JPH06330104A - Production of core for production member having hollow part and production of member having hollow part - Google Patents

Production of core for production member having hollow part and production of member having hollow part

Info

Publication number
JPH06330104A
JPH06330104A JP5142616A JP14261693A JPH06330104A JP H06330104 A JPH06330104 A JP H06330104A JP 5142616 A JP5142616 A JP 5142616A JP 14261693 A JP14261693 A JP 14261693A JP H06330104 A JPH06330104 A JP H06330104A
Authority
JP
Japan
Prior art keywords
core
shape
molding
mold
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5142616A
Other languages
Japanese (ja)
Inventor
Taku Saito
卓 斎藤
Tadahiko Furuta
忠彦 古田
Toshiya Yamaguchi
登士也 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP5142616A priority Critical patent/JPH06330104A/en
Publication of JPH06330104A publication Critical patent/JPH06330104A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/001Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a flexible element, e.g. diaphragm, urged by fluid pressure; Isostatic presses

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce the core with which hollow parts having intricate shapes are easily formable by arranging a thin shape retaining material into the hollow part of a female mold for production of the core in tight contact therewith and densely packing a rigid and flowable packing material therein, then evacuating the inside of the material to a vacuum. CONSTITUTION:The female mold for molding the core of air permeable split molds having a hollow shape is arranged into a vacuum vessel. The thin shape retaining material 5 consisting of an urethane rubber bag, etc., having stretchability is arranged into the hollow part of this mold and is evacuated to the vacuum from outside the mold, by which the shape retaining material is expanded to come into tight contact with the mold. Spherical steel powder having <=50sec/50g flowability is tightly packed into this shape retaining material 5 and the inside of the material is deaerated to the vacuum via an air permeable plug 6 to hermetically close the material. The core molded in such a manner is taken out by releasing the pressure reduction in the spacing part between the shape retaining material 5 and the female mold and opening the mold. The core is arranged in an elastic mold for molding and a base material for molding is packed around the core. The mold is then arranged into a pressure vessel and is subjected to CIP molding via a pressure medium. The vacuum of the core is thereafter released and the steel powder is taken out, by which the hollow molded article is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、中空部を有する部材製
造用中子の製造方法および中空部を有する部材の製造方
法に関し、より詳しくは、CIP成形法などにより活性
金属粉末を成形するのに適した中空部を有する部材製造
用中子の製造方法および中空部を有する部材の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a core for manufacturing a member having a hollow portion and a method for manufacturing a member having a hollow portion. More specifically, the active metal powder is molded by a CIP molding method or the like. TECHNICAL FIELD The present invention relates to a method for manufacturing a core for manufacturing a member having a hollow portion suitable for, and a method for manufacturing a member having a hollow portion.

【0002】[0002]

【従来の技術】粉末冶金法の一成形法として、従来より
CIP成形法が知られている。このCIP成形法は、原
料粉末を充填したゴム型に,流体を媒体として周囲より
方向性のない均等な圧力を加えながら加圧成形するもの
であり、均一密度の成形体を得ることができ、特に複雑
形状の成形品を容易に均一密度とすることができるとい
う特長を有する。
2. Description of the Related Art The CIP molding method has been known as one of the powder metallurgical molding methods. In this CIP molding method, a rubber mold filled with raw material powder is pressure-molded while applying a uniform pressure having no directionality from the surroundings using a fluid as a medium, and a molded body having a uniform density can be obtained. In particular, it has a feature that a molded product having a complicated shape can be easily made to have a uniform density.

【0003】ところで、CIP成形法によって中空部品
を製造しようとした場合、成形圧力に耐え得る高剛性の
中子が必要である。一方、この中子は、圧粉後に成形体
を破壊せずに、成形体から分離できなければならない。
このため部品の形状は制限されてきた。
By the way, when a hollow component is manufactured by the CIP molding method, a highly rigid core capable of withstanding the molding pressure is required. On the other hand, this core must be able to be separated from the compact after compaction without destroying the compact.
Therefore, the shapes of the parts have been limited.

【0004】このような問題を解決するため、中子を低
融点合金で作製し,圧粉成形後昇温して中子を融出させ
る方法(特開昭62−227603号公報,特開昭61−185413号
公報)、ナフタリン,アントラセン等により中子を製造
し,圧粉成形後昇温して中子を昇華させる方法(特開昭
61−163808号公報)等が、セラミックスのCIP成形用
中子として提案されている。これらの中子を使用するこ
とにより、CIP成形品の形状の自由度が大幅に向上す
るとしている。
In order to solve such a problem, a method is used in which a core is made of a low-melting-point alloy, the powder is compacted and then heated to melt the core (JP-A-62-227603, JP-A-62-227603). No. 61-185413), a core is manufactured from naphthalene, anthracene, etc., and the core is sublimated by raising the temperature after compacting (Japanese Patent Application Laid-Open No. Sho-61-187).
61-163808) and the like are proposed as CIP molding cores for ceramics. It is said that the flexibility of the shape of the CIP molded product is significantly improved by using these cores.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
の中子をチタン等の活性金属粉末の成形に適用しようと
した場合、昇温時に除去しきれない残留中子成分により
成形体が汚染され、健全な焼結体が得られないという問
題を有していた。
However, when these cores are applied to the molding of an active metal powder such as titanium, the molded body is contaminated by residual core components that cannot be completely removed at the time of temperature rise, resulting in a sound state. However, there is a problem in that a stable sintered body cannot be obtained.

【0006】そこで、本発明者等は、上述の如き従来技
術の問題点を解決すべく鋭意研究し、各種の系統的実験
を重ねた結果、本発明を成すに至ったものである。
Therefore, the inventors of the present invention have earnestly studied in order to solve the above-mentioned problems of the prior art, and as a result of various systematic experiments, the present invention has been accomplished.

【0007】(発明の目的)本発明の目的は、通常の中
子を使用したCIP成形法などの加圧成形法では形成不
可能であった複雑形状の中空部品が容易に成形でき、し
かもチタン合金のような活性金属に適用しても中子に起
因する汚染等の問題が無く健全な焼結体を得ることがで
きる中空部を有する部材製造用中子の製造方法および中
空部を有する部材の製造方法を提供するにある。
(Object of the Invention) The object of the present invention is to easily mold a hollow part having a complicated shape which cannot be formed by a pressure molding method such as a CIP molding method using an ordinary core, and further, to form titanium. A method of manufacturing a core having a hollow portion and a member having a hollow portion capable of obtaining a sound sintered body without problems such as contamination due to the core even when applied to an active metal such as an alloy In order to provide the manufacturing method of.

【0008】本発明の他の目的は、特に、成形時には静
水圧に対する高い変形抵抗(剛性)と、剪断変形に対す
る小さい変形抵抗(可塑性)とを有し、成形後静水圧を
除荷した際には流動状態となり、成形体から容易に除去
可能で、しかも、成形体を汚染するような残渣は一切発
生せず、活性金属粉末を用いた場合でも、複雑形状を有
する成形品を実現できる中空部を有する部材のCIP成
形用中子の製造方法および中空部を有する部材のCIP
成形方法を提供するにある。
Another object of the present invention is to have a high deformation resistance (rigidity) against hydrostatic pressure during molding and a small deformation resistance (plasticity) against shear deformation, especially when the hydrostatic pressure is unloaded after molding. Is a fluidized state, can be easily removed from the molded body, does not generate any residue that contaminates the molded body, and is a hollow part that can realize a molded product with a complicated shape even when using active metal powder. For manufacturing CIP molding core of member having hollow and CIP of member having hollow
It is to provide a molding method.

【0009】[0009]

【課題を解決するための手段】[Means for Solving the Problems]

(第1発明)第1発明の中空部を有する部材製造用中子
の製造方法は、伸縮性を有する薄い形状保持体を,所定
の中空形状を有し分割可能な中子製造用メス型に配置す
る工程と、該メス型と前記形状保持体の隙間部を減圧
し,前記形状保持体を前記メス型の内側に拡張密着させ
る工程と、前記拡張密着される形状保持体の中に,成形
時の圧力で塑性変形しない耐力を有しかつ流動度が50
sec/50g 以下の粉末特性を有する充填材を密に充填す
る工程と、前記形状保持体の内部を真空脱気し密閉する
とともに,前記メス型と前記形状保持体との隙間部の減
圧を解除することにより中子を取り出す工程と、からな
ることを特徴とする。
(First Invention) A method for manufacturing a core for manufacturing a member having a hollow portion according to the first invention is a method for converting a thin shape retainer having elasticity into a female core for manufacturing a core having a predetermined hollow shape and capable of being divided. A step of arranging, a step of decompressing a gap between the female die and the shape-retaining body to cause the shape-retaining body to expand and closely contact with the inside of the female die, and Has a proof strength that does not plastically deform under pressure and has a fluidity of 50
The step of densely filling with a filler having a powder characteristic of sec / 50g or less, and deaeration and hermetically sealing the inside of the shape-holding body, and releasing the decompression in the gap between the female die and the shape-holding body. And a step of removing the core by doing so.

【0010】(第2発明)第2発明の中空部を有する部
材の製造方法は、伸縮性を有する薄い形状保持体を,所
定の中空形状を有し分割可能な中子製造用メス型に配置
する工程と、該メス型と前記形状保持体の隙間部を減圧
し,前記形状保持体を前記メス型の内側に拡張密着させ
る工程と、前記拡張密着される形状保持体の中に,成形
時の圧力で塑性変形しない耐力を有しかつ流動度が50
sec/50g 以下の粉末特性を有する充填材を密に充填す
る工程と、前記形状保持体の内部を真空脱気し密閉する
とともに,前記メス型と前記形状保持体との隙間部の減
圧を解除することにより中子を取り出す工程と、該中子
を成形用型に配置して部材を加圧成形する工程と、前記
中子の真空を解除して,中子内部の充填材を前記形状保
持体から排出して前記成形体から中子を取り出す工程
と、からなることからなることを特徴とする。
(Second Invention) In the method for manufacturing a member having a hollow portion according to the second invention, a thin shape retainer having elasticity is arranged in a female mold for core production which has a predetermined hollow shape and is separable. And a step of decompressing the gap between the female die and the shape-retaining body so that the shape-retaining body is expanded and adhered to the inside of the female die, and the shape-retaining body to be expanded and adhered is molded. Has a proof strength that does not plastically deform under pressure and has a fluidity of 50
The step of densely filling with a filler having a powder characteristic of sec / 50g or less, and deaeration and hermetically sealing the inside of the shape-holding body, and releasing the decompression in the gap between the female die and the shape-holding body. By removing the core, placing the core in a molding die and press-molding the member, releasing the vacuum of the core, and maintaining the shape of the filler inside the core. A step of discharging from the body and taking out the core from the molded body.

【0011】[0011]

【作用】本第1発明の中空部を有する部材製造用中子の
製造方法、および、第2発明の中空部を有する部材の製
造方法が優れた効果を発揮するメカニズムについては、
未だ必ずしも明らかではないが、次のように考えられ
る。
With respect to the mechanism by which the method for producing a core for manufacturing a member having a hollow portion of the first invention and the method for manufacturing a member having a hollow portion of the second invention exert excellent effects,
Although not clear yet, it can be considered as follows.

【0012】(第1発明の作用)中空部品を例えばCI
P成形する場合、成形体の形状によっては、中子に等方
圧以外の剪断力が作用する。ここで中子が弾性変形して
しまうと、圧力を除荷した際に中子の逆変形が生じ、こ
れにより成形体が破壊されたり、中子が除去できない等
の不備が発生する。したがって、中子は極めて剛性の高
い素材で製造されるのが一般的である。しかし、本発明
にかかる中子は、伸縮性を有する薄い形状保持体の中に
成形時の圧力で塑性変形しない耐力を有しかつ流動度が
50 sec/50g 以下の粉末特性を有する充填材を密に充
填して真空脱気し密閉・形成してなるので、剪断力に対
して可塑的であるため、除荷した際にも加圧時の変形状
態が維持される。したがって、除荷した際にも成形体を
剪断破壊させるような弾性力は発生しない。
(Operation of the First Invention) A hollow part is made of, for example, CI.
When P-molding, a shearing force other than isotropic pressure acts on the core depending on the shape of the molded body. If the core is elastically deformed here, the core is reversely deformed when the pressure is unloaded, which causes defects such as destruction of the molded body and removal of the core. Therefore, the core is generally made of an extremely rigid material. However, the core according to the present invention comprises a thin shape-retaining body having elasticity, which has a proof stress that does not cause plastic deformation under pressure during molding and has a powder property with a fluidity of 50 sec / 50 g or less. Since they are densely packed, vacuum degassed, and sealed / formed, they are plastic with respect to shearing force, so that the deformed state at the time of pressurization is maintained even when unloading. Therefore, even when the load is unloaded, an elastic force that causes shear failure of the molded body does not occur.

【0013】一方、CIP成形に使用される中子は、成
形後成形体を破壊せずに成形体から分離しなければなら
ないため、その形状は大いに制限されてきた。このた
め、前記従来技術の中子を融出させる方法(特開昭62−
227603号公報,特開昭61−185413号公報)や、ナフタリ
ン,アントラセン等により中子を製造し,圧粉成形後昇
温して中子を昇華させる方法(特開昭61−163808号公
報)等が提案されてきた。しかるに、これらの従来法で
は中子材の成分が成形体中に残留することは避けられ
ず、チタン合金のような活性金属の成形には適用できな
かった。
On the other hand, the core used for CIP molding has been greatly restricted in its shape since it has to be separated from the molded body without breaking the molded body after molding. For this reason, a method of melting the core of the prior art (Japanese Patent Laid-Open No. 62-
No. 227603, JP-A-61-185413), or a method of producing a core from naphthalene, anthracene, etc., and subjecting the core to sublimation by heating after compacting (JP-A-61-163808). Etc. have been proposed. However, in these conventional methods, it is unavoidable that the components of the core material remain in the molded body, and it cannot be applied to the molding of active metals such as titanium alloys.

【0014】これに対し本発明にかかる中子は、CIP
成形などの加圧成形後に、中子の真空を解除することに
より、中子内部に充填されていた球状粒子などからなる
充填材は流動状態となり、容易に中子内部から排出させ
ることができると共に、上記充填材を抜き取った後、中
子表面を形成していたウレタンゴム袋などの形状保持体
は成形体の内面にへばり付いているが、これも容易に除
去し得る。このように、本発明にかかる中子を用いるこ
とにより、成形体を全く汚染せずに、複雑形状の中空成
形体を容易に得ることができる。
On the other hand, the core according to the present invention is a CIP.
By releasing the vacuum of the core after pressure molding such as molding, the filler made of spherical particles and the like filled in the core becomes a fluid state and can be easily discharged from the core. The shape-retaining body, such as the urethane rubber bag, which has formed the core surface after the above-mentioned filling material is taken out, is stuck to the inner surface of the molded body, but this can be easily removed. Thus, by using the core according to the present invention, a hollow molded article having a complicated shape can be easily obtained without contaminating the molded article at all.

【0015】以上のように、本発明により、通常の中子
を使用したCIP成形法等の加圧成形法では成形不可能
であった複雑形状の中空部品も容易に成形でき、しか
も、チタン合金のような活性金属に適用しても、中子に
起因する汚染が全く発生しない健全な焼結体を得ること
ができるものと思われる。
As described above, according to the present invention, it is possible to easily form a hollow part having a complicated shape which cannot be formed by a pressure forming method such as a CIP forming method using an ordinary core, and a titanium alloy. It is considered that even when applied to such an active metal, it is possible to obtain a sound sintered body in which contamination due to the core does not occur at all.

【0016】(第2発明の作用)本発明の中空部を有す
る部材の製造方法において、中子は、伸縮性を有する薄
い形状保持体の中に成形時の圧力で塑性変形しない耐力
を有しかつ流動度が50sec/50g 以下の粉末特性を有
する充填材を密に充填して真空脱気し密閉・形成してな
るので、剪断力に対して可塑的であるため、除荷した際
にも加圧時の変形状態が維持される。したがって、除荷
した際にも成形体を剪断破壊させるような弾性力は発生
しない。
(Operation of Second Invention) In the method for manufacturing a member having a hollow portion according to the present invention, the core has a proof stress that does not plastically deform under a pressure during molding in a thin shape-holding body having elasticity. In addition, since it is formed by densely filling a filler having powder characteristics with a fluidity of 50 sec / 50 g or less, degassing in a vacuum, and sealing and forming, it is plastic against shearing force, so even when unloading. The deformed state at the time of pressurization is maintained. Therefore, even when the load is unloaded, an elastic force that causes shear failure of the molded body does not occur.

【0017】また、この中子は、CIP成形などの加圧
成形後に、中子の真空を解除することにより、中子内部
に充填されていた球状粒子などからなる充填材は流動状
態となり、容易に中子内部から排出させることができる
と共に、上記充填材を抜き取った後、中子表面を形成し
ていたゴム袋などの形状保持体は成形体の内面にへばり
付いているが、これも容易に除去し得る。このように、
本発明にかかる中子を用いることにより、成形体を全く
汚染せずに、複雑形状の中空成形体を容易に得ることが
できる。
Further, in this core, by releasing the vacuum of the core after pressure molding such as CIP molding, the filler made of spherical particles and the like filled in the core becomes in a fluidized state, which is easy. In addition to being able to be discharged from the inside of the core, the shape-retaining body such as a rubber bag that formed the core surface sticks to the inner surface of the molded body after removing the above-mentioned filling material. It can be easily removed. in this way,
By using the core according to the present invention, a hollow molded article having a complicated shape can be easily obtained without contaminating the molded article.

【0018】これより、通常の中子を使用したCIP成
形法等の加圧成形法では成形不可能であった複雑形状の
中空部品も容易に成形でき、しかも、チタン合金のよう
な活性金属に適用しても、中子に起因する汚染が全く発
生しない健全な焼結体を得ることができるものと思われ
る。
As a result, it is possible to easily form a hollow part having a complicated shape which could not be formed by a pressure forming method such as a CIP forming method using a normal core, and to form an active metal such as a titanium alloy. Even if it is applied, it seems that it is possible to obtain a sound sintered body in which the contamination due to the core does not occur at all.

【0019】[0019]

【発明の効果】【The invention's effect】

(第1発明の効果)本発明の製造方法により得られた中
子を用いることにより、通常の中子を使用したCIP成
形法などの加圧成形法では形成不可能であった複雑形状
の中空部品が容易に成形でき、しかもチタン合金のよう
な活性金属に適用しても中子に起因する汚染等の問題が
無く健全な焼結体を得ることができる。
(Effects of the first invention) By using the core obtained by the manufacturing method of the present invention, a hollow having a complicated shape which cannot be formed by a pressure molding method such as a CIP molding method using a normal core. The parts can be easily molded, and even when applied to an active metal such as a titanium alloy, a healthy sintered body can be obtained without problems such as contamination due to the core.

【0020】特に、本発明により得られた中子を用いて
CIP成形を行った場合は、成形時には静水圧に対する
高い変形抵抗(剛性)と、剪断変形に対する小さい変形
抵抗(可塑性)とを有し、成形後静水圧を除荷した際に
は流動状態となり、成形体から容易に除去可能で、しか
も、成形体を汚染するような残渣は一切発生しないた
め、活性金属粉末を用いた場合でも、複雑形状を有する
成形品を容易に製造することができる。
Particularly, when CIP molding is performed using the core obtained by the present invention, it has a high deformation resistance (rigidity) against hydrostatic pressure and a small deformation resistance (plasticity) against shear deformation during molding. , When the hydrostatic pressure is removed after molding, it becomes a fluid state and can be easily removed from the molded body, and since no residue that pollutes the molded body is generated at all, even when using the active metal powder, A molded product having a complicated shape can be easily manufactured.

【0021】(第2発明の効果)本発明の製造方法によ
り、通常の中子を使用したCIP成形法などの加圧成形
法では形成不可能であった複雑形状の中空部品が容易に
成形でき、しかもチタン合金のような活性金属に適用し
ても中子に起因する汚染等の問題が無く健全な焼結体を
得ることができる。
(Effect of the Second Invention) With the manufacturing method of the present invention, it is possible to easily mold a hollow part having a complicated shape which cannot be formed by a pressure molding method such as a CIP molding method using a normal core. Moreover, even if it is applied to an active metal such as a titanium alloy, a healthy sintered body can be obtained without problems such as contamination due to the core.

【0022】特に、本発明によりCIP成形を行った場
合は、成形時には静水圧に対する高い変形抵抗(剛性)
と、剪断変形に対する小さい変形抵抗(可塑性)とを有
し、成形後静水圧を除荷した際には流動状態となり、成
形体から容易に除去可能で、しかも、成形体を汚染する
ような残渣は一切発生しないため、活性金属粉末を用い
た場合でも、複雑形状を有する成形品を容易に製造する
ことができる。
In particular, when CIP molding is performed according to the present invention, high deformation resistance (rigidity) against hydrostatic pressure is exerted during molding.
And a small deformation resistance (plasticity) against shear deformation, which becomes a fluid state when the hydrostatic pressure is unloaded after molding, can be easily removed from the molded body, and is a residue that contaminates the molded body. Since it does not occur at all, a molded product having a complicated shape can be easily manufactured even when an active metal powder is used.

【0023】[0023]

【実施例】以下に、本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0024】第1実施例 本実施例は、形状保持体としてウレタンゴム袋を、充填
材として球状鋼粉を用いて中子を作製し、該中子を用い
てCIP成形により中空成形体を製造した。
First Example In this example, a urethane rubber bag was used as a shape-retaining body and a spherical steel powder was used as a filler to prepare a core, and the core was used to manufacture a hollow molded body by CIP molding. did.

【0025】図1〜図5は、本実施例におけるCIP成
形用中子の製造方法、図6〜図10は、該中子を用いた
CIP成形法を、それぞれ実施するに当たって採用し得
る実施態様例の動作を具体的に示したものである。
1 to 5 show a method for manufacturing a CIP molding core in this embodiment, and FIGS. 6 to 10 show embodiments which can be adopted in carrying out the CIP molding method using the core. The operation of the example is specifically shown.

【0026】図において、1は真空容器、2は中子成形
用通気性分割型、3は上蓋、4はオーリング、5は形状
保持体としての薄肉弾性容器(ゴム袋)、6は通気性
栓、7は第1真空ポンプ、8は第2真空ポンプ、9は充
填材としての球状鋼粉、10はクランプ、11は中子、
12はCIP成形用弾性型、13は成形体基材原料とし
てのTiとAl3 Vの混合粉末、14は圧力容器、15
は圧力媒体、16はCIP成形体、である。
In the figure, 1 is a vacuum container, 2 is a breathable split mold for core molding, 3 is an upper lid, 4 is an O-ring, 5 is a thin elastic container (rubber bag) as a shape retainer, and 6 is breathable. Stopper, 7 first vacuum pump, 8 second vacuum pump, 9 spherical steel powder as filler, 10 clamp, 11 core,
12 is an elastic mold for CIP molding, 13 is a mixed powder of Ti and Al 3 V as a raw material for a molded body, 14 is a pressure vessel, 15
Is a pressure medium, and 16 is a CIP molded body.

【0027】図1に示すように、真空容器1はオーリン
グ4を介し、上蓋3と共に構成されている。真空容器1
の内部には、中子成形用通気性分割型2が、その上面を
上蓋3に密着させた状態で設置されている。上蓋3上部
の開口部から、図2に示すように、中子成形用通気性分
割型2の空洞部に薄肉弾性容器(ウレタンゴム袋)5を
挿入し、薄肉弾性容器5の開口部を上蓋3の開口部に設
けたリブに固着させた。次いで、真空容器1の側面に設
けた排気口から、第1真空ポンプ7にて脱気することに
より、薄肉弾性容器5を中子成形用通気性分割型2の内
面に沿って密着させた。
As shown in FIG. 1, the vacuum vessel 1 is constructed with an upper lid 3 via an O-ring 4. Vacuum container 1
Inside, the core-forming breathable split mold 2 is installed with its upper surface in close contact with the upper lid 3. As shown in FIG. 2, the thin elastic container (urethane rubber bag) 5 is inserted into the cavity of the core molding breathable split mold 2 through the upper opening of the upper lid 3, and the opening of the thin elastic container 5 is closed with the upper lid. It was fixed to the rib provided in the opening of No. 3. Then, the thin elastic container 5 was brought into close contact with the inner surface of the breathable split mold 2 for core molding by degassing with the first vacuum pump 7 from the exhaust port provided on the side surface of the vacuum container 1.

【0028】次いで、図3に示すごとく、球状鋼粉9
(流動度:25 sec/50g 以下; JISZ 2502-1979)を
薄肉弾性容器5の内部に充填した。この際、真空容器1
全体を適度に振動させることにより、粉末を密に充填す
ることが可能になる。
Next, as shown in FIG. 3, spherical steel powder 9
(Fluidity: 25 sec / 50 g or less; JISZ 2502-1979) was filled in the thin elastic container 5. At this time, the vacuum container 1
By vibrating the whole body moderately, it becomes possible to densely fill the powder.

【0029】薄肉弾性容器5の開口部まで密に該粉末9
を充填した後、薄肉弾性容器5の開口部に通気性栓6を
挿入してから、該開口部より第2真空ポンプ8にて、薄
肉弾性容器5の内部を脱気した(図4)。その後、第1
真空ポンプ7を停止し、真空容器1の真空を解除した。
これにより、中子成形用通気性分割型2を通過して、大
気圧が薄肉弾性容器5に作用するため、薄肉弾性容器5
は中子成形用通気性分割型2の内面の形状を転写した形
状のまま中子成形用通気性分割型2から分離可能とな
る。
The powder 9 is closely packed up to the opening of the thin elastic container 5.
After filling with, the breathable plug 6 was inserted into the opening of the thin elastic container 5, and the inside of the thin elastic container 5 was degassed from the opening by the second vacuum pump 8 (FIG. 4). Then the first
The vacuum pump 7 was stopped and the vacuum of the vacuum container 1 was released.
As a result, the atmospheric pressure acts on the thin elastic container 5 after passing through the core molding breathable split mold 2, so that the thin elastic container 5
Can be separated from the core-forming breathable split mold 2 without changing the shape of the inner surface of the core-forming breathable split mold 2.

【0030】薄肉弾性容器5の開口部をクランプ10に
て封じてから第2真空ポンプ8を停止し、開口部から分
離した。その後、図5に示すごとく上蓋3を取り外し、
中子成形用通気性分割型2を取り出し分割することによ
り、中子11を製造した。
After closing the opening of the thin elastic container 5 with the clamp 10, the second vacuum pump 8 was stopped and separated from the opening. Then, as shown in FIG. 5, remove the upper lid 3,
The core 11 was manufactured by taking out the air-permeable split mold 2 for molding a core and dividing it.

【0031】上記のようにして作製した中子11を、図
6に示すような分割可能なCIP成形用弾性型12の所
定の位置に固定し、次いで、CIP成形用弾性型12の
開口部からTiとAl3 Vの混合粉末13を該弾性型内
に密に充填し、開口部を封じた(図7)。これを、図8
に示すごとく、CIP成形用圧力容器14の内部に挿入
し、圧力媒体15を介して400MPaの静水圧をかけ
CIP成形を行った。除圧後、CIP成形用弾性型12
を圧力容器14から取り出し、CIP成形体16を得
た。次いで、該成形体16に内包されている該中子11
に付随しているクランプ10を取り外し、該中子11内
部の真空を解除した。これにより、該中子11内部に充
填してあった球状鋼粉9は流動状態となり、該開口部か
ら容易に流出除去することができた(図9)。該粉末9
を流出後、該成形体16の中空部の内壁に付着していた
薄肉弾性容器(ウレタンゴム袋)5は容易に剥離した
(図10)。
The core 11 produced as described above is fixed at a predetermined position of the dividable elastic mold 12 for CIP molding as shown in FIG. 6, and then, from the opening of the elastic mold 12 for CIP molding. A mixed powder 13 of Ti and Al 3 V was densely filled in the elastic mold and the opening was sealed (FIG. 7). This is shown in FIG.
As shown in (1), the CIP molding was carried out by inserting it into the CIP molding pressure vessel 14 and applying a hydrostatic pressure of 400 MPa through the pressure medium 15. After depressurization, CIP molding elastic mold 12
Was taken out from the pressure vessel 14 to obtain a CIP molded body 16. Next, the core 11 contained in the molded body 16
The clamp 10 attached to the core 11 was removed, and the vacuum inside the core 11 was released. As a result, the spherical steel powder 9 filling the inside of the core 11 was in a fluidized state, and could easily be removed by flowing out from the opening (FIG. 9). The powder 9
After flowing out, the thin elastic container (urethane rubber bag) 5 attached to the inner wall of the hollow portion of the molded body 16 was easily peeled off (FIG. 10).

【0032】以上の工程により得られた成形体は、複雑
形状であるにもかかわらず、クラック等の欠陥は一切認
められなかった。また、該成形体を10-5torrの真空下
において、1300℃で4時間焼結した所、得られた焼
結体は99%以上に緻密化しており、密度むらもほとん
ど無いことを確認した。さらに、該焼結体の酸素、炭
素、窒素を分析した結果、該中子を用いずに第1実施例
と同一条件で成形、焼結した中実の焼結体と全く同等で
あった。
Although the molded product obtained by the above steps had a complicated shape, defects such as cracks were not recognized at all. Further, when the molded body was sintered at 1300 ° C. for 4 hours under a vacuum of 10 −5 torr, it was confirmed that the obtained sintered body was densified to 99% or more and that there was almost no density unevenness. . Furthermore, as a result of analyzing oxygen, carbon and nitrogen of the sintered body, it was completely equivalent to a solid sintered body which was molded and sintered under the same conditions as in the first example without using the core.

【0033】第1実施例において、極めて複雑形状であ
りながら健全な成形体が得られた理由は以下のように考
えられる。
The reason why a sound molded body having an extremely complicated shape was obtained in the first embodiment is considered as follows.

【0034】すなわち、CIP成形用弾性型12の肉厚
分布の不均一性、ならびに該成形型12と中子11との
間の空間領域(Ti+Al3 V混合粉末13が充填され
る)の分布の不均一性などの理由から、CIP成形時
に、該混合粉末13には純粋な静水圧だけではなく、剪
断力が作用する。ここで、中子が一体弾性構造物の場
合、中子は多少なりとも弾性変形(曲がり,反り,等)
し、このため除荷した際には、逆に中子が成形体に反力
(剪断力)を及ぼし、成形体に何らかの欠陥を導入す
る。これに対し、本実施例による中子は,成形・除荷時
のわずかな剪断力に対しても容易に永久変形し得ると共
に、静水圧に対しては弾性体として振る舞うという特異
な性質を有しているため、健全な成形体が得られたもの
と考えられる。
That is, the non-uniformity of the thickness distribution of the CIP molding elastic die 12 and the distribution of the space region between the molding die 12 and the core 11 (filled with the Ti + Al 3 V mixed powder 13). Due to non-uniformity and the like, not only pure hydrostatic pressure but also shear force acts on the mixed powder 13 during CIP molding. Here, when the core has an integral elastic structure, the core is elastically deformed to some extent (bending, warping, etc.).
For this reason, when the load is removed, the core exerts a reaction force (shearing force) on the molded body, and some defects are introduced into the molded body. On the other hand, the core according to the present embodiment has a unique property that it can be easily permanently deformed even with a slight shearing force at the time of molding and unloading, and behaves as an elastic body against hydrostatic pressure. Therefore, it is considered that a sound molded body was obtained.

【0035】ただし、本実施例による中子に充填する粉
末は、除荷後にも流動性を維持させなければならないこ
とと、スプリングバックによる除荷後の膨張を抑制しな
ければならないため、目的とする成形体を構成する金属
粉末よりも十分に高い圧縮耐力と弾性率とを有すること
が不可欠である。
However, the powder to be filled in the core according to the present embodiment is required to maintain fluidity even after unloading and to suppress expansion after unloading due to springback. It is indispensable to have a compression strength and elastic modulus that are sufficiently higher than those of the metal powder forming the molded body.

【0036】前記実施例においては、本発明にかかる中
子を用いCIP成形法により中空部材を製造する例を示
したが、成形法はCIP成形法に限らず、一方向プレス
法などの成形時に高温加熱を施さない成形法、すなわち
形状保持体の耐熱範囲内での成形方法であればどのよう
な成形法にも適用することができる。
Although the hollow member is manufactured by the CIP molding method using the core according to the present invention in the above-mentioned embodiment, the molding method is not limited to the CIP molding method, and the molding method is not limited to the CIP molding method. Any molding method can be applied as long as it is a molding method not subjected to high temperature heating, that is, a molding method within the heat resistant range of the shape-retaining body.

【0037】また、前記実施例においては、形状保持体
としてウレタンゴム袋を用いたが、これに限らず、伸縮
性を有する薄い材料で本発明の目的を達成することがで
きるものであればどのようなものでも適用することがで
きる。例えば、天然ゴム、ネオプレンゴム、シリコンゴ
ムなどが挙げられる。
Further, although the urethane rubber bag is used as the shape-retaining member in the above-mentioned embodiment, the invention is not limited to this, and any thin material having elasticity can achieve the object of the present invention. The same can be applied. For example, natural rubber, neoprene rubber, silicone rubber, etc. may be mentioned.

【0038】また、前記実施例においては、充填材とし
て球状鋼粉を用いたが、これに限らず、成形時の圧力で
塑性変形しない耐力を有しかつ流動度が50 sec/50g
以下の粉末特性を有する材料で本発明の目的を達成する
ことができるものであればどのようなものでも適用する
ことができる。例えば、ジルコニア、アルミナ、窒化珪
素などのセラミックス粉末が挙げられる。特に、ヤング
率が200GPa以上の高剛性材料からなる球状粉末で
あって粒径が100〜500μmの範囲のものであるも
のが好適である。
Further, although spherical steel powder was used as the filler in the above-mentioned examples, the present invention is not limited to this, and it has a proof stress that does not plastically deform under the pressure during molding and has a fluidity of 50 sec / 50 g.
Any material having the following powder characteristics that can achieve the object of the present invention can be applied. For example, ceramic powders such as zirconia, alumina, and silicon nitride can be used. In particular, a spherical powder made of a highly rigid material having a Young's modulus of 200 GPa or more and having a particle size in the range of 100 to 500 μm is suitable.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例のCIP成形用中子の製造方法を示
す概略説明図で、形状保持体を配置する前の中子製造用
メス型の概略縦断面図である。
FIG. 1 is a schematic explanatory view showing a method of manufacturing a CIP molding core according to a first embodiment, and is a schematic vertical cross-sectional view of a core manufacturing female die before a shape-retaining body is arranged.

【図2】第1実施例のCIP成形用中子の製造方法を示
す概略説明図で、形状保持体を中子製造用メス型に拡張
密着させる状態を示した概略縦断面図である。
FIG. 2 is a schematic explanatory view showing the method for manufacturing the CIP molding core of the first embodiment, and is a schematic vertical cross-sectional view showing a state in which the shape-retaining body is expanded and closely attached to the core manufacturing female die.

【図3】第1実施例のCIP成形用中子の製造方法を示
す概略説明図で、形状保持体の中に充填材を充填する状
態を示した概略縦断面図である。
FIG. 3 is a schematic explanatory view showing a method for manufacturing a CIP molding core of the first embodiment, and is a schematic vertical cross-sectional view showing a state in which a shape retaining body is filled with a filler.

【図4】第1実施例のCIP成形用中子の製造方法を示
す概略説明図で、充填材を密に充填した形状保持体を真
空脱気し密閉した状態を示した概略縦断面図である。
FIG. 4 is a schematic explanatory view showing a method for manufacturing a CIP molding core of the first embodiment, and is a schematic vertical cross-sectional view showing a state in which a shape-retaining body densely filled with a filler is vacuum deaerated and hermetically sealed. is there.

【図5】第1実施例のCIP成形用中子の製造方法を示
す概略説明図で、中子を中子製造用メス型から取り出す
状態を示した概略縦断面図である。
FIG. 5 is a schematic explanatory view showing a method for manufacturing the CIP molding core of the first embodiment, and is a schematic vertical cross-sectional view showing a state in which the core is taken out from the core manufacturing female die.

【図6】第1実施例のCIP成形方法を示す概略説明図
で、中子をCIP成形用弾性型に配置する状態を示した
概略縦断面図である。
FIG. 6 is a schematic explanatory view showing the CIP molding method of the first embodiment, and is a schematic vertical cross-sectional view showing a state in which the core is arranged in the CIP molding elastic die.

【図7】第1実施例のCIP成形方法を示す概略説明図
で、CIP成形用弾性型内に中子と中空成形体基材を配
設した状態を示した概略縦断面図である。
FIG. 7 is a schematic explanatory view showing the CIP molding method of the first embodiment, and is a schematic vertical cross-sectional view showing a state in which a core and a hollow molded body substrate are arranged in an elastic mold for CIP molding.

【図8】第1実施例のCIP成形方法を示す概略説明図
で、CIP成形用圧力容器内にCIP成形用弾性型を配
置してCIP成形する状態を示した概略縦断面図であ
る。
FIG. 8 is a schematic explanatory view showing the CIP molding method of the first embodiment, and is a schematic vertical cross-sectional view showing a state of arranging a CIP molding elastic die in a CIP molding pressure container and performing CIP molding.

【図9】第1実施例のCIP成形方法を示す概略説明図
で、CIP成形後の成形体から中子の充填材を除去する
状態を示した概略縦断面図である。
FIG. 9 is a schematic explanatory view showing the CIP molding method of the first embodiment, and is a schematic vertical cross-sectional view showing a state in which the filler for the core is removed from the molded body after CIP molding.

【図10】第1実施例のCIP成形方法を示す概略説明図
で、CIP成形後の成形体から中子の形状保持材を除去
する状態を示した概略縦断面図である。
FIG. 10 is a schematic explanatory view showing the CIP molding method of the first embodiment, and is a schematic vertical cross-sectional view showing a state in which the shape-retaining material of the core is removed from the molded body after CIP molding.

【符号の説明】[Explanation of symbols]

1・・・真空容器 2・・・中子成形用通気性分割型 3・・・上蓋 4・・・オーリング 5・・・形状保持体としての薄肉弾性容器(ウレタンゴ
ム袋) 6・・・通気性栓 7・・・第1真空ポンプ 8・・・第2真空ポンプ 9・・・充填材としての球状鋼粉 10・・・クランプ 11・・・中子 12・・・CIP成形用弾性型 13・・・成形体基材原料としてのTiとAl3 Vの混
合粉末 14・・・圧力容器 15・・・圧力媒体 16・・・CIP成形体
DESCRIPTION OF SYMBOLS 1 ... Vacuum container 2 ... Breathable split mold for core molding 3 ... Upper lid 4 ... O-ring 5 ... Thin elastic container (urethane rubber bag) as shape retainer 6 ... Breathable plug 7 ... First vacuum pump 8 ... Second vacuum pump 9 ... Spherical steel powder as a filler 10 ... Clamp 11 ... Core 12 ... CIP molding elastic mold 13 ... Mixture powder of Ti and Al 3 V as a raw material for a molded body 14 ... Pressure vessel 15 ... Pressure medium 16 ... CIP molded body

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山口 登士也 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshiya Yamaguchi 1 Toyota-cho, Toyota-shi, Aichi Toyota Motor Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 伸縮性を有する薄い形状保持体を,所定
の中空形状を有し分割可能な中子製造用メス型に配置す
る工程と、 該メス型と前記形状保持体の隙間部を減圧し,前記形状
保持体を前記メス型の内側に拡張密着させる工程と、 前記拡張密着される形状保持体の中に,成形時の圧力で
塑性変形しない耐力を有しかつ流動度が50 sec/50g
以下の粉末特性を有する充填材を密に充填する工程と、 前記形状保持体の内部を真空脱気し密閉するとともに,
前記メス型と前記形状保持体との隙間部の減圧を解除す
ることにより中子を取り出す工程と、からなることを特
徴とする中空部を有する部材製造用中子の製造方法。
1. A step of disposing an elastic thin shape retainer in a core-forming female die having a predetermined hollow shape and capable of being divided, and decompressing a gap between the female die and the shape retainer. Then, the step of expanding and closely contacting the shape-retaining member with the inner side of the female mold, and the shape-retaining member to be expanded and closely-contacting has a proof stress that does not plastically deform under pressure during molding and has a fluidity of 50 sec / 50 g
The step of densely filling a filler having the following powder characteristics, and vacuum degassing and sealing the inside of the shape retainer,
A method for producing a core for manufacturing a member having a hollow portion, which comprises removing the core by releasing the reduced pressure in the gap between the female die and the shape-retaining body.
【請求項2】 伸縮性を有する薄い形状保持体を,所定
の中空形状を有し分割可能な中子製造用メス型に配置す
る工程と、 該メス型と前記形状保持体の隙間部を減圧し,前記形状
保持体を前記メス型の内側に拡張密着させる工程と、 前記拡張密着される形状保持体の中に,成形時の圧力で
塑性変形しない耐力を有しかつ流動度が50 sec/50g
以下の粉末特性を有する充填材を密に充填する工程と、 前記形状保持体の内部を真空脱気し密閉するとともに,
前記メス型と前記形状保持体との隙間部の減圧を解除す
ることにより中子を取り出す工程と、 該中子を成形用型に配置して部材を加圧成形する工程
と、 前記中子の真空を解除して,中子内部の充填材を前記形
状保持体から排出して前記成形体から中子を取り出す工
程と、からなることからなることを特徴とする中空部を
有する部材の製造方法。
2. A step of arranging a thin shape retainer having elasticity into a female die for core production having a predetermined hollow shape and capable of being divided, and decompressing a gap between the female die and the shape retainer. Then, the step of expanding and closely contacting the shape-retaining member with the inner side of the female mold, and the shape-retaining member to be expanded and closely-contacting has a proof stress that does not plastically deform under pressure during molding and has a fluidity of 50 sec / 50g
The step of densely filling a filler having the following powder characteristics, and vacuum degassing and sealing the inside of the shape retainer,
Removing the core by releasing the reduced pressure in the gap between the female die and the shape-retaining body, arranging the core in a molding die and press-molding a member, Releasing the vacuum, discharging the filler inside the core from the shape-retaining body, and taking out the core from the molded body. .
JP5142616A 1993-05-21 1993-05-21 Production of core for production member having hollow part and production of member having hollow part Pending JPH06330104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5142616A JPH06330104A (en) 1993-05-21 1993-05-21 Production of core for production member having hollow part and production of member having hollow part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5142616A JPH06330104A (en) 1993-05-21 1993-05-21 Production of core for production member having hollow part and production of member having hollow part

Publications (1)

Publication Number Publication Date
JPH06330104A true JPH06330104A (en) 1994-11-29

Family

ID=15319478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5142616A Pending JPH06330104A (en) 1993-05-21 1993-05-21 Production of core for production member having hollow part and production of member having hollow part

Country Status (1)

Country Link
JP (1) JPH06330104A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100702944B1 (en) * 2000-10-07 2007-04-03 삼성테크윈 주식회사 Balloon type core for making wax model in investment casting
JP2016175202A (en) * 2015-03-18 2016-10-06 株式会社東芝 Three-dimensional molding method
WO2022190601A1 (en) * 2021-03-12 2022-09-15 東邦チタニウム株式会社 Titanium green compact production method and titanium sintered body production method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100702944B1 (en) * 2000-10-07 2007-04-03 삼성테크윈 주식회사 Balloon type core for making wax model in investment casting
JP2016175202A (en) * 2015-03-18 2016-10-06 株式会社東芝 Three-dimensional molding method
WO2022190601A1 (en) * 2021-03-12 2022-09-15 東邦チタニウム株式会社 Titanium green compact production method and titanium sintered body production method
JP7177302B1 (en) * 2021-03-12 2022-11-22 東邦チタニウム株式会社 Method for producing titanium-based green compact and method for producing titanium-based sintered compact

Similar Documents

Publication Publication Date Title
US8329093B2 (en) Method for preparing metal-matrix composite and device for implementing said method
US20160158843A1 (en) Method of achieving full density binder jet printed metallic articles
JPS6281299A (en) Preform compression assembly and method
JP2634213B2 (en) Method for producing powder molded article by isostatic press
JP2011041983A (en) Device and method for hot isostatic pressing container
JPS6164801A (en) Molding method of powder of metal, ceramics or the like
KR100502986B1 (en) Net shape die and mold and manufacturing method
JPS6245195B2 (en)
US6080341A (en) Process for making an indium-tin-oxide shaped body
JPH06330104A (en) Production of core for production member having hollow part and production of member having hollow part
JPH07278607A (en) Powder molding method using segmental die
JPS62109903A (en) Method for pressing and packing powder
JPH07164195A (en) Mold for hydrostatic pressure molding for producing powder molding having hollow part and molding method of powder molding
JP3869072B2 (en) Molding method of green compact
JPH06262398A (en) Mold for hydrostatic compacting and powder compacting method
JPH0244640B2 (en) RABAAPURESUSEIKEIHO
JPS58202939A (en) Hot plastic working method
JPS62142703A (en) Hot hydrostatic pressing method
JPH08258018A (en) Mold for forming powder
JPS63210201A (en) Powder sintering method
JPS61264104A (en) Production of high melting point metallic sintered body
JPH0826362B2 (en) Powder molding method by hydrostatic molding using a mold
JPH05195014A (en) Method for hot-forging aluminum alloy powder
JPH0780072B2 (en) Molding method with cold isostatic molding device
JPH0826361B2 (en) Powder molding die for hydrostatic molding and powder molding method thereof