JPH06330309A - Method for forming film by collimation sputtering method and apparatus therefor - Google Patents

Method for forming film by collimation sputtering method and apparatus therefor

Info

Publication number
JPH06330309A
JPH06330309A JP14159493A JP14159493A JPH06330309A JP H06330309 A JPH06330309 A JP H06330309A JP 14159493 A JP14159493 A JP 14159493A JP 14159493 A JP14159493 A JP 14159493A JP H06330309 A JPH06330309 A JP H06330309A
Authority
JP
Japan
Prior art keywords
collimator
particles
film forming
aperture
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP14159493A
Other languages
Japanese (ja)
Inventor
Akira Takahashi
亮 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP14159493A priority Critical patent/JPH06330309A/en
Publication of JPH06330309A publication Critical patent/JPH06330309A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To prolong the exchange period of a collimator, to enhance its working rate and to reduce the cost for operation of the process by vibrating the collimator and suppressing the deposition of particles on the inside surface of the aperture of the collimator. CONSTITUTION:The particles of the target metal or its compd., etc. deposited on the inside surface of the aperture of the collimator 4 are indirectly attracted with relatively weak force directly or indirectly via other deposited particles on the inside surface of the aperture in an initial state of a small deposition density. The undeposited particles vigorously collide against other particles of gaseous argon for discharge or gaseous nitrogen, etc., for reaction and are sprung when the brittle deposited layer of the initial state is vibrated at a high speed by ultrasonic vibrator transducers 6a, 6b, etc., by which the growth of the deposited layer is hindered. Then, the device is constituted to vibrate the collimator 4 and, therefore, the formation of the deposited layer within the aperture is suppressed and the life is greatly prolonged. The number of exchange times of the collimator 4 is, therefore, drastically decreased and the working rate of the film forming process is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多層配線構造の半導体
装置の製造などに利用されるコリメートスパッタ法によ
る成膜方法及び装置に関するものであり、特に、多層配
線用の接続孔の埋め込みに適した成膜方法及び装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film forming method and apparatus by a collimated sputtering method used for manufacturing a semiconductor device having a multi-layer wiring structure, and particularly suitable for embedding a connection hole for multi-layer wiring. And a film forming method and apparatus.

【0002】[0002]

【従来の技術】DRAMやSRAMなどの半導体装置は
年々その集積度を高めており、これに伴い回路パターン
などに対する微細細加工の必要性が高まっている。特
に、多層配線構造の半導体装置の製造において、コンタ
クトホールやビアホールなどの接続孔の埋め込み工程
は、デバイスの歩留りや信頼性に直結するという点で、
重要な工程となっている。接続孔の埋め込み材料は Al
やその合金が主要なものであるが、接続孔の底部におけ
るシリコン基板内への拡散などを回避するために、Tiや
TiN などのバリア層が形成される。従来、 Al やその
合金、あるいは Ti やTiN などでは、比較的簡易なスパ
ッタリングや反応性スパッタリング( TiN の場合)に
よる成膜方法が広く用いられている。
2. Description of the Related Art Semiconductor devices such as DRAMs and SRAMs have been increasing in the degree of integration year by year, and the need for fine processing of circuit patterns and the like has increased accordingly. In particular, in manufacturing a semiconductor device having a multi-layer wiring structure, the step of filling contact holes such as contact holes and via holes is directly connected to the yield and reliability of the device.
It is an important process. The filling material of the connection hole is Al
And its alloys are the main ones, but in order to avoid diffusion into the silicon substrate at the bottom of the connection hole, Ti and
A barrier layer such as TiN is formed. Conventionally, for Al and its alloys, Ti, TiN, etc., a relatively simple sputtering or reactive sputtering (in the case of TiN) film forming method has been widely used.

【0003】上述のように、半導体デバイスについては
微細加工化の度合いが年々高まっており、これに伴い接
続孔の寸法もサブミクロンからハーフミクロンへと、さ
らにはサブハーフミクロンへと微細化し、直径に対する
相対的な深さを示すアスペクト比も 1.0 から 1.5 へ
と、さらには 2.0 以上へと増大しつつある。このよう
な微細かつアスペクト比の大きい接続孔への埋め込み
に、スパッタリングによる成膜の手法を適用する場合、
セルフシャドゥイング効果によって接続孔上部に先に堆
積層が形成されてしまい、この上部の堆積層に遮蔽され
てしまうことにより接続孔内部、特に底部への堆積が困
難になるという問題が生じる。
As described above, the degree of microfabrication of semiconductor devices is increasing year by year, and along with this, the size of the connection holes is miniaturized from submicron to half micron, and further to subhalf micron, and the diameter is reduced. The aspect ratio, which indicates the relative depth to, is also increasing from 1.0 to 1.5, and even above 2.0. When applying the method of film formation by sputtering to embedding in such a fine and large aspect ratio connection hole,
Due to the self-shadowing effect, a deposition layer is first formed on the upper portion of the connection hole and is shielded by the deposition layer on the upper portion, which causes a problem that deposition inside the connection hole, especially on the bottom portion becomes difficult.

【0004】上記セルフシャドゥイング効果は、ターゲ
ットから飛来する粒子がほぼランダムな入射角で基板に
到達することと、接続孔からターゲットを見た立体角が
上部ほど大きいことのため、接続孔の上部ほど飛来粒子
の堆積確率が大きくなるためである。この問題に対処す
るため種々の対策が講じられている。これらの代表的な
一つであるコリメートスパッタ法は、ターゲットと基板
との間に細長い(高アスペクト比の)開口群が形成され
たコリメータを設置し、ほぼランダムな角度で飛来する
粒子のうち基板への直進性が高いもののみを通過させ、
それ以外のものは開口群の内壁面に捕獲してしまう方法
である。
The self-shadowing effect is that the particles flying from the target reach the substrate at almost random incident angles, and the solid angle when the target is seen from the connection hole is larger at the upper part. This is because the probability of deposition of flying particles increases. Various measures have been taken to deal with this problem. The collimator sputtering method, which is one of the typical examples of these methods, installs a collimator in which elongated (high aspect ratio) openings are formed between a target and a substrate, and the particles of the particles flying at almost random angles Only those that have a high straightness to go through,
The other method is to capture on the inner wall surface of the opening group.

【0005】[0005]

【発明が解決しようとする課題】上述したコリメートス
パッタ法によれば、基板に向かう粒子の相当部分がコリ
メータの開口の内面に捕獲されて堆積するため、開口の
径が次第に減少してゆき遂には目詰まりが生じてしま
う。このため、実際の成膜プロセスにおいては、適宜な
周期でコリメータを交換することが必要になり、成膜プ
ロセスの稼働率が低下すると共にコリメータの交換に労
力がかかるためプロセスの運用コストが増加するという
問題がある。従って、本発明の主要な目的は、コリメー
タの交換周期を長くすることにより稼働率を高めると共
に、プロセスの運用コストを低減したコリメートスパッ
タ法による成膜方法及び装置を提供することにある。
According to the above-mentioned collimating sputtering method, since a considerable part of the particles toward the substrate is trapped and deposited on the inner surface of the opening of the collimator, the diameter of the opening is gradually reduced until it becomes smaller. Clogging will occur. For this reason, in the actual film forming process, it is necessary to replace the collimator at an appropriate cycle, which reduces the operating rate of the film forming process and increases the operation cost of the process because it requires labor to replace the collimator. There is a problem. Therefore, a main object of the present invention is to provide a film forming method and apparatus by the collimate sputtering method, in which the operating rate is increased by prolonging the replacement period of the collimator and the operating cost of the process is reduced.

【0006】[0006]

【課題を解決するための手段】本発明のコリメートスパ
ッタ法による成膜方法及び装置によれば、コリメータを
振動させることによりコリメータの開口の内面への粒子
の堆積を抑制するように構成されている。
According to the film forming method and apparatus by the collimate sputtering method of the present invention, the accumulation of particles on the inner surface of the opening of the collimator is suppressed by vibrating the collimator. .

【0007】[0007]

【作用】コリメータの開口の内面に堆積されるターゲッ
ト金属やその化合物などの粒子は、堆積密度が小さな初
期の状態では開口の内面に直接あるい他の堆積粒子を介
して間接的に比較的弱い力で吸着されていると考えられ
る。この初期状態の脆弱な堆積層が超音波振動子などに
よって高速で振動せしめられると、未堆積の粒子や、放
電用のアルゴンガス、あるいは反応用の窒素ガスなど他
の粒子と激しく衝突して弾き跳ばされることにより、堆
積層の成長が妨げられると考えられる。
The particles such as the target metal and its compound deposited on the inner surface of the opening of the collimator are relatively weak indirectly via the other deposited particles directly on the inner surface of the opening in the initial state where the deposition density is small. It is thought that it is adsorbed by force. When the fragile deposition layer in the initial state is vibrated at a high speed by an ultrasonic oscillator, etc., it repels by violently colliding with other particles such as undeposited particles, argon gas for discharge, or nitrogen gas for reaction. It is considered that the growth of the deposited layer is hindered by being skipped.

【0008】[0008]

【実施例】図1は、本発明の一実施例のコリメートスパ
ッタ法による成膜装置の構成図であり、1は真空チャン
バー、2はターゲット、3は基板(半導体ウエーハ)ホ
ルダー、4はコリメータ、5a,5bはコリメータ保持
棒、6a,6bは超音波振動子、7は排気装置、8は放
電用高周波電源、9は振動子励振用高周波電源、10は
Arガス供給管、11は窒素ガス供給管である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram of a film forming apparatus using a collimating sputtering method according to an embodiment of the present invention. 1 is a vacuum chamber, 2 is a target, 3 is a substrate (semiconductor wafer) holder, 4 is a collimator, Reference numerals 5a and 5b are collimator holding rods, 6a and 6b are ultrasonic vibrators, 7 is an exhaust device, 8 is a high frequency power supply for discharge, 9 is a high frequency power supply for vibrator excitation, 10 is an Ar gas supply pipe, and 11 is a nitrogen gas supply. It is a tube.

【0009】真空チャンバー1内のターゲットホルダー
上に Ti などを素材とするターゲット2が保持されてい
る。さらに、この真空チャンバー1 内には、ターゲット
2と対向して、基板ホルダー3が設置されており、この
基板ホルダー3に接続孔が形成されたシリコン半導体ウ
エーハ(基板)SUB が保持される構成となっている。真
空チャンバー1内にはArガス供給管10を通してArガス
が供給されると共に、反応性スパッタリングの場合には
窒素ガス供給管11を通して窒素ガス(N2)が供給され
る構成となっている。真空チャンバー1内のArガスと窒
素ガスの分圧は、それぞれの供給量と排気装置7とによ
って最適の値に保持される。
A target 2 made of Ti or the like is held on a target holder in the vacuum chamber 1. Further, a substrate holder 3 is installed in the vacuum chamber 1 so as to face the target 2, and a silicon semiconductor wafer (substrate) SUB having a connection hole is held in the substrate holder 3. Has become. Ar gas is supplied into the vacuum chamber 1 through the Ar gas supply pipe 10, and in the case of reactive sputtering, nitrogen gas (N 2 ) is supplied through the nitrogen gas supply pipe 11. The partial pressures of Ar gas and nitrogen gas in the vacuum chamber 1 are maintained at optimum values by the respective supply amounts and the exhaust device 7.

【0010】放電用高周波電源8から供給される高周波
の高電界によってターゲット2と基板ホルダー3との間
のArガス中でグロー放電が生じ、電離したArイオン
がターゲット2に衝突する。ターゲット2からは、その
素材である Ti などの金属イオンが飛び出し、コリメー
タ4の高アスペクト比の開口群を通って基板ホルダー3
に向けて飛翔する。この金属イオン、例えばTiイオン
は、反応性スパッタリングの場合には飛翔途中でチャン
バー1内の窒素ガスと化合して TiNとなり、基板ホルダ
ー3上に保持された半導体基板の表面に堆積する。
A glow discharge is generated in the Ar gas between the target 2 and the substrate holder 3 by a high-frequency high electric field supplied from the high-frequency power source 8 for discharge, and ionized Ar ions collide with the target 2. From the target 2, metal ions such as Ti, which is the material, jump out, pass through the high-aspect-ratio aperture group of the collimator 4, and the substrate holder 3
Fly towards. In the case of reactive sputtering, this metal ion, for example, Ti ion, combines with nitrogen gas in the chamber 1 during flight to become TiN, and is deposited on the surface of the semiconductor substrate held on the substrate holder 3.

【0011】コリメータ4は4本のコリメータ保持棒で
支承されており、このうちの2本が5a,5bとして図
示されている。各コリメータ保持棒とコリメータ4との
間に4個の超音波振動子が設置されており、このうちの
2個が超音波振動子6a,6bとして図示されている。
各超音波振動子は、例えば、Ni合金やフェライトを主体
とする磁歪振動子から構成されており、励振用高周波電
源9から超音波帯域(60KHz〜200KHz) の高周波電力を受
けて図中の上下方向に振動し、コリメータ4を振動させ
る。コリメータ4が高周波で振動することにより、基板
SUB に向けて飛翔するTiイオンやTiN などの粒子が開口
の内周面に付着して堆積するのを防止する。
The collimator 4 is supported by four collimator holding rods, two of which are shown as 5a and 5b. Four ultrasonic transducers are installed between each collimator holding rod and the collimator 4, two of which are shown as ultrasonic transducers 6a and 6b.
Each ultrasonic vibrator is composed of, for example, a magnetostrictive vibrator mainly composed of Ni alloy or ferrite, receives high frequency power in the ultrasonic band (60 KHz to 200 KHz) from the high frequency power source 9 for excitation, and the upper and lower parts in the figure. The collimator 4 is vibrated in the direction. As the collimator 4 vibrates at high frequency,
Prevents particles such as Ti ions and TiN flying toward the SUB from adhering to and depositing on the inner surface of the opening.

【0012】本発明者は、コリメータの寿命と振動周波
数との関係について実験を行った。ただし、コリメータ
4の寿命は、開口群のうち最初に目詰まりが生じたもの
についてこの目詰まりが生じるまでの使用開始からの経
過時間とした。コリメータとして SUS304 製のハニカム
構造( 直径 200 mm,厚み300 mm, 平行面間隔 3mm )のも
のを使用し、ターゲットとして直径 200mmのチタンを使
用した。また、電離ガスとして分圧2mTorrのArガスを使
用し、反応性ガスとして分圧3 〜5mTorrの窒素ガスを使
用した。振動の振幅を一定に保ちながら、励振周波数を
60KHz 〜200KHzまで変化させた場合のコリメータの寿命
を図2に示す。横軸は、励振周波数であり、縦軸は振動
させない場合の寿命に対する相対値である。
The present inventor conducted an experiment on the relationship between the life of the collimator and the vibration frequency. However, the life of the collimator 4 is defined as the elapsed time from the start of use until the clogging occurs for the first clogging of the opening group. A SUS304 honeycomb structure (diameter 200 mm, thickness 300 mm, parallel plane spacing 3 mm) was used as the collimator, and titanium with a diameter of 200 mm was used as the target. Further, Ar gas with a partial pressure of 2 mTorr was used as the ionizing gas, and nitrogen gas with a partial pressure of 3 to 5 mTorr was used as the reactive gas. While keeping the amplitude of vibration constant, set the excitation frequency
Figure 2 shows the life of the collimator when changing from 60KHz to 200KHz. The horizontal axis is the excitation frequency, and the vertical axis is the relative value to the life when no vibration is performed.

【0013】図2の実験データから明らかなように、コ
リメータを振動させることによりその寿命が大幅に延長
されており、特に励振周波数が100KHzを超えるとこの励
振周波数の増加と共に寿命の延びが顕著になる。最高の
200kHzの周波数では、振動させない場合に比べて1桁近
くも寿命が延びている。
As is apparent from the experimental data of FIG. 2, the life of the collimator is greatly extended by vibrating the collimator. Particularly, when the excitation frequency exceeds 100 KHz, the extension of the life becomes remarkable with the increase of the excitation frequency. Become. the best
At a frequency of 200kHz, the life is extended by almost an order of magnitude compared to when it is not vibrated.

【0014】図3は、コリメータの使用を開始してから
一定時間が経過した時点での開口内のTiN の堆積の状況
を断面図面であり、(A)は200KHzで励振した場合,
(B)は励振しない場合である。コリメータを振動させ
た場合は、開口内に比較的均一に堆積層が形成されてい
る。これに対し、コリメータを振動させない場合には、
開口内に不均一にかつターゲットに近い側ほど厚く堆積
層形成されている。図2と図3の実験データから、振動
による寿命の延びは明らかである。
FIG. 3 is a cross-sectional view showing the state of TiN deposition in the opening when a certain time has passed since the use of the collimator was started.
(B) is the case where no excitation is performed. When the collimator is vibrated, the deposited layer is formed relatively uniformly in the opening. On the other hand, when the collimator is not vibrated,
A deposition layer is formed in the opening unevenly and thicker on the side closer to the target. From the experimental data of FIG. 2 and FIG. 3, the extension of the life due to vibration is clear.

【0015】以上、振動子として磁歪振動子を使用する
構成を例示したが、圧電効果を利用する振動子を使用す
ることもできる。
Although the structure using the magnetostrictive vibrator as the vibrator has been described above, a vibrator utilizing the piezoelectric effect can also be used.

【0016】[0016]

【発明の効果】以上、詳細に説明したように、本発明に
コリメートスパッタ法による成膜方法及び装置はコリメ
ータを振動させる構成であるから、開口内への堆積層の
形成が抑制され、寿命が大幅に延長される。このため、
コリメータの交換回数が大幅に低減され、成膜プロセス
の稼働率が大幅に向上する。また、交換作業に費やす労
力も軽減され、プロセスの運用コストも低減される。
As described above in detail, since the film forming method and apparatus by the collimating sputtering method according to the present invention is configured to vibrate the collimator, formation of a deposited layer in the opening is suppressed and the life is shortened. Significantly extended. For this reason,
The number of times the collimator is replaced is greatly reduced, and the operating rate of the film formation process is greatly improved. Further, the labor required for the replacement work is reduced, and the operation cost of the process is also reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係わるコリメートスパッタ
法による成膜装置の構成を示す図である。
FIG. 1 is a diagram showing a configuration of a film forming apparatus by a collimate sputtering method according to an embodiment of the present invention.

【図2】上記実施例の成膜装置について得られたコリメ
ータの寿命と励振周波数との関係を示す実験データであ
る。
FIG. 2 is experimental data showing the relationship between the life of the collimator and the excitation frequency, obtained for the film forming apparatus of the above-mentioned embodiment.

【図3】上記実施例の成膜装置について得られたコリメ
ータの開口内の堆積層の形成の状況を、振動させた場合
(A)と振動させない場合(B)とを比較して示す実験
データである。
FIG. 3 is an experimental data showing a state of formation of a deposited layer in an opening of a collimator obtained by the film forming apparatus of the above-mentioned example, comparing the case of vibrating (A) and the case of not vibrating (B). Is.

【符号の説明】[Explanation of symbols]

1 真空チャンバー 2 ターゲット 3 基板ホルダー 4 コリメータ 5a,5b コリメータ保持棒 6a,6b 超音波振動子 8 放電用高周波電源 9 振動子励振用高周波電源 1 Vacuum chamber 2 Target 3 Substrate holder 4 Collimator 5a, 5b Collimator holding rod 6a, 6b Ultrasonic vibrator 8 High frequency power supply for discharge 9 High frequency power supply for vibrator excitation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】スパッタリングによって生じた金属又はこ
の金属の化合物から成る粒子をコリメータを通して半導
体ウエーハの表面に形成された多層配線用の接続孔内に
到達させて堆積させる成膜方法において、 前記成膜中に前記コリメータを振動させることを特徴と
するコリメートスパッタ法による成膜方法。
1. A film forming method in which particles produced by sputtering or particles made of a compound of this metal are made to reach through a collimator into a connection hole for multi-layer wiring formed on the surface of a semiconductor wafer to be deposited. A film forming method by a collimating sputtering method, characterized in that the collimator is vibrated inside.
【請求項2】スパッタリングによって生じた金属又はこ
の金属の化合物から成る粒子をコリメータを通して半導
体ウエーハの表面に形成された多層配線用の接続孔内に
到達させて堆積させる成膜装置において、 前記成膜中に前記コリメータを振動させる手段を備えた
ことを特徴とするコリメートスパッタ法による成膜装
置。
2. A film forming apparatus for depositing particles of a metal or a compound of this metal produced by sputtering, which reaches through a collimator into a connection hole for multilayer wiring formed on the surface of a semiconductor wafer and deposits the same. A film forming apparatus by a collimate sputtering method, characterized in that a means for vibrating the collimator is provided therein.
【請求項3】 請求項2において、 前記コリメータを振動させる手段は、超音波振動子であ
ることを特徴とするコリメートスパッタ法による成膜方
法及び装置。
3. The film forming method and apparatus according to claim 2, wherein the means for vibrating the collimator is an ultrasonic vibrator.
【請求項4】 請求項3において、 前記超音波振動子は、100KHz以上の周波数で励振される
ことを特徴とするコリメートスパッタ法による成膜装置
及び方法。
4. The film forming apparatus and method according to claim 3, wherein the ultrasonic vibrator is excited at a frequency of 100 KHz or higher.
JP14159493A 1993-05-20 1993-05-20 Method for forming film by collimation sputtering method and apparatus therefor Withdrawn JPH06330309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14159493A JPH06330309A (en) 1993-05-20 1993-05-20 Method for forming film by collimation sputtering method and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14159493A JPH06330309A (en) 1993-05-20 1993-05-20 Method for forming film by collimation sputtering method and apparatus therefor

Publications (1)

Publication Number Publication Date
JPH06330309A true JPH06330309A (en) 1994-11-29

Family

ID=15295643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14159493A Withdrawn JPH06330309A (en) 1993-05-20 1993-05-20 Method for forming film by collimation sputtering method and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH06330309A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6268661B1 (en) 1999-08-31 2001-07-31 Nec Corporation Semiconductor device and method of its fabrication
EP1184483A2 (en) 2000-08-29 2002-03-06 Canon Kabushiki Kaisha Thin-film formation system and thin-film formation process
JP2019516865A (en) * 2016-05-24 2019-06-20 イマジン・コーポレイション High precision shadow mask deposition system and method thereof
US11275315B2 (en) 2016-05-24 2022-03-15 Emagin Corporation High-precision shadow-mask-deposition system and method therefor
CN115305451A (en) * 2021-07-23 2022-11-08 台湾积体电路制造股份有限公司 Deposition system and method for depositing material from a target onto a substrate in a substrate processing chamber

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6268661B1 (en) 1999-08-31 2001-07-31 Nec Corporation Semiconductor device and method of its fabrication
EP1184483A2 (en) 2000-08-29 2002-03-06 Canon Kabushiki Kaisha Thin-film formation system and thin-film formation process
EP1184483A3 (en) * 2000-08-29 2004-07-14 Canon Kabushiki Kaisha Thin-film formation system and thin-film formation process
JP2019516865A (en) * 2016-05-24 2019-06-20 イマジン・コーポレイション High precision shadow mask deposition system and method thereof
US11275315B2 (en) 2016-05-24 2022-03-15 Emagin Corporation High-precision shadow-mask-deposition system and method therefor
CN115305451A (en) * 2021-07-23 2022-11-08 台湾积体电路制造股份有限公司 Deposition system and method for depositing material from a target onto a substrate in a substrate processing chamber
CN115305451B (en) * 2021-07-23 2024-04-30 台湾积体电路制造股份有限公司 Deposition system and method for depositing material from a target onto a substrate in a substrate processing chamber

Similar Documents

Publication Publication Date Title
JP4624793B2 (en) Method for processing a non-sputtered region of a PVD target structure to form a particle trap, and a PVD target structure including protrusions along the non-sputtered region
US5387777A (en) Methods and apparatus for contamination control in plasma processing
US5006220A (en) Electrode for use in the treatment of an object in a plasma
JP5660748B2 (en) Low temperature aerosol deposition method and article
JP2007158286A (en) Electrostatic chuck of vacuum processing device, vacuum processing device comprising it, and manufacturing method of electrostatic chuck
JPH09176830A (en) Method for packing contact hole by using ultrasonic wave and apparatus therefor
KR20090043551A (en) Process and apparatus for the modification of surfaces
JPH06330309A (en) Method for forming film by collimation sputtering method and apparatus therefor
JP6076780B2 (en) Powder processing apparatus and powder processing method
US20030020365A1 (en) Piezoelectric thin film vibrator and method of adjusting its frequency
JP2023115150A (en) Film deposition apparatus and film deposition method
JPH06316761A (en) Film formation using laser deposition and device therefor
JPH11302840A (en) Sputtering apparatus
JPS5831076A (en) Method and device for forming film by physical vapor deposition method
JPS594025A (en) Treating method with plasma
JP2003209212A (en) Magazine type plasma cleaning system
JPWO2004047160A1 (en) Manufacturing method of semiconductor device
JP4647249B2 (en) Thin film forming apparatus component and method of manufacturing the same
JP2004267893A (en) Atomizer for forming ceramic thin film and thin film manufacturing method using the atomizer
JP2005298894A (en) Method for cleaning target, and physical deposition apparatus
KR100840466B1 (en) Apparatus for physical vapor deposition
JP5630387B2 (en) Film forming apparatus and film forming method
JP6256056B2 (en) Deposition equipment
JP3823647B2 (en) Frequency adjusting method and processing device for frequency adjustment of piezoelectric vibrator and piezoelectric vibrating piece
TWI242603B (en) Acoustic streaming of condensate during sputtered metal vapor deposition

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000801