JPH063294A - Fluorescent x-ray spectral device - Google Patents

Fluorescent x-ray spectral device

Info

Publication number
JPH063294A
JPH063294A JP16305692A JP16305692A JPH063294A JP H063294 A JPH063294 A JP H063294A JP 16305692 A JP16305692 A JP 16305692A JP 16305692 A JP16305692 A JP 16305692A JP H063294 A JPH063294 A JP H063294A
Authority
JP
Japan
Prior art keywords
fluorescent
ray
pinhole
optical axis
zone plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16305692A
Other languages
Japanese (ja)
Inventor
Yasushi Muramatsu
康司 村松
Masaharu Oshima
正治 尾嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP16305692A priority Critical patent/JPH063294A/en
Publication of JPH063294A publication Critical patent/JPH063294A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To make spectral diffraction of a fluorescent X-ray from light element impurities in a solid material with a simple and small mechanical structure, analyze the chemical bonding state of the light elements, and analyze the distribution of the light elements with a space resolution of about several 10mum Xseveral 10mum. CONSTITUTION:An incident pinhole 1 and a zone plate 2 are arranged on an optical axis 11 with the generating point of a fluorescent X-ray 8 as a light source point, and the fluorescent X-ray spectrally diffracted and converged by the zone plate 2 is passed through an outgoing pinhole 3 arranged on the optical axis 11, and detected by a X-ray detector 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体などの固体材料
中の軽元素不純物から放射される蛍光X線を分光・検出
し、これにより前記不純物の化学状態および分布を知る
ことにより、これら材料の品質向上や制御を可能とする
材料評価技術における好適な蛍光X線分光装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention spectroscopically detects and analyzes fluorescent X-rays emitted from light element impurities in solid materials such as semiconductors, thereby knowing the chemical state and distribution of the impurities. The present invention relates to a preferred fluorescent X-ray spectroscopic device in a material evaluation technique that enables improvement and control of the quality.

【0002】[0002]

【従来の技術】周知のように固体材料中の軽元素の化学
結合状態を解析する蛍光X線分光装置として、(1)均
等刻線凹面回析格子を用いたローランド円マウント型分
光系、および(2)不等間隔刻線回析格子を用いた平面
結像型分光系(特願平3−192927号)がある。こ
れらの分光系では蛍光X線の分散方向が回析格子面に対
して垂直方向(垂直分散)であるため、蛍光X線のエネ
ルギスペクトルを測定する際には、この垂直方向の分散
面に沿って比例計数管などの蛍光X線検出器を曲線また
は直線状に駆動することが必要であった。すなわち、分
散方向が光軸方向と異なるため、蛍光X線検出器の駆動
方式が複雑となり、分光装置全体の大きさが通常 500mm
I × 500mmH × 100mmW 以上の大きさとなった。また、
これらの分光系では入射スリットおよび出射スリットの
形状が分散方向に対して幅が狭く細長いため、これら分
光系の入射スリット位置を固定試料に対して相対的に移
動させて試料中の軽元素の分布状態を調べる場合、その
細長い入射スリット形状で決まる空間分解能は通常数10
μm 〜数100 μm ×数mmの大きさであった。
2. Description of the Related Art As is well known, as a fluorescent X-ray spectroscopic apparatus for analyzing the chemical bonding state of light elements in a solid material, (1) a Roland circle mount type spectroscopic system using a uniformly-graded concave diffraction grating, and (2) There is a planar imaging type spectroscopic system (Japanese Patent Application No. 3-192927) using unequally spaced ruled diffraction gratings. In these spectroscopic systems, the dispersion direction of the fluorescent X-rays is the direction perpendicular to the diffraction grating surface (vertical dispersion), so when measuring the energy spectrum of the fluorescent X-rays, along the dispersion surface in the vertical direction. It was necessary to drive a fluorescent X-ray detector such as a proportional counter in a curved or linear manner. That is, since the dispersion direction is different from the optical axis direction, the driving method of the fluorescent X-ray detector becomes complicated, and the size of the entire spectroscopic device is usually 500 mm.
The size became larger than I × 500 mm H × 100 mm W. Also,
In these spectroscopic systems, the shape of the entrance slit and exit slit is narrow and narrow in the dispersion direction, so the position of the entrance slit of these spectroscopic systems is moved relative to the fixed sample, and the distribution of light elements in the sample is When examining the state, the spatial resolution determined by the shape of the elongated entrance slit is usually several tens.
The size was from μm to several 100 μm × several mm.

【0003】[0003]

【発明が解決しようとする課題】上記のように、従来技
術には材料中の軽元素不純物から放射される蛍光X線を
簡単かつ小さな機械構造分光することが困難であった。
さらに、軽元素不純物の分布を数10μm ×数10μm 程度
の高い空間分解能で測定することが困難であった。
As described above, in the prior art, it was difficult to perform simple and small mechanical structure spectroscopy of fluorescent X-rays emitted from light element impurities in the material.
Furthermore, it was difficult to measure the distribution of light element impurities with a high spatial resolution of several tens of μm × several tens of μm.

【0004】したがって、本発明の目的は固体材料中の
軽元素不純物からの蛍光X線を、簡単かつ小さな機械構
造で分光してこれら軽元素の化学結合状態の解析を可能
とするとともに、数10μm ×数10μm 程度の空間分解能
でこれら軽元素の分布の解析を可能とすることである。
Therefore, an object of the present invention is to analyze fluorescent X-rays from light element impurities in a solid material by a simple and small mechanical structure to analyze the chemical bonding state of these light elements, and also to detect several tens of μm. X It is possible to analyze the distribution of these light elements with a spatial resolution of about several tens of μm.

【0005】[0005]

【課題を解決するための手段】上記目的は、固体試料か
ら放射される蛍光X線を分散素子によって分光・集光し
て蛍光X線のエネルギ分布を測定する波長分散型の蛍光
X線分光装置において、以下の手段を講ずることにより
達成される。
The above object is to provide a wavelength dispersive fluorescent X-ray spectroscope for measuring the energy distribution of fluorescent X-rays by dispersing and condensing fluorescent X-rays emitted from a solid sample with a dispersive element. In the above, it is achieved by taking the following means.

【0006】(1)試料上において蛍光X線が放射され
る位置の近傍に入射ピンホールを設ける。この入射ピン
ホール位置を光源点とみなし、入射ピンホールを通過す
る蛍光X線の進行経路上(光軸)にゾーンプレートを設
ける。このゾーンプレートを通過した蛍光X線が回析効
果により分光され、光軸上においてゾーンプレートから
各エネルギに対応した焦点位置に集光される。この光軸
に沿って出射ピンホールとX線検出器から構成される検
出器ユニットを直線駆動する、ただし、出射ピンホール
の直径はゾーンプレートの最内帯の直径よりも小さくす
る。
(1) An incident pinhole is provided on the sample in the vicinity of the position where the fluorescent X-ray is emitted. The position of this incident pinhole is regarded as a light source point, and a zone plate is provided on the traveling path (optical axis) of the fluorescent X-ray passing through the incident pinhole. The fluorescent X-rays that have passed through this zone plate are dispersed by the diffraction effect and are condensed on the optical axis from the zone plate at the focal position corresponding to each energy. The detector unit consisting of the emission pinhole and the X-ray detector is linearly driven along this optical axis, but the diameter of the emission pinhole is made smaller than the diameter of the innermost zone of the zone plate.

【0007】(2)上記光学系において、光軸に対して
垂直面内で試料位置を二次元駆動する機構を備えた試料
ホルダを設ける。
(2) In the above optical system, a sample holder having a mechanism for two-dimensionally driving the sample position in a plane perpendicular to the optical axis is provided.

【0008】[0008]

【作用】上記構成の本発明の蛍光X線分光装置では、固
体試料から蛍光X線が放射される位置の近傍に入射ピン
ホールを設け、このピンホールに蛍光X線を通過させ
る。その後蛍光X線をゾーンプレートに入射させて蛍光
X線を分光し、各エネルギ毎に分けられた蛍光X線を光
軸上の所定の位置に集光させる。この光軸に沿って出射
ピンホールと一体化したX線検出器を直線駆動させるこ
とにより蛍光X線のエネルギスペクトルを得る。ただ
し、出射ピンホールの直径をゾーンプレート最内帯の直
径より小さくすることにより、蛍光X線のゼロ次光が出
射ピンホールに入射しないようにする。
In the X-ray fluorescence spectrometer of the present invention having the above-mentioned structure, an incident pinhole is provided in the vicinity of the position where the X-ray fluorescence is emitted from the solid sample, and the X-ray fluorescence passes through this pinhole. After that, the fluorescent X-rays are made incident on the zone plate to disperse the fluorescent X-rays, and the fluorescent X-rays divided for each energy are condensed at a predetermined position on the optical axis. The energy spectrum of the fluorescent X-ray is obtained by linearly driving the X-ray detector integrated with the emission pinhole along this optical axis. However, by making the diameter of the emission pinhole smaller than the diameter of the innermost zone of the zone plate, zero-order light of fluorescent X-rays is prevented from entering the emission pinhole.

【0009】また、二次元駆動する機構を備えた試料ホ
ルダを二次元駆動しながら、上記のように蛍光X線を検
出することで、蛍光X線を放出する軽元素についての二
次元分布を得る。
Further, by detecting the fluorescent X-rays as described above while two-dimensionally driving the sample holder provided with a mechanism for two-dimensionally driving, a two-dimensional distribution of the light elements emitting the fluorescent X-rays is obtained. .

【0010】[0010]

【実施例】次に本発明の実施例を図面を参照して説明す
る。
Embodiments of the present invention will now be described with reference to the drawings.

【0011】図1は本発明の一実施例に係る蛍光X線分
光装置の光学配置を示す図である。即ち、蛍光X線分光
装置は主に入射ピンホール1、ゾーンプレート2、出射
ピンホール3、およびX線検出器4から構成される。さ
らに二次元駆動機構を備えた試料ホルダ5が設けられ
る。入射ピンホール1とゾーンプレート2間の距離をf
1 、ゾーンプレート2と出射ピンホール3間の距離f2
とすると、焦点距離をfとして式(1)の関係が成立す
る。
FIG. 1 is a view showing the optical arrangement of an X-ray fluorescence spectrometer according to one embodiment of the present invention. That is, the fluorescent X-ray spectroscope mainly comprises an incident pinhole 1, a zone plate 2, an emission pinhole 3, and an X-ray detector 4. Further, a sample holder 5 having a two-dimensional drive mechanism is provided. The distance between the incident pinhole 1 and the zone plate 2 is f
1 , the distance f 2 between the zone plate 2 and the output pinhole 3
Then, the relationship of Expression (1) is established with the focal length as f.

【0012】 1/f1 + 1/f2 = 1/f (1) また、ゾーンプレート2の分光・集光特性から、ゾーン
プレート最内帯6の半径r1 と焦点距離fで分光された
光の波長λとの間には式(2)が成立する r1 2 = fλ (2) よって、波長λの蛍光X線が集光する位置f2 は式
(3)で表される。
1 / f 1 + 1 / f 2 = 1 / f (1) Further, from the spectral / condensing characteristics of the zone plate 2, the light is dispersed at the radius r 1 of the zone plate innermost zone 6 and the focal length f. Equation (2) holds between the wavelength λ of light and r 1 2 = fλ (2) Therefore, the position f 2 at which the fluorescent X-ray of wavelength λ is focused is represented by Equation (3).

【0013】 f2 = 1/( λ〜r1 2 − 1/f1 ) (3) 例えば、f1 =500 mm、r1 =33.9μm とした場合、試
料7から放射された蛍光X線8のうち100eV のエネルギ
を持つ蛍光X線9はf2 =113,8 mm、300eV のエネルギ
を持つ蛍光X線10はf2 =626.4 mmのそれぞれの位置に
集光される。したがって、出射ピンホール3とX線検出
器4を光軸11に沿って約500 mm直線駆動させることによ
り100 〜300eV のエネルギ領域において蛍光X線のエネ
ルギスペクトルを得ることができる。
F 2 = 1 / (λ˜r 1 2 −1 / f 1 ) (3) For example, when f 1 = 500 mm and r 1 = 33.9 μm, the fluorescent X-rays 8 emitted from the sample 7 Among them, the fluorescent X-ray 9 having energy of 100 eV is focused at f 2 = 113,8 mm and the fluorescent X-ray 10 having energy of 300 eV is focused at f 2 = 626.4 mm. Therefore, by linearly driving the emission pinhole 3 and the X-ray detector 4 along the optical axis 11 by about 500 mm, an energy spectrum of fluorescent X-rays can be obtained in the energy region of 100 to 300 eV.

【0014】図2は本発明により実現したホウ素(B)
試料12および窒化ホウ素(BN)試料13から放射されたBK
α蛍光X線のエネルギスペクトルである。ホウ素試料12
および窒化ホウ素試料13の蛍光X線ピーク位置は上記光
学系においてf2 =256.7 mm、250 mmの位置に出射ピン
ホール3とX線検出器4を設置した場合に得られる。
FIG. 2 shows boron (B) realized by the present invention.
BK emitted from sample 12 and boron nitride (BN) sample 13
It is an energy spectrum of an α fluorescent X-ray. Boron sample 12
Also, the fluorescent X-ray peak position of the boron nitride sample 13 is obtained when the emitting pinhole 3 and the X-ray detector 4 are installed at the positions of f 2 = 256.7 mm and 250 mm in the above optical system.

【0015】図3はホウ素と窒化ホウ素の混合試料につ
いてf2 =256.7 mmおよび250 mmの位置に出射ピンホー
ル3とX線検出器4を配置するとともに、試料ホルダ5
を二次元駆動させることで得たホウ素(12)と窒化ホウ
素(13)の分布図である。
FIG. 3 shows the sample holder 5 with the output pinhole 3 and the X-ray detector 4 arranged at the positions of f 2 = 256.7 mm and 250 mm for the mixed sample of boron and boron nitride.
FIG. 3 is a distribution diagram of boron (12) and boron nitride (13) obtained by two-dimensionally driving.

【0016】前記 BK α蛍光X線のエネルギスペクトル
(図2)から、ホウ素原子の結合状態によって変化する
2p-1s 間の電子軌道エネルギ準位について解析すること
が可能となる。さらに、 BK α蛍光X線検出によるホウ
素化合物の分布(図3)から、結合状態の異なる元素の
分布状態を解析することが可能となる。
From the energy spectrum of the BK α fluorescent X-ray (FIG. 2), it changes depending on the bonding state of the boron atom.
It becomes possible to analyze the electron orbital energy level between 2p-1s. Furthermore, it becomes possible to analyze the distribution state of elements having different binding states from the distribution of the boron compound by BK α fluorescent X-ray detection (FIG. 3).

【0017】[0017]

【発明の効果】以上説明したように、本発明では蛍光X
線の分光・集光素子としてゾーンプレートを用いること
により、蛍光X線の分散方向を光軸方向と一致させるこ
とにより機構構成を簡単にすることが可能となり、かつ
飛躍的に装置サイズの縮少が可能となる。さらに、ピン
ホールを入射スリットとして用い、蛍光X線の検出範囲
を狭くすることにより、空間分解能を高めた軽元素の状
態選別マッピングが可能となる。
As described above, in the present invention, the fluorescent X
By using a zone plate as a light-splitting / condensing element, the mechanism configuration can be simplified by making the dispersion direction of fluorescent X-rays coincide with the optical axis direction, and the device size is dramatically reduced. Is possible. Furthermore, by using a pinhole as an entrance slit and narrowing the detection range of fluorescent X-rays, it becomes possible to perform state selection mapping of light elements with improved spatial resolution.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る蛍光X線分光装置にお
ける光学系の側面構成説明図である。
FIG. 1 is a side view illustrating a configuration of an optical system in an X-ray fluorescence spectrometer according to an embodiment of the present invention.

【図2】本発明により実現した固体状ホウ素試料と窒化
ホウ素試料から放射されたBKα蛍光X線のエネルギスペ
クトルの一例を示す特性図である。
FIG. 2 is a characteristic diagram showing an example of energy spectra of BKα fluorescent X-rays emitted from a solid boron sample and a boron nitride sample realized by the present invention.

【図3】本発明により実現したホウ素と窒化ホウ素の混
合試料についてホウ素と窒化ホウ素を区別して測定した
ホウ素の一例を示す分布図である。
FIG. 3 is a distribution diagram showing an example of boron measured by distinguishing between boron and boron nitride for a mixed sample of boron and boron nitride realized by the present invention.

【符号の説明】[Explanation of symbols]

1…入射ピンホール、2…ゾーンプレート、3…出射ピ
ンホール、4…X線検出器、5…試料ホルダ、6…ゾー
ンプレート最内帯、7…試料、8…蛍光X線、9…エネ
ルギ100eV を持つ蛍光X線、10…エネルギ300eV を持
つ蛍光X線、11…光軸、12…ホウ素試料、13…窒
化ホウ素試料。
1 ... Incident pinhole, 2 ... Zone plate, 3 ... Exit pinhole, 4 ... X-ray detector, 5 ... Sample holder, 6 ... Zone plate innermost zone, 7 ... Sample, 8 ... Fluorescent X-ray, 9 ... Energy Fluorescent X-ray having 100 eV, 10 ... Fluorescent X-ray having energy of 300 eV, 11 ... Optical axis, 12 ... Boron sample, 13 ... Boron nitride sample.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 蛍光X線の発生点を光源点として光軸上
に入射ピンホールとゾーンプレートを配し、このゾーン
プレートによって分光かつ集光された蛍光X線を光軸上
に配した出射ピンホールを通してX線検出器で検出する
ことを特徴とする蛍光X線分光装置。
1. An emission pinhole and a zone plate are arranged on the optical axis with a fluorescent X-ray generation point as a light source point, and fluorescent X-rays dispersed and condensed by this zone plate are arranged on the optical axis. An X-ray fluorescence spectroscopic device characterized by being detected by an X-ray detector through a pinhole.
【請求項2】 請求項1記載の蛍光X線分光装置におい
て、出射ピンホールスリットと一体化したX線検出器を
光軸に沿って駆動することを特徴とする蛍光X線分光装
置。
2. The X-ray fluorescence spectrometer according to claim 1, wherein an X-ray detector integrated with the exit pinhole slit is driven along the optical axis.
【請求項3】 請求項1記載の蛍光X線分光装置におい
て、光源点付近に入射ピンホールを配し、かつ蛍光X線
を発生する固体試料を上下左右に駆動する試料ホルダを
持つことを特徴とする蛍光X線分光装置。
3. The X-ray fluorescence spectrometer according to claim 1, further comprising an incident pinhole near the light source point, and a sample holder for driving a solid X-ray-generating solid sample vertically and horizontally. X-ray fluorescence spectrometer.
JP16305692A 1992-06-22 1992-06-22 Fluorescent x-ray spectral device Pending JPH063294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16305692A JPH063294A (en) 1992-06-22 1992-06-22 Fluorescent x-ray spectral device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16305692A JPH063294A (en) 1992-06-22 1992-06-22 Fluorescent x-ray spectral device

Publications (1)

Publication Number Publication Date
JPH063294A true JPH063294A (en) 1994-01-11

Family

ID=15766340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16305692A Pending JPH063294A (en) 1992-06-22 1992-06-22 Fluorescent x-ray spectral device

Country Status (1)

Country Link
JP (1) JPH063294A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003102564A2 (en) * 2002-05-29 2003-12-11 Xradia, Inc. Element-specific x-ray fluorescence microscope using multiple imaging systems comprising a zone plate
JP2007127511A (en) * 2005-11-04 2007-05-24 Casio Comput Co Ltd Epma unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48102682A (en) * 1972-04-10 1973-12-24
JPS57138613A (en) * 1981-02-20 1982-08-27 Toshiba Corp Spectromicroscope
JPS5952235A (en) * 1982-09-20 1984-03-26 Hitachi Medical Corp X-ray film picture reader

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48102682A (en) * 1972-04-10 1973-12-24
JPS57138613A (en) * 1981-02-20 1982-08-27 Toshiba Corp Spectromicroscope
JPS5952235A (en) * 1982-09-20 1984-03-26 Hitachi Medical Corp X-ray film picture reader

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003102564A2 (en) * 2002-05-29 2003-12-11 Xradia, Inc. Element-specific x-ray fluorescence microscope using multiple imaging systems comprising a zone plate
WO2003102564A3 (en) * 2002-05-29 2004-03-18 Xradia Inc Element-specific x-ray fluorescence microscope using multiple imaging systems comprising a zone plate
US7183547B2 (en) 2002-05-29 2007-02-27 Xradia, Inc. Element-specific X-ray fluorescence microscope and method of operation
US7245696B2 (en) 2002-05-29 2007-07-17 Xradia, Inc. Element-specific X-ray fluorescence microscope and method of operation
JP2007127511A (en) * 2005-11-04 2007-05-24 Casio Comput Co Ltd Epma unit

Similar Documents

Publication Publication Date Title
CN110678743B (en) X-ray spectroscopic analyzer
US20170052128A1 (en) Detector for x-rays with high spatial and high spectral resolution
US6697454B1 (en) X-ray analytical techniques applied to combinatorial library screening
US7265827B2 (en) Double grating three dimensional spectrograph with multi-directional diffraction
US4636074A (en) Optics system for emission spectrometer
US6952260B2 (en) Double grating three dimensional spectrograph
JP4715345B2 (en) X-ray analyzer
EP0558216A1 (en) Spectrometry
JP2002189004A (en) X-ray analyzer
US20120292508A1 (en) X-Ray Detection System
EP0614073A1 (en) Spectroscopic analysis
JP3583485B2 (en) Total reflection X-ray fluorescence analyzer
JPH063294A (en) Fluorescent x-ray spectral device
JP2000329714A (en) X-ray fluorescence analyzer
JP2006337284A (en) Method and device for measuring stray light of grating
JP3126718B2 (en) Multi-channel fluorescence spectrometer
JP2766199B2 (en) X-ray analyzer
JPH11190695A (en) Semiconductor stress measuring raman spectrophotometer
JPH06180254A (en) Spectrophotometer
JPH1151883A (en) Method and equipment for fluorescent x-ray analysis
JP3498689B2 (en) Monochromator for monochrome source excitation and X-ray fluorescence analyzer
JP2005172568A (en) Optical device and measuring device having same
JP2000214107A (en) X-ray fluorescence analyzer
JPH11149000A (en) Energy measurement device of laser plasma soft x-ray
JPH0611466A (en) Method and device for fluorescent x-ray spectrometry