおよび共鳴管断面積Sをパラメータ
としたエンジン共鳴回転数N(マッチング回転数N)は
概ね次式で与えられることが知られている。
Engine speed Resonance tube length L Resonance tube cross-sectional area S Low speed range 3 times 1/3 times Medium speed range 1 time 1/3 times High speed range 1 time 1 time where resonance tube length L and resonance tube cross section area It is known that the engine resonance speed N (matching speed N) with S as a parameter is approximately given by the following equation.

【0023】N=A・√(S/L) A:比例定数 つまり、共鳴過給のマッチング回転数Nは、√Sに比例
し、√Lに反比例する。この結果、低中高回転域におけ
るマッチング回転数Nは、以下のようになる。
N = A√ (S / L) A: Proportional constant That is, the matching rotational speed N for resonance supercharging is proportional to √S and inversely proportional to √L. As a result, the matching rotation speed N in the low, middle and high rotation range is as follows.

【0024】 エンジン回転数 マッチング回転数N 低回転域 N=A・√(1/3/3 ) =√(1/9) =0.33 中回転域 N=A・√(1/3/1)=√(1/3) =0.58 高回転域 N=A・√(1/1)=1.0 すなわち、高回転域のマッチング回転数を1とすると、
中回転域では0.58倍、低回転域では0.33倍となる。この
様子を図5に示す。
Engine speed Matching speed N Low speed range N = A · √ (1/3/3) = √ (1/9) = 0.33 Medium speed range N = A · √ (1/3/1) = √ (1/3) = 0.58 High RPM N = A ・ √ (1/1) = 1.0 That is, if the matching RPM in the high RPM is 1,
It is 0.58 times in the middle speed range and 0.33 times in the low speed range. This state is shown in FIG.

【0025】図示するように、コントローラが三種の共
鳴過給性能曲線が交差する回転にて上記第一第二開閉弁
12,14を適宜開閉制御することにより、共鳴管長お
よび管断面積がそのときのエンジン回転数にマッチした
ものとなり、エンジン全回転域に亘って共鳴過給するこ
とができる。よって、エンジン全回転域で体積効率が向
上し、全回転域のトルクアップが可能となる。特に、本
実施例ではアイドル回転数に近い低回転数(0.33倍)か
ら共鳴過給の効果が発揮されるので、使用回転数が低い
ディーゼルエンジンに好適である。
As shown in the figure, the controller appropriately controls the opening and closing of the first and second on-off valves 12 and 14 by the rotations at which the three types of resonance supercharging performance curves intersect, so that the resonance pipe length and the pipe cross-sectional area are The engine speed matches that of the engine, and resonance supercharging can be performed over the entire engine rotation range. Therefore, the volumetric efficiency is improved in the entire engine speed range, and the torque can be increased in the entire engine speed range. Particularly, in the present embodiment, the effect of resonance supercharging is exhibited from a low rotation speed (0.33 times) close to the idle rotation speed, and therefore, it is suitable for a diesel engine with a low rotation speed.

【0026】なお、エンジンの中回転域にて図6に示す
ように第一開閉弁12を閉じ第二開閉弁14を開いても
よい。この場合にあっても図3と同様に実質的な共鳴管
長Lは1倍となり共鳴管断面積Sは1/3倍となるの
で、マッチング回転数Nが0.58倍となることには変わり
ない。
The first on-off valve 12 may be closed and the second on-off valve 14 may be opened as shown in FIG. 6 in the middle rotation range of the engine. Even in this case, as in FIG. 3, the substantial resonance tube length L is 1 times and the resonance tube cross-sectional area S is 1/3 times. Therefore, the matching rotation speed N is still 0.58 times.

【0027】また、図7に示すように、左右の第一開閉
弁12を大型の一体として紙面垂直方向に回転軸を有す
るバタフライ弁12aとし、開弁時に中央隔壁9と兼用
するようにしてもよい。この場合、開閉弁12a,14
の必要数は計3個となり、低コストとなる。
Further, as shown in FIG. 7, the left and right first opening / closing valves 12 are integrally formed into a large-sized butterfly valve 12a having a rotary shaft in a direction perpendicular to the plane of the drawing, and the butterfly valve 12a is also used as the central partition 9 when the valve is opened. Good. In this case, the on-off valves 12a, 14
The required number is 3 in total, resulting in low cost.

【0028】また、共鳴管部材8の内部に形成される各
分岐通路11の長さや断面積を各段ごとに異ならせ、低
回転・中回転・高回転のそれぞれのマッチング回転数を
さらに細かく調整するようにしてもよい。
Further, the lengths and cross-sectional areas of the branch passages 11 formed inside the resonance tube member 8 are made different for each stage, and the matching rotation speeds of low rotation, middle rotation and high rotation are further finely adjusted. You may do it.

【0029】関連する技術として、実開昭59-52033号公
報や実開平1-124335号公報等が知られているが、これら
はいずれも慣性過給装置であり本願発明とは基本的に異
なる。
As related techniques, Japanese Utility Model Laid-Open No. 59-52033 and Japanese Utility Model Laid-Open No. 1-124335 are known, but these are all inertial superchargers and are basically different from the present invention. .

【0030】[0030]

【発明の効果】以上説明したように本発明に係る多気筒
内燃機関の吸気装置によれば、エンジン回転数の高低に
応じて共鳴管の管長および管断面積を適宜切り換えるこ
とにより、その共鳴回転数をエンジン回転数にマッチさ
せ、エンジン全回転域に亘って共鳴過給することができ
る。よって、全回転域に亘って体積効率の向上およびト
ルクの向上を達成することができる。
As described above, according to the intake system for a multi-cylinder internal combustion engine according to the present invention, the resonance rotation of the resonance tube is appropriately changed by switching the tube length and the tube cross-sectional area of the resonance tube in accordance with the engine speed. The number can be matched to the engine speed and the resonance can be supercharged over the entire engine speed range. Therefore, it is possible to improve the volumetric efficiency and the torque over the entire rotation range.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す多気筒内燃機関の吸気
装置の三面図であり、(a) は平面図、(b) は (a)の b-b
線断面図、(c) 側面図である。
FIG. 1 is a three-view drawing of an intake system for a multi-cylinder internal combustion engine showing an embodiment of the present invention, in which (a) is a plan view and (b) is bb of (a).
It is a line sectional view, and (c) a side view.

【図2】エンジン低回転域における共鳴管部材内の吸気
の流れを示す図である。
FIG. 2 is a diagram showing a flow of intake air in a resonance pipe member in a low engine speed region.

【図3】エンジン中回転域における共鳴管部材内の吸気
の流れを示す図である。
FIG. 3 is a diagram showing a flow of intake air in a resonance pipe member in an engine middle speed region.

【図4】エンジン高回転域における共鳴管部材内の吸気
の流れを示す図である。
FIG. 4 is a diagram showing a flow of intake air in a resonance pipe member in a high engine speed region.

【図5】上記吸気装置の体積効率(性能曲線)を示す図
である。
FIG. 5 is a diagram showing a volume efficiency (performance curve) of the intake device.

【図6】エンジン中回転域における共鳴管部材内の吸気
の流れの変形例を示す図である。
FIG. 6 is a diagram showing a modified example of the flow of intake air in the resonance pipe member in the engine middle speed region.

【図7】共鳴管部材内の第一開閉弁の変形例を示す図で
ある。
FIG. 7 is a view showing a modified example of the first on-off valve in the resonance pipe member.

【図8】従来例を示す多気筒内燃機関の吸気装置の説明
図であり、(a) は平面図、(b)は正面図である。
8A and 8B are explanatory views of an intake device for a multi-cylinder internal combustion engine showing a conventional example, in which FIG. 8A is a plan view and FIG. 8B is a front view.

【図9】従来の吸気装置の体積効率(性能曲線)を示す
図である。
FIG. 9 is a diagram showing a volumetric efficiency (performance curve) of a conventional intake device.

【符号の説明】[Explanation of symbols]

1 エンジン 2 気筒群 3 気筒群 4 吸気ポート 5 サージチャンバ 7 吸気口 8 共鳴管部材 11 分岐通路 12 第一開閉弁 14 第二開閉弁 1 engine 2 cylinder group 3 cylinder group 4 intake port 5 surge chamber 7 intake port 8 resonance pipe member 11 branch passage 12 first opening / closing valve 14 second opening / closing valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 気筒を吸気順序が連続しない二つの気筒
群に分け、各気筒群の吸気ポートを夫々サージチャンバ
に接続し、該サージチャンバを一端が吸気口であるY字
型の共鳴管で連通した多気筒内燃機関の吸気装置におい
て、上記双方のサージチャンバに吸気口を共通する共鳴
管部材をそれぞれ接続し、各共鳴管部材の内部に三本の
分岐通路を並列に形成し、これら分岐通路の両端部に開
閉弁を設け、各開閉弁を機関回転数に応じて適宜開閉制
御し、低回転時には各分岐通路を二重に折り返して連通
するように開閉し、中回転時には一重に折り返すように
開閉し、高回転時には全開閉弁を開とするコントローラ
を設けたことを特徴とする多気筒内燃機関の吸気装置。
1. A cylinder is divided into two cylinder groups in which the intake order is not continuous, the intake ports of each cylinder group are connected to a surge chamber, and the surge chamber is a Y-shaped resonance tube having an intake port at one end. In an intake device of a multi-cylinder internal combustion engine that is in communication with each other, resonance pipe members having a common intake port are connected to both surge chambers, and three branch passages are formed in parallel inside each resonance pipe member. Open / close valves are provided at both ends of the passage, and each open / close valve is controlled to be opened / closed appropriately according to the engine speed.When the engine speed is low, each branch passage is double-folded so as to communicate with each other. An intake device for a multi-cylinder internal combustion engine, which is provided with a controller that opens and closes as described above and opens all open / close valves at high rotation speeds.
JP12269793A 1993-05-25 1993-05-25 Intake device for multi-cylinder internal combustion engine Expired - Fee Related JP3191487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12269793A JP3191487B2 (en) 1993-05-25 1993-05-25 Intake device for multi-cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12269793A JP3191487B2 (en) 1993-05-25 1993-05-25 Intake device for multi-cylinder internal combustion engine

Publications (2)

Publication Number Publication Date
JPH06330756A true JPH06330756A (en) 1994-11-29
JP3191487B2 JP3191487B2 (en) 2001-07-23

Family

ID=14842378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12269793A Expired - Fee Related JP3191487B2 (en) 1993-05-25 1993-05-25 Intake device for multi-cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JP3191487B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19523107A1 (en) * 1995-06-26 1997-01-02 Daimler Benz Ag Resonance induction pipe system of IC engine
WO1997046797A1 (en) * 1996-06-03 1997-12-11 Filterwerk Mann + Hummel Gmbh Airflow device
EP1277934A2 (en) 2001-07-17 2003-01-22 Filterwerk Mann + Hummel Gmbh Intake device for a multi-cylinder internal combustion engine
CN102588165A (en) * 2012-03-30 2012-07-18 重庆长安汽车股份有限公司 Intake manifold for supercharged engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19523107A1 (en) * 1995-06-26 1997-01-02 Daimler Benz Ag Resonance induction pipe system of IC engine
WO1997046797A1 (en) * 1996-06-03 1997-12-11 Filterwerk Mann + Hummel Gmbh Airflow device
EP1277934A2 (en) 2001-07-17 2003-01-22 Filterwerk Mann + Hummel Gmbh Intake device for a multi-cylinder internal combustion engine
CN102588165A (en) * 2012-03-30 2012-07-18 重庆长安汽车股份有限公司 Intake manifold for supercharged engine

Also Published As

Publication number Publication date
JP3191487B2 (en) 2001-07-23

Similar Documents

Publication Publication Date Title
JPS61149519A (en) Intake-air passage device in multi-cylinder internal combustion engine
GB2117043A (en) Regulation of I.C. engine intake manifold resonance characteristics
JPH06330756A (en) Intake system of multicylinder internal combustion engine
JP2002502003A (en) An intake system that supplies combustion air for an internal combustion engine
JP2903726B2 (en) Variable intake device for internal combustion engine
KR960012380B1 (en) Variable intake system for i.c. engine
JPH06280576A (en) Intake device of engine
JP2528218Y2 (en) Engine intake passage structure
US5921212A (en) Intake system for multi-cylinder combustion engines
US5542386A (en) Intake system for multiple cylinder combustion engines
JP3111638B2 (en) Intake device for multi-cylinder internal combustion engine
JPH0739812B2 (en) Intake control method for V-type 6-cylinder internal combustion engine
JPH01318756A (en) Intake device for internal combustion engine
JP3624540B2 (en) Engine intake system
JPH0629559B2 (en) Multi-cylinder engine intake system
JP3403948B2 (en) Variable intake device for V-type multi-cylinder internal combustion engine
JPH07127459A (en) Intake device for multicylinder internal combustion engine
JP3345066B2 (en) Engine intake system
JP3997598B2 (en) Variable intake system for V-type internal combustion engine
JPH062628A (en) Intake system of internal combustion engine
JPH109071A (en) Intake device of multiple cylinder internal combustion engine
JPH048823A (en) Air suction device for engine
JPH07127462A (en) Resonance supercharging device for multicylinder internal combustion cylinder
JPH07109169B2 (en) Intake device for multi-cylinder internal combustion engine
JPH0436022A (en) Intake system of engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees