JPH06329584A - Production of 4-biphenylcarboxylic acid - Google Patents

Production of 4-biphenylcarboxylic acid

Info

Publication number
JPH06329584A
JPH06329584A JP5139318A JP13931893A JPH06329584A JP H06329584 A JPH06329584 A JP H06329584A JP 5139318 A JP5139318 A JP 5139318A JP 13931893 A JP13931893 A JP 13931893A JP H06329584 A JPH06329584 A JP H06329584A
Authority
JP
Japan
Prior art keywords
weight
solvent
biphenylcarboxylic acid
reaction
ethylbiphenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5139318A
Other languages
Japanese (ja)
Other versions
JP3264733B2 (en
Inventor
Yasuhiro Shimoura
康弘 下浦
Haruki Takeuchi
玄樹 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP13931893A priority Critical patent/JP3264733B2/en
Publication of JPH06329584A publication Critical patent/JPH06329584A/en
Application granted granted Critical
Publication of JP3264733B2 publication Critical patent/JP3264733B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To provide an industrially advantageous method for production of 4-biphenylcarboxylic acid. CONSTITUTION:In oxidizing 4-ethylbiphenyl by using a molecular oxygen- containing gas in a solution prepared by dissolving transition metals and bromine as the catalyst in a solvent containing a <=3C aliphatic monocarboxylic acid in an amount of >=50wt.%, the solvent is used in an amount of two or more times the weight of 4-ethylbiphenyl. This oxidation reaction is carried out in a solution containing transition metals composed of cobalt and manganese in an amount of >=0.03wt.% based on the solvent and bromine in an amount of >=0.01wt.% based on the solvent under a condition of 110 to 260 deg.C reaction temperature and 0.1 to 20kg/cm<2>.G partial pressure of oxygen and the objective 4-biphenylcarboxylic acid is then separated from the resultant reaction product solution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は液晶原料、ポリマー原料
等として有用な4−ビフェニルカルボン酸の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing 4-biphenylcarboxylic acid useful as a raw material for liquid crystals, a raw material for polymers and the like.

【0002】[0002]

【従来の技術】従来、4−ビフェニルカルボン酸の製造
方法として工業的に可能な方法の一つに4−アシルビフ
ェニルを液相酸化する方法(特開平4−221341、
特開平4−159247、特開平4−128252)が
あるが、以下のような欠点があり、工業的に必ずしも満
足いくものではなかった。すなわち、 ビフェニルをアシル化し4−アシルビフェニルを製造
する際、大量の、再利用が困難な均一系ルイス酸触媒を
必要とし、コスト的に好ましくはなかった。 大量の均一系ルイス酸触媒の使用に伴い、大量の酸性
排水が排出され、環境上問題であった。 液相酸化において、酸化をスムーズに進行させるた
め、アルキルベンゼン等を添加する必要がある。
2. Description of the Related Art Conventionally, one of industrially possible methods for producing 4-biphenylcarboxylic acid is a method of liquid-phase oxidation of 4-acylbiphenyl (Japanese Patent Laid-Open No. 222211/1992).
There are JP-A-4-159247 and JP-A-4-128252), but they are not always industrially satisfactory due to the following drawbacks. That is, when a biphenyl is acylated to produce 4-acylbiphenyl, a large amount of a homogeneous Lewis acid catalyst that is difficult to reuse is required, which is not preferable in terms of cost. With the use of a large amount of homogeneous Lewis acid catalyst, a large amount of acidic wastewater was discharged, which was an environmental problem. In liquid phase oxidation, it is necessary to add alkylbenzene or the like in order to make the oxidation proceed smoothly.

【0003】この方法以外にも、(1)4−ビフェニル
トリフレートを酸化する方法(Tetrahedron Lett., 199
2, 33, 3939-42)、(2)4−ホルミルビフェニルを酸
化する方法(Bull. Chem. Soc. Jpn., 1988, 61, 4464-
6) 、(3)ビフェニルにCO2を挿入する方法(J. Che
m. Soc., Chem. Commun., 1988, 8, 562-4)、等がある
が、(1)、(2)は酸化原料の安価な入手が困難であ
る、(2)、(3)は収率が数%と低い、等の欠点があ
り、先に挙げた4−アシルビフェニルの液相酸化法以上
に工業化が困難な方法であった。
In addition to this method, (1) a method of oxidizing 4-biphenyl triflate (Tetrahedron Lett., 199)
2, 33 , 3939-42), (2) Method for oxidizing 4-formylbiphenyl (Bull. Chem. Soc. Jpn., 1988, 61 , 4464-
6), (3) Method of inserting CO 2 into biphenyl (J. Che
m. Soc., Chem. Commun., 1988, 8, 562-4), etc., but (1) and (2) make it difficult to obtain an oxidizing raw material at low cost, (2) and (3). Has a defect that the yield is as low as several%, and is a method that is more difficult to industrialize than the liquid phase oxidation method of 4-acylbiphenyl mentioned above.

【0004】以上の様に、工業的に比較的容易に得られ
る原料を用いて、液相酸化することにより、収率良く4
−ビフェニルカルボン酸を製造する方法は知られていな
かった。
As described above, by using the raw materials that are relatively easily obtained industrially and performing the liquid phase oxidation, the yield is improved.
No method was known to produce biphenylcarboxylic acid.

【0005】[0005]

【発明が解決しようとする課題】そこで、本発明者ら
は、熱媒用のエチルビフェニル製造の際、生成物より4
−エチルビフェニルを蒸留で分離し、得られた4−エチ
ルビフェニルを液相で空気酸化すれば4−アシルビフェ
ニル等の酸化に比べ容易に4−ビフェニルカルボン酸が
製造できることを見出し、本発明を完成した。従って、
本発明の目的は、4−エチルビフェニルを液相酸化する
ことによる、工業的に有利な4−ビフェニルカルボン酸
製造方法を提供することにある。
Therefore, the inventors of the present invention, when producing ethylbiphenyl for a heat transfer medium, use the product to produce 4
It was found that 4-biphenylcarboxylic acid can be easily produced by separating 4-ethylbiphenyl by distillation and air-oxidizing the obtained 4-ethylbiphenyl in a liquid phase as compared with oxidation of 4-acylbiphenyl and the like, and completed the present invention. did. Therefore,
An object of the present invention is to provide an industrially advantageous method for producing 4-biphenylcarboxylic acid by liquid-phase oxidizing 4-ethylbiphenyl.

【0006】[0006]

【課題を解決するための手段】すなわち本発明は、4−
エチルビフェニル及び/又はその酸化中間体を、炭素数
が3以下の脂肪族モノカルボン酸を少なくとも50重量
%含有する溶媒に、触媒としての遷移金属及び臭素を溶
解させた溶液中で、分子状酸素含有ガスにより酸化する
に当たり、4−エチルビフェニル、その酸化中間体及び
4−ビフェニルカルボン酸の合計に対して少なくとも2
倍重量の溶媒を使用し、溶媒当たり0.03重量%以上
のコバルト及び/又はマンガンよりなる遷移金属及び溶
媒当たり0.01重量%以上の臭素を存在させた溶液中
で、反応温度110〜260℃、酸素分圧0.1〜20
kg/cm2 ・Gの反応条件で酸化し、得られた反応生
成液から4−ビフェニルカルボン酸を分離することを特
徴とする4−ビフェニルカルボン酸の製造方法である。
That is, the present invention is
Molecular weight of ethylbiphenyl and / or its oxidation intermediate was measured in a solution prepared by dissolving a transition metal and bromine as a catalyst in a solvent containing at least 50% by weight of an aliphatic monocarboxylic acid having 3 or less carbon atoms. At least 2 with respect to the total of 4-ethylbiphenyl, its oxidation intermediate and 4-biphenylcarboxylic acid upon oxidation by the contained gas.
A reaction temperature of 110 to 260 was used in a solution in which a double weight of a solvent was used and 0.03% by weight or more of a transition metal consisting of cobalt and / or manganese was present per solvent and 0.01% by weight or more of bromine was present per solvent. ℃, oxygen partial pressure 0.1-20
A method for producing 4-biphenylcarboxylic acid, which comprises oxidizing 4-biphenylcarboxylic acid from the obtained reaction product solution by oxidizing under a reaction condition of kg / cm 2 · G.

【0007】以下、本発明の製造方法について、詳細に
説明する。本発明で酸化原料として用いる4−エチルビ
フェニルは、通常、ビフェニルをフリーデルクラフツ触
媒を用いてエチレン、エチルクロライド、ポリエチルベ
ンゼン等のエチル化剤によりエチル化又はトランスエチ
ル化し、得られたエチル化生成物を蒸留、冷却晶析、圧
力晶析、アダクツ分離等の分離手段を用いて単離するこ
とにより得ることができる。ポリエチルベンゼンによる
トランスエチル化反応生成物からは、蒸留のみで4−エ
チルビフェニルを単離することができ、特に工業的に好
ましい。このほかにも、エチル化されたシクロヘキシル
ベンゼンの脱水素、ベンゼン環の化合物を出発原料にす
るカップリング、等により合成された4−エチルビフェ
ニルを酸化原料に用いても良い。これら4−エチルビフ
ェニルは高純度のものが好ましいが、酸化反応終了後の
生成物を各種方法で精製する際に除去できる程度であれ
ば、4−エチルビフェニルおよびその酸化中間体以外の
他の成分、たとえば3−エチルビフェニル等を含んでい
ても差し支えない。また、4−エチルビフェニルのエチ
ル基がアセチル基またはホルミル基等に酸化された酸化
中間体をこれに混合しても良い。
The manufacturing method of the present invention will be described in detail below. 4-Ethylbiphenyl used as an oxidizing raw material in the present invention is usually produced by ethylation or transethylation of biphenyl with an ethylating agent such as ethylene, ethyl chloride or polyethylbenzene using a Friedel-Crafts catalyst. It can be obtained by isolating the product using a separation means such as distillation, cooling crystallization, pressure crystallization, and adduct separation. From the transethylation reaction product with polyethylbenzene, 4-ethylbiphenyl can be isolated only by distillation, which is particularly industrially preferable. In addition to this, 4-ethylbiphenyl synthesized by dehydrogenation of ethylated cyclohexylbenzene, coupling using a compound having a benzene ring as a starting material, or the like may be used as an oxidizing material. These 4-ethylbiphenyls are preferably of high purity, but other components other than 4-ethylbiphenyl and its oxidation intermediate can be used as long as they can be removed when the products after the oxidation reaction are purified by various methods. , For example, 3-ethylbiphenyl may be contained. Further, an oxidation intermediate in which the ethyl group of 4-ethylbiphenyl is oxidized to an acetyl group or a formyl group may be mixed with this.

【0008】本発明で溶媒として使用する炭素数が3以
下の脂肪族モノカルボン酸としては、蟻酸、酢酸、プロ
ピオン酸、ブロモ酢酸等を挙げることができるが、酢
酸、プロピオン酸又はそれらの混合物が好ましい。そし
て、本発明で用いる溶媒はこれら炭素数が3以下の脂肪
族モノカルボン酸を少なくとも50重量%、好ましくは
70重量%含む。
Examples of the aliphatic monocarboxylic acid having 3 or less carbon atoms used as a solvent in the present invention include formic acid, acetic acid, propionic acid, bromoacetic acid, and the like, and acetic acid, propionic acid or a mixture thereof. preferable. The solvent used in the present invention contains at least 50% by weight, preferably 70% by weight, of these aliphatic monocarboxylic acids having 3 or less carbon atoms.

【0009】溶媒中に多量の水分が存在する場合は酸化
反応を阻害するが、少量であればむしろ良い結果をもた
らす場合もある。また、後述するように、生成した4−
ビフェニルカルボン酸の溶媒への溶解度を低下させる目
的からも、反応溶媒中にある程度の水分をあらかじめ混
在させるのが良い。その様な水分濃度としては、反応生
成液中の水分濃度として、5〜40重量%、好ましくは
5〜30重量%である。
The presence of a large amount of water in the solvent hinders the oxidation reaction, but a small amount may give rather good results. In addition, as described later, the generated 4-
For the purpose of reducing the solubility of the biphenylcarboxylic acid in the solvent, it is preferable that a certain amount of water is mixed in the reaction solvent in advance. As such a water concentration, the water concentration in the reaction product liquid is 5 to 40% by weight, preferably 5 to 30% by weight.

【0010】本発明で使用する触媒はコバルト及び/又
はマンガンからなる遷移金属並びに臭素であるが、遷移
金属としてニッケル、セリウム等の他の遷移金属が加わ
っても良い。これらの遷移金属を反応系内に存在させる
には、溶媒に可溶な化合物として添加すれば良く、その
様な化合物としては、遷移金属の酢酸塩、プロピオン酸
塩、水酸化物、炭酸塩、臭化物等を挙げることができる
が、好ましくは酢酸塩、プロピオン酸塩、臭化物であ
る。また、臭素も溶媒に可溶な物質であれば何でも良
く、その様な化合物としては、分子状臭素、臭化水素、
金属臭化物、臭化アルキル等を挙げることができるが、
好ましくは臭化コバルト、臭化マンガン、臭化ニッケ
ル、臭化セリウム等の遷移金属臭化物、臭化カリウム、
臭化ナトリウム等のアルカリ金属臭化物である。これら
の触媒の内、コバルト及び/又はマンガンからなる遷移
金属の使用量はその合計濃度が溶媒に対して0.03重
量%以上、好ましくは0.06重量%以上、より好まし
くは0.2重量%以上である。臭素の使用量は臭素濃度
が溶媒に対して0.01重量%、好ましくは0.03重
量%以上である。ここで、濃度は金属または臭素に換算
した濃度を意味し、反応系内で金属または臭素として存
在することを意味するものではない。
The catalyst used in the present invention is a transition metal composed of cobalt and / or manganese and bromine, but other transition metals such as nickel and cerium may be added as transition metals. In order to allow these transition metals to exist in the reaction system, it may be added as a compound soluble in a solvent, and examples of such compounds include transition metal acetates, propionates, hydroxides, carbonates, Bromide and the like can be mentioned, but acetate, propionate and bromide are preferable. Also, bromine may be any substance that is soluble in a solvent, and examples of such a compound include molecular bromine, hydrogen bromide,
Metal bromide, alkyl bromide and the like can be mentioned,
Preferably cobalt bromide, manganese bromide, nickel bromide, transition metal bromides such as cerium bromide, potassium bromide,
It is an alkali metal bromide such as sodium bromide. Among these catalysts, the total amount of the transition metal composed of cobalt and / or manganese used is 0.03% by weight or more, preferably 0.06% by weight or more, more preferably 0.2% by weight, based on the solvent. % Or more. The amount of bromine used is such that the bromine concentration is 0.01% by weight, preferably 0.03% by weight or more, based on the solvent. Here, the concentration means a concentration converted to metal or bromine, and does not mean that it exists as metal or bromine in the reaction system.

【0011】炭素数が3以下の脂肪族モノカルボン酸を
少なくとも50重量%含有する溶媒を、4−エチルビフ
ェニル、その酸化中間体及び4−ビフェニルカルボン酸
の合計に対し、2倍重量、好ましくは3倍重量以上用い
る。溶媒量が不足すると4−ビフェニルカルボン酸の収
率が低下すると共に、スラリー濃度が高くなり操作性が
悪くなる。
A solvent containing at least 50% by weight of an aliphatic monocarboxylic acid having 3 or less carbon atoms is used in an amount of twice the weight of 4-ethylbiphenyl, its oxidation intermediate and 4-biphenylcarboxylic acid, preferably Use at least 3 times the weight. When the amount of the solvent is insufficient, the yield of 4-biphenylcarboxylic acid is lowered, and the slurry concentration is increased to deteriorate the operability.

【0012】反応温度は、110〜260℃、好ましく
は130〜220℃の範囲である。反応温度が低いと反
応速度の低下により4−ビフェニルカルボン酸の収率が
低下し、反対に高い場合は副反応生成物が増加して、得
られる4−ビフェニルカルボン酸の純度が低下する。
The reaction temperature is in the range of 110 to 260 ° C, preferably 130 to 220 ° C. If the reaction temperature is low, the yield of 4-biphenylcarboxylic acid decreases due to the decrease in the reaction rate, and on the contrary, if it is high, the side reaction product increases and the purity of the obtained 4-biphenylcarboxylic acid decreases.

【0013】本発明で使用する分子状酸素含有ガスとし
ては、酸素ガス、不活性ガスで希釈された分子状酸素等
であり、その酸素濃度は10〜100体積%、好ましく
は、15〜100体積%である。工業的には空気を使用
するのが有利である。また、酸素分圧は、0.1〜20
kg/cm2 ・Gの範囲、好ましくは0.1〜10kg
/cm2 ・Gの範囲、更に好ましくは0.5〜5kg/
cm2 ・Gの範囲である。反応圧力は反応温度において
溶媒が液相に保持されるように設定するが、通常、10
〜30kg/cm2 ・G程度が適当である。
The molecular oxygen-containing gas used in the present invention is oxygen gas, molecular oxygen diluted with an inert gas or the like, and the oxygen concentration thereof is 10 to 100% by volume, preferably 15 to 100% by volume. %. Industrially, it is advantageous to use air. The oxygen partial pressure is 0.1 to 20.
Range of kg / cm 2 · G, preferably 0.1 to 10 kg
/ Cm 2 · G range, more preferably 0.5-5 kg /
The range is cm 2 · G. The reaction pressure is set so that the solvent is kept in the liquid phase at the reaction temperature, but it is usually 10
Appropriately about 30 kg / cm 2 · G.

【0014】本発明の反応形式は、完全連続方式、半連
続方式、バッチ方式のいずれでも良いが、副反応を抑制
し、収率、純度良く4−ビフェニルカルボン酸を得るた
めには、完全連続方式、半連続方式が好ましい。
The reaction system of the present invention may be a complete continuous system, a semi-continuous system or a batch system, but in order to suppress side reactions and obtain 4-biphenylcarboxylic acid in good yield and purity, it is a complete continuous system. The method and the semi-continuous method are preferable.

【0015】酸化反応によって生成した4−ビフェニル
カルボン酸は、反応生成物を固液分離することによって
固相側に得ることができる。ただし、4−ビフェニルカ
ルボン酸の溶媒への溶解度がジカルボン酸等に比べ大き
いため、反応終了後の溶液中の水分濃度を高くする、固
液分離時の温度を低くする、等して4−ビフェニルカル
ボン酸の溶媒への溶解度を低くすることが好ましい。
The 4-biphenylcarboxylic acid produced by the oxidation reaction can be obtained on the solid phase side by solid-liquid separation of the reaction product. However, since the solubility of 4-biphenylcarboxylic acid in a solvent is higher than that of dicarboxylic acid, 4-biphenylcarboxylic acid is used by increasing the water concentration in the solution after completion of the reaction, lowering the temperature during solid-liquid separation, and the like. It is preferable to lower the solubility of the carboxylic acid in the solvent.

【0016】反応終了後の溶液中の水分濃度を高くする
場合は、反応生成液中の水分濃度として、5〜40重量
%、好ましくは5〜30重量%となるよう、水分をあら
かじめ混在させるのが良い。こうすることによって、た
とえば酢酸を溶媒に用いた場合、80℃での酢酸に対す
る4−ビフェニルカルボン酸の溶解度は約6重量%であ
るのに対し、20重量%の水分を含む酢酸水溶液に対す
る80℃での4−ビフェニルカルボン酸の溶解度は約2
重量%と低くなる。また、反応中は水分濃度を低く保
ち、反応終了後に貧溶媒として水を加える方法でも良
い。
When the water concentration in the solution after the reaction is increased, water is mixed in advance so that the water concentration in the reaction product liquid is 5 to 40% by weight, preferably 5 to 30% by weight. Is good. By doing so, for example, when acetic acid is used as a solvent, the solubility of 4-biphenylcarboxylic acid in acetic acid at 80 ° C. is about 6% by weight, while the solubility in acetic acid aqueous solution containing 20% by weight of water is 80 ° C. The solubility of 4-biphenylcarboxylic acid is about 2
It becomes as low as weight%. Alternatively, a method may be used in which the water concentration is kept low during the reaction and water is added as a poor solvent after the reaction is completed.

【0017】固液分離時の温度を低くして4−ビフェニ
ルカルボン酸の溶媒への溶解度を低くする場合は、70
℃以下、好ましくは50℃以下が良い。たとえば、40
℃での酢酸に対する4−ビフェニルカルボン酸の溶解度
は約2重量%と低くなる。固液分離時の温度を低くする
方法と、反応終了後の溶媒中の水分濃度を高くする方法
を併せて用いれば、さらに効果的である。たとえば、2
0重量%の水分を含む酢酸水溶液に対する40℃での4
−ビフェニルカルボン酸の溶解度は約0.5重量%にま
で低下し、有利である。
When the temperature at the time of solid-liquid separation is lowered to lower the solubility of 4-biphenylcarboxylic acid in the solvent, 70
C. or lower, preferably 50.degree. C. or lower. For example, 40
The solubility of 4-biphenylcarboxylic acid in acetic acid at ° C is as low as about 2% by weight. It is more effective to use both the method of lowering the temperature during solid-liquid separation and the method of increasing the water concentration in the solvent after the completion of the reaction. For example, 2
4 at 40 ° C. for acetic acid aqueous solution containing 0% by weight of water
Advantageously, the solubility of biphenylcarboxylic acid is reduced to about 0.5% by weight.

【0018】また、4−ビフェニルカルボン酸の収率を
上げるために、4−ビフェニルカルボン酸固液分離後の
溶液より溶媒の一部を除去し、さらに4−ビフェニルカ
ルボン酸を回収することもできる。
Further, in order to increase the yield of 4-biphenylcarboxylic acid, a part of the solvent can be removed from the solution after the solid-liquid separation of 4-biphenylcarboxylic acid, and further 4-biphenylcarboxylic acid can be recovered. .

【0019】以上のような固液分離によって得られた粗
4−ビフェニルカルボン酸は、酢酸等による洗浄、水洗
浄を行うことにより、付着触媒溶液、酸化反応中間体、
および遷移金属錯体を除去することができ、純度アップ
が可能である。さらに必要な場合は、公知の方法として
知られている芳香族カルボン酸精製法を用いれば、極め
て高純度の4−ビフェニルカルボン酸を得ることができ
る。
The crude 4-biphenylcarboxylic acid obtained by the solid-liquid separation as described above is washed with acetic acid or the like and washed with water to obtain an attached catalyst solution, an oxidation reaction intermediate,
And the transition metal complex can be removed, and the purity can be increased. Further, if necessary, an extremely high-purity 4-biphenylcarboxylic acid can be obtained by using a known aromatic carboxylic acid purification method.

【0020】[0020]

【実施例】以下、実施例に基づいて、本発明を具体的に
説明するが、本発明はこれらの実施例によって限定され
るものではない。なお、実施例における部及び%はそれ
ぞれ重量部及び重量%を示す。
EXAMPLES The present invention will be specifically described below based on examples, but the present invention is not limited to these examples. In addition, the part and% in an Example show a weight part and weight%, respectively.

【0021】実施例1 ポリエチルベンゼン10000部、ビフェニル5000
部、触媒としてY型ゼオライト3000部を攪拌器付き
オ−トクレ−ブに仕込み、180℃で4時間反応させ
た。ポリエチルベンゼンはジエチルベンゼンとトリエチ
ルベンゼンの混合物である。反応終了後、触媒を固液分
離により除去し、エチルベンゼン類及びエチルビフェニ
ル類混合物を得た。エチルビフェニル類の組成は、ビフ
ェニル35%、エチルビフェニル46%、ジエチルビフ
ェニル15%、トリエチルビフェニル2%、その他2%
であり、エチルビフェニル中の4−エチルビフェニルの
割合は89%であった。このようにして得られた反応生
成物の内、12000部を理論段数70段の精密蒸留塔
で蒸留した。その結果、純度99%の4−エチルビフェ
ニルを1100部得た。電磁攪拌器付きチタン製オ−ト
クレ−ブに、コバルト濃度0.2%、マンガン濃度0.
2%、臭素濃度0.2%の触媒溶液100部を予め装入
し、反応温度160℃、反応圧30kg/cm2 ・G に保持
しながら、この純度99%の4−エチルビフェニル及び
圧縮空気を連続的に反応器に供給し、酸化反応を行っ
た。コバルトは酢酸コバルトとして、マンガンは酢酸マ
ンガンとして、臭素は臭化ナトリウムとしてそれぞれ添
加し、溶媒には5%の水分を含む酢酸を用いた。4−エ
チルビフェニルは毎時10部の割合で2時間供給し、4
−エチルビフェニル供給終了後も、反応器の温度と圧力
を保持したまま圧縮空気を15分間供給した。反応終了
後、反応生成液を30℃まで冷却し、固液分離した。得
られた結晶を水洗後乾燥し、純度98%の4−ビフェニ
ルカルボン酸を20部得た。また、固液分離後の溶液の
水分濃度は11%であった。
Example 1 10000 parts of polyethylbenzene and 5000 of biphenyl
Parts, and 3000 parts of Y-type zeolite as a catalyst were placed in an autoclave equipped with a stirrer and reacted at 180 ° C. for 4 hours. Polyethylbenzene is a mixture of diethylbenzene and triethylbenzene. After completion of the reaction, the catalyst was removed by solid-liquid separation to obtain a mixture of ethylbenzenes and ethylbiphenyls. The composition of ethylbiphenyls is as follows: 35% biphenyl, 46% ethylbiphenyl, 15% diethylbiphenyl, 2% triethylbiphenyl, 2% other.
And the ratio of 4-ethylbiphenyl in ethylbiphenyl was 89%. Of the reaction product thus obtained, 12,000 parts were distilled in a precision distillation column having 70 theoretical plates. As a result, 1100 parts of 4-ethylbiphenyl having a purity of 99% was obtained. A titanium autoclave equipped with an electromagnetic stirrer had a cobalt concentration of 0.2% and a manganese concentration of 0.
100 parts of a catalyst solution of 2% and bromine concentration of 0.2% was charged in advance, and while maintaining the reaction temperature of 160 ° C. and the reaction pressure of 30 kg / cm 2 · G, the 99% pure 4-ethylbiphenyl and compressed air. Was continuously supplied to the reactor to carry out the oxidation reaction. Cobalt was added as cobalt acetate, manganese was added as manganese acetate, bromine was added as sodium bromide, and acetic acid containing 5% water was used as a solvent. 4-Ethylbiphenyl is supplied at a rate of 10 parts per hour for 2 hours and 4
After the ethyl biphenyl feed was completed, compressed air was fed for 15 minutes while maintaining the reactor temperature and pressure. After completion of the reaction, the reaction product liquid was cooled to 30 ° C. and solid-liquid separated. The obtained crystals were washed with water and dried to obtain 20 parts of 4-biphenylcarboxylic acid having a purity of 98%. The water concentration of the solution after solid-liquid separation was 11%.

【0022】実施例2 電磁攪拌器付きチタン製オ−トクレ−ブに、コバルト濃
度0.3%、マンガン濃度0.3%、臭素濃度0.3%
の触媒溶液100部を予め装入し、反応温度170℃、
反応圧30kg/cm2 ・G に保持しながら、実施例1で得
た純度99%の4−エチルビフェニル及び圧縮空気を連
続的に反応器に供給し、酸化反応を行った。コバルトは
酢酸コバルトとして、マンガンは酢酸マンガンとして、
臭素は臭化ナトリウムとしてそれぞれ添加し、溶媒には
15%の水分を含む酢酸を用いた。4−エチルビフェニ
ルは毎時10部の割合で2時間供給し、4−エチルビフ
ェニル供給終了後も、反応器の温度と圧力を保持したま
ま圧縮空気を15分間供給した。反応終了後、反応生成
液を45℃まで冷却し、固液分離した。得られた結晶を
水洗後乾燥し、純度98%の4−ビフェニルカルボン酸
を21部得た。また、固液分離後の溶液の水分濃度は2
1%であった。
Example 2 A titanium autoclave equipped with an electromagnetic stirrer was used, and the cobalt concentration was 0.3%, the manganese concentration was 0.3%, and the bromine concentration was 0.3%.
100 parts of the catalyst solution was charged in advance, and the reaction temperature was 170 ° C.,
While maintaining the reaction pressure at 30 kg / cm 2 · G, 99% pure 4-ethylbiphenyl obtained in Example 1 and compressed air were continuously supplied to the reactor to carry out the oxidation reaction. Cobalt is cobalt acetate, manganese is manganese acetate,
Bromine was added as sodium bromide, and acetic acid containing 15% water was used as a solvent. 4-Ethylbiphenyl was supplied at a rate of 10 parts per hour for 2 hours, and after completion of the 4-ethylbiphenyl supply, compressed air was supplied for 15 minutes while maintaining the temperature and pressure of the reactor. After completion of the reaction, the reaction product liquid was cooled to 45 ° C. and solid-liquid separated. The obtained crystals were washed with water and dried to obtain 21 parts of 4-biphenylcarboxylic acid having a purity of 98%. The water concentration of the solution after solid-liquid separation is 2
It was 1%.

【0023】実施例3 電磁攪拌器付きチタン製オ−トクレ−ブに、コバルト濃
度0.2%、マンガン濃度0.2%、臭素濃度0.2%
の触媒溶液100部を予め装入し、反応温度160℃、
反応圧30kg/cm2 ・G に保持しながら、実施例1で得
た純度99%の4−エチルビフェニル及び圧縮空気を連
続的に反応器に供給し、酸化反応を行った。コバルトは
酢酸コバルトとして、マンガンは酢酸マンガンとして、
臭素は臭化ナトリウムとしてそれぞれ添加し、溶媒には
2%の水分を含む酢酸を用いた。4−エチルビフェニル
は毎時10部の割合で2時間供給し、4−エチルビフェ
ニル供給終了後も、反応器の温度と圧力を保持したまま
圧縮空気を15分間供給した。反応終了後、反応生成液
を60℃まで冷却し、さらに溶液中の酢酸:水重量比が
1:1程度となるよう水を添加した後、固液分離した。
得られた結晶を水洗後乾燥し、純度97%の4−ビフェ
ニルカルボン酸を22部得た。
Example 3 A titanium autoclave equipped with an electromagnetic stirrer was used, and a cobalt concentration of 0.2%, a manganese concentration of 0.2%, and a bromine concentration of 0.2%.
100 parts of the catalyst solution were charged in advance, and the reaction temperature was 160 ° C.
While maintaining the reaction pressure at 30 kg / cm 2 · G, 99% pure 4-ethylbiphenyl obtained in Example 1 and compressed air were continuously supplied to the reactor to carry out the oxidation reaction. Cobalt is cobalt acetate, manganese is manganese acetate,
Bromine was added as sodium bromide, and acetic acid containing 2% of water was used as a solvent. 4-Ethylbiphenyl was supplied at a rate of 10 parts per hour for 2 hours, and after completion of the 4-ethylbiphenyl supply, compressed air was supplied for 15 minutes while maintaining the temperature and pressure of the reactor. After completion of the reaction, the reaction product solution was cooled to 60 ° C., water was added so that the weight ratio of acetic acid: water in the solution was about 1: 1, and then solid-liquid separation was performed.
The obtained crystals were washed with water and dried to obtain 22 parts of 4-biphenylcarboxylic acid having a purity of 97%.

【0024】実施例4 電磁攪拌器付きチタン製オ−トクレ−ブに、コバルト濃
度0.2%、マンガン濃度0.2%、臭素濃度0.1%
の触媒溶液100部を予め装入し、反応温度170℃、
反応圧30kg/cm2 ・G に保持しながら、実施例1で得
た純度99%の4−エチルビフェニル及び圧縮空気を連
続的に反応器に供給し、酸化反応を行った。コバルトは
酢酸コバルトとして、マンガンは酢酸マンガンとして、
臭素は臭化ナトリウムとしてそれぞれ添加し、溶媒には
1%の水分を含む酢酸を用いた。4−エチルビフェニル
は毎時10部の割合で2時間供給し、4−エチルビフェ
ニル供給終了後も、反応器の温度と圧力を保持したまま
圧縮空気を15分間供給した。反応終了後、反応生成液
を60℃まで冷却し、固液分離した。得られた結晶を水
洗後乾燥し、純度98%の4−ビフェニルカルボン酸を
18部得た。また、固液分離後の溶液を、その重量が半
分になるまでエバポレートし、析出した結晶を固液分離
した。得られた結晶を水洗後乾燥し、純度95%の4−
ビフェニルカルボン酸を2部得た。
Example 4 A titanium autoclave equipped with an electromagnetic stirrer was charged with a cobalt concentration of 0.2%, a manganese concentration of 0.2%, and a bromine concentration of 0.1%.
100 parts of the catalyst solution was charged in advance, and the reaction temperature was 170 ° C.,
While maintaining the reaction pressure at 30 kg / cm 2 · G, 99% pure 4-ethylbiphenyl obtained in Example 1 and compressed air were continuously supplied to the reactor to carry out the oxidation reaction. Cobalt is cobalt acetate, manganese is manganese acetate,
Bromine was added as sodium bromide, and acetic acid containing 1% of water was used as a solvent. 4-Ethylbiphenyl was supplied at a rate of 10 parts per hour for 2 hours, and after completion of the 4-ethylbiphenyl supply, compressed air was supplied for 15 minutes while maintaining the temperature and pressure of the reactor. After completion of the reaction, the reaction product liquid was cooled to 60 ° C. and solid-liquid separated. The obtained crystals were washed with water and dried to obtain 18 parts of 4-biphenylcarboxylic acid having a purity of 98%. Further, the solution after solid-liquid separation was evaporated until the weight became half, and the precipitated crystal was solid-liquid separated. The obtained crystals were washed with water and dried to give a 95% pure 4-
Two parts of biphenylcarboxylic acid were obtained.

【0025】比較例1 電磁攪拌器付きチタン製オ−トクレ−ブに、コバルト濃
度0.01%、マンガン濃度0.01%、臭素濃度0.
01%の触媒溶液100部を予め装入し、反応温度17
0℃、反応圧30kg/cm2 ・G に保持しながら、実施例
1で得た純度99%の4−エチルビフェニル及び圧縮空
気を連続的に反応器に供給し、酸化反応を行った。コバ
ルトは酢酸コバルトとして、マンガンは酢酸マンガンと
して、臭素は臭化ナトリウムとしてそれぞれ添加し、溶
媒には1%の水分を含む酢酸を用いた。4−エチルビフ
ェニルは毎時10部の割合で2時間供給し、4−エチル
ビフェニル供給終了後も、反応器の温度と圧力を保持し
たまま圧縮空気を15分間供給した。反応終了後、反応
生成液を75℃まで冷却し、固液分離した。得られた結
晶を水洗後乾燥し、純度92%の4−ビフェニルカルボ
ン酸を5部得た。
Comparative Example 1 A titanium autoclave equipped with an electromagnetic stirrer was used, in which a cobalt concentration of 0.01%, a manganese concentration of 0.01%, and a bromine concentration of 0.
100 parts of 01% catalyst solution was charged in advance and the reaction temperature was 17
While maintaining at 0 ° C. and a reaction pressure of 30 kg / cm 2 · G, 4-ethylbiphenyl having a purity of 99% obtained in Example 1 and compressed air were continuously supplied to the reactor to carry out an oxidation reaction. Cobalt was added as cobalt acetate, manganese was added as manganese acetate, and bromine was added as sodium bromide. Acetic acid containing 1% of water was used as a solvent. 4-Ethylbiphenyl was supplied at a rate of 10 parts per hour for 2 hours, and after completion of the 4-ethylbiphenyl supply, compressed air was supplied for 15 minutes while maintaining the temperature and pressure of the reactor. After completion of the reaction, the reaction product liquid was cooled to 75 ° C. and solid-liquid separated. The obtained crystals were washed with water and dried to obtain 5 parts of 4-biphenylcarboxylic acid having a purity of 92%.

【0026】[0026]

【発明の効果】本発明によれば、入手の容易な4−エチ
ルビフェニルを液相酸化することにより効率の良い4−
ビフェニルカルボン酸の製造方法が確立でき、工業的に
有意義である。
INDUSTRIAL APPLICABILITY According to the present invention, 4-ethylbiphenyl, which is easily available, is subjected to liquid-phase oxidation to improve the efficiency of 4-
A method for producing biphenylcarboxylic acid can be established and is industrially significant.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 4−エチルビフェニル及び/又はその酸
化中間体を、炭素数が3以下の脂肪族モノカルボン酸を
少なくとも50重量%含有する溶媒に、触媒としての遷
移金属及び臭素を溶解させた溶液中で、分子状酸素含有
ガスにより酸化するに当たり、4−エチルビフェニル、
その酸化中間体及び4−ビフェニルカルボン酸の合計に
対して少なくとも2倍重量の溶媒を使用し、溶媒当たり
0.03重量%以上のコバルト及び/又はマンガンより
なる遷移金属及び溶媒当たり0.01重量%以上の臭素
を存在させた溶液中で、反応温度110〜260℃、酸
素分圧0.1〜20kg/cm2 ・Gの反応条件で酸化
し、次いで得られた反応生成液から4−ビフェニルカル
ボン酸を分離することを特徴とする4−ビフェニルカル
ボン酸の製造方法。
1. A transition metal and bromine as a catalyst are dissolved in 4-ethylbiphenyl and / or its oxidized intermediate in a solvent containing at least 50% by weight of an aliphatic monocarboxylic acid having 3 or less carbon atoms. In the solution, when oxidized by a gas containing molecular oxygen, 4-ethylbiphenyl,
At least 2 times the weight of the solvent is used with respect to the total amount of the oxidation intermediate and 4-biphenylcarboxylic acid, and 0.03% by weight or more of the transition metal consisting of cobalt and / or manganese per solvent and 0.01 weight per solvent. % Of bromine is present in the solution, the reaction temperature is 110 to 260 ° C., the oxygen partial pressure is 0.1 to 20 kg / cm 2 · G, and the reaction product solution is oxidized to give 4-biphenyl. A method for producing 4-biphenylcarboxylic acid, which comprises separating a carboxylic acid.
【請求項2】 反応生成液中の水分濃度を5〜40重量
%とする請求項1記載の4−ビフェニルカルボン酸の製
造方法。
2. The method for producing 4-biphenylcarboxylic acid according to claim 1, wherein the water concentration in the reaction product liquid is 5 to 40% by weight.
【請求項3】 反応生成液からの4−ビフェニルカルボ
ン酸の分離が70℃以下で行う固液分離である請求項1
記載の4−ビフェニルカルボン酸の製造方法。
3. The separation of 4-biphenylcarboxylic acid from the reaction product liquid is solid-liquid separation performed at 70 ° C. or lower.
A method for producing the described 4-biphenylcarboxylic acid.
【請求項4】 ビフェニルとポリエチルベンゼンとのト
ランスエチル化反応で得られた反応生成物から蒸留分離
して得られた4−エチルビフェニルを酸化する請求項1
記載の4−ビフェニルカルボン酸の製造方法。
4. The 4-ethylbiphenyl obtained by distillation separation from the reaction product obtained by the transethylation reaction of biphenyl and polyethylbenzene is oxidized.
A method for producing the described 4-biphenylcarboxylic acid.
【請求項5】 溶媒当たり0.2重量%以上のコバルト
及び/又はマンガン及び溶媒当たり0.01重量%以上
の臭素を存在させた溶液中で反応する請求項1記載の4
−ビフェニルカルボン酸の製造方法。
5. The method according to claim 1, wherein the reaction is carried out in a solution containing 0.2% by weight or more of cobalt and / or manganese per solvent and 0.01% by weight or more of bromine per solvent.
-Method for producing biphenylcarboxylic acid.
JP13931893A 1993-05-19 1993-05-19 Method for producing 4-biphenylcarboxylic acid Expired - Fee Related JP3264733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13931893A JP3264733B2 (en) 1993-05-19 1993-05-19 Method for producing 4-biphenylcarboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13931893A JP3264733B2 (en) 1993-05-19 1993-05-19 Method for producing 4-biphenylcarboxylic acid

Publications (2)

Publication Number Publication Date
JPH06329584A true JPH06329584A (en) 1994-11-29
JP3264733B2 JP3264733B2 (en) 2002-03-11

Family

ID=15242522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13931893A Expired - Fee Related JP3264733B2 (en) 1993-05-19 1993-05-19 Method for producing 4-biphenylcarboxylic acid

Country Status (1)

Country Link
JP (1) JP3264733B2 (en)

Also Published As

Publication number Publication date
JP3264733B2 (en) 2002-03-11

Similar Documents

Publication Publication Date Title
JP3390169B2 (en) Method for producing 2,6-naphthalenedicarboxylic acid
EP0142719B1 (en) Process for producing 2,6-naphthalenedicarboxylic acid
JP3264733B2 (en) Method for producing 4-biphenylcarboxylic acid
US4925977A (en) Method for the preparation of naphthalene dicarboxylic acids
JP2894415B2 (en) Process for producing dimethyl 2,6-naphthalenedicarboxylate
JP3027162B2 (en) Method for producing biphenylcarboxylic acid
JPS61140540A (en) Production of 2,6-naphthalebedicarboxylic acid
JP3264753B2 (en) Method for producing 4-biphenylcarboxylic acid
JPH06157403A (en) Production of 2,6-naphthalenedicarboxylic acid
JPS62212340A (en) Simultaneous production of 2,6-naphthalene-dicarboxylic acid and trimellitic acid
JP3187212B2 (en) Continuous production method of naphthalenedicarboxylic acid
JPH03227953A (en) Production of 2,6-naphthalenedicarboxylic acid
JP4352191B2 (en) Production of pyromellitic acid
JPH04266846A (en) Production of 2,6-naphthalenedicarboxylic acid
EP0170273B1 (en) Process for producing acyloxynaphthoic acids
JPS60174745A (en) Preparation of 4,4&#39;-biphenyldicarboxylic acid
JPH0748314A (en) Continuous production of naphthalenedicarboxylic acid
JPH05163196A (en) Production process for 2,6-naphthalene-dicarboxylic acid
JPH04217639A (en) Production of 4,4&#39;-biphenyldicarboxylic acid
JPH03258748A (en) Production of 2,6-napthalenedicarboxylic acid
JP2003342227A (en) Method for producing biphenyltetracarboxylic acid
JPH03271249A (en) Production of 2,6-naphthalenedicarboxylic acid
JPS6217989B2 (en)
JPH05339202A (en) Production of naphthoic acid
JPH03271248A (en) Production of 2,6-naphthalenedicarboxylic acid

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011211

LAPS Cancellation because of no payment of annual fees