JPH0632815B2 - Disinfectant, its manufacturing method and water purification method using the same - Google Patents

Disinfectant, its manufacturing method and water purification method using the same

Info

Publication number
JPH0632815B2
JPH0632815B2 JP63186279A JP18627988A JPH0632815B2 JP H0632815 B2 JPH0632815 B2 JP H0632815B2 JP 63186279 A JP63186279 A JP 63186279A JP 18627988 A JP18627988 A JP 18627988A JP H0632815 B2 JPH0632815 B2 JP H0632815B2
Authority
JP
Japan
Prior art keywords
water
disinfectant
bacteria
present
polyglycidyl methacrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63186279A
Other languages
Japanese (ja)
Other versions
JPH0236211A (en
Inventor
辰夫 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP63186279A priority Critical patent/JPH0632815B2/en
Publication of JPH0236211A publication Critical patent/JPH0236211A/en
Publication of JPH0632815B2 publication Critical patent/JPH0632815B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Water Treatment By Sorption (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、新規な除菌剤に関し、また浄水方法、さらに
詳しくいえば、特定の高分子化合物を用いて、水の中に
存在する細菌、例えば大腸菌、黄色ブドウ球菌、緑膿菌
などのグラム陰性菌及び陽性菌に属する細菌を吸着除去
することにより浄水する方法に関する。
TECHNICAL FIELD The present invention relates to a novel disinfectant, and a method for water purification, more specifically, using a specific polymer compound, bacteria existing in water, for example, The present invention relates to a method for purifying water by adsorbing and removing bacteria belonging to Gram-negative bacteria and positive bacteria such as Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa.

従来の技術 環境汚染防止や保健上の観点から、水泳プール、浴場、
病院の用排水は殺菌する必要があるし、飲料用として河
川水、地下水、井戸水などを供する場合殺菌処理が行わ
れている。このような水の殺菌には、塩素系無機化合
物、オゾンなどの殺菌剤が用いられているが、このよう
な殺菌方法では薬剤が残留したり、例えば塩素系殺菌剤
では水中の有機化合物を酸化して有毒なハロメタン類を
生成するなど、二次汚染をもたらすという欠点がある。
Conventional technology From the viewpoint of environmental pollution prevention and health, swimming pools, baths,
Hospital wastewater needs to be sterilized, and sterilization is performed when using river water, groundwater, well water, etc. for drinking. For sterilizing such water, bactericides such as chlorine-based inorganic compounds and ozone are used. However, in such sterilization methods, the chemicals remain, for example, chlorine-based sterilizers oxidize organic compounds in water. However, there is a drawback that it causes secondary pollution such as generation of toxic halomethanes.

一方、水を浄化する方法として水中の細菌を捕捉又は吸
着除去する方法がある。この方法は非水溶性物質を用い
るので、薬剤は水中に残留しないが、代表的な強塩基性
アニオン交換樹脂は水中の細菌を吸着除去する機能を有
するものの、その吸着能は小さい。またジビニルベンゼ
ンで架橋したポリ−N−ベンジル−4−ビニルピリジニ
ウムブロミドも水中の細菌を吸着するが、その吸着能は
あまり大きくない。
On the other hand, as a method of purifying water, there is a method of trapping or adsorbing and removing bacteria in water. Since this method uses a water-insoluble substance, the drug does not remain in water, but a typical strongly basic anion exchange resin has a function of adsorbing and removing bacteria in water, but its adsorption ability is small. Although poly-N-benzyl-4-vinylpyridinium bromide crosslinked with divinylbenzene also adsorbs bacteria in water, its adsorption ability is not so large.

本発明者は、上記の問題について研究を重ねた結果、先
に有効物質としてジビニルベンゼンで架橋したポリスチ
レンを主体とした球状の高分子化合物を提案した(特公
平1−49725号公報)。しかし、このものは細菌吸着能
が大きいものの、球径が小さいためカラムに充填して使
用するとつまりやすく、被処理水の通過が困難となる
し、また球径を大きくすれば被処理水の通過は容易とな
るが、単位質量当りの表面積は小さくなり、したがって
吸着能は小さくなるという欠点を有する。
As a result of repeated studies on the above problems, the present inventor previously proposed a spherical polymer compound mainly composed of polystyrene crosslinked with divinylbenzene as an effective substance (Japanese Patent Publication No. 149725/1989). However, although it has a large capacity for adsorbing bacteria, it has a small sphere diameter and is therefore easily clogged when packed into a column for use, making it difficult for the water to be treated to pass through. However, it has a drawback that the surface area per unit mass is small and therefore the adsorption capacity is small.

発明が解決しようとする課題 本発明は、このような事情の下、水中の細菌を除去する
のに優れ、しかも残留毒性がなく、取り扱いやすく、後
処理が容易である上、低コストの除菌剤及びこれを用い
た浄水方法を提供することを目的としてなされたもので
ある。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention Under the circumstances, the present invention is excellent in removing bacteria in water, has no residual toxicity, is easy to handle, is easy to post-process, and is low-cost sterilization. It was made for the purpose of providing an agent and a water purification method using the agent.

課題を解決するための手段 本発明者は、前記した好ましい性質を有する除菌剤及び
浄水方法について、種々研究を重ねた結果、巨大網状構
造をもつ架橋化したポリグリシジルメタクリレートを主
体とする非水溶性球状高分子を用いることにより、その
目的が達成されることを見出し、この知見に基づいて本
発明をなすに至った。
Means for Solving the Problems The present inventor has conducted various studies on the disinfectant having the above-mentioned preferable properties and a water purification method, and as a result, a water-insoluble substance mainly composed of a crosslinked polyglycidyl methacrylate having a giant network structure. It has been found that the object can be achieved by using a hydrophilic spherical polymer, and the present invention has been completed based on this finding.

すなわち、本発明は、一般式 (式中のRはポリエチレンポリアミン残基又はポリエチ
レンイミン残基である) で表わされる構成単位を有するポリグリシジルメタクリ
レートの架橋化物を有効成分とすることを特徴とする除
菌剤、及び細菌で汚染された水を、このポリグリシジル
メタクリレートの架橋化物を用いて接触処理することに
より浄化する方法を提供するものである。
That is, the present invention has the general formula (R in the formula is a polyethylene polyamine residue or a polyethylene imine residue) A disinfectant characterized by comprising a cross-linked product of polyglycidyl methacrylate having a structural unit represented by The present invention provides a method for purifying water by contacting it with a crosslinked product of this polyglycidyl methacrylate.

本発明の除菌剤は、例えばポリグリシジルメタクリレー
トの架橋化物にポリエチレンポリアミン又はポリエチレ
ンイミンを反応させることにより製造することができ
る。
The disinfectant of the present invention can be produced, for example, by reacting a crosslinked product of polyglycidyl methacrylate with polyethylene polyamine or polyethylene imine.

この原料に用いるポリグリシジルメタクリレート(以
下、PGMAと略記する)の架橋化物はメタクリル酸グ
リシジル(以下、GMAと略記する)とジビニルベンゼ
ンのようなビニルモノマーとの共重合、好ましくは懸濁
共重合によってゲル型あるいは巨大網状構造〔マクロレ
クチラー(以下MRと略記する)〕型球状体として製造
することができる。前者の球状体の表面は滑らかである
が、後者の球状体の表面は多孔質でその表面積は前者よ
りもはるかに大きく、そのため水中に存在する物質を除
去する上で除去速度及び除去量を大きくしうるという利
点がある。
The crosslinked product of polyglycidyl methacrylate (hereinafter abbreviated as PGMA) used for this raw material is obtained by copolymerization of glycidyl methacrylate (hereinafter abbreviated as GMA) and a vinyl monomer such as divinylbenzene, preferably suspension copolymerization. It can be manufactured as a gel type or a giant reticulated structure [macrorectile (hereinafter abbreviated as MR)] type spherical body. The surface of the former spherical body is smooth, but the surface of the latter spherical body is porous and its surface area is much larger than that of the former, so that the removal rate and removal amount in removing the substance existing in water are large. The advantage is that

GMAの懸濁単独重合の際には、重合の間にグリシジル
基が多少開環して架橋化した球状体が得られる。このも
のは、アセトン、ジオキサン、ベンゼン、トルエン、酢
酸エチル、クロロホルム、ジメチルホルムアミドなどの
有機溶媒に不溶である。本発明においては、このような
架橋化物を用いることもできる。
In the suspension homopolymerization of GMA, a spherical body in which a glycidyl group is slightly opened during the polymerization to form a crosslinked body is obtained. This is insoluble in organic solvents such as acetone, dioxane, benzene, toluene, ethyl acetate, chloroform and dimethylformamide. In the present invention, such a crosslinked product can also be used.

GMAの溶液重合においては、その濃度を大きくする
と、GMAの反応率が30%程度であっても架橋化してゲ
ル化が起こり、ゲル化PGMAは上記溶媒に不溶となる
ことが知られている。
It is known that in the solution polymerization of GMA, when the concentration thereof is increased, the gelation PGMA becomes insoluble in the above solvent due to crosslinking and gelation even when the reaction rate of GMA is about 30%.

また、前記球状体は、球径が等しいとき、GMAとジビ
ニルベンゼンとのモル比が96〜98:4〜2の共重合体の
方が単独重合体よりも単位質量当りの表面積の大きいこ
とも知られている。
Further, in the spherical body, when the spherical diameters are the same, a copolymer having a molar ratio of GMA to divinylbenzene of 96 to 98: 4 to 2 has a larger surface area per unit mass than a homopolymer. Are known.

これらのPGMAの架橋化物にポリエチレンポリアミ
ン、ポリエチレンイミンを導入するには、公知のクロロ
メチル化ポリスチレン球状体のアミノ化方法(特公昭62
-51652号公報)と同じような方法を用いて行うことがで
きる。
In order to introduce polyethylene polyamine and polyethylene imine into these PGMA cross-linked products, a known amination method of chloromethylated polystyrene spheres (Japanese Patent Publication No. Sho 62).
-51652).

通常ゲル型PGMA球状体へのアミン類等の反応量は小
さく、例えば所定の同様の反応条件でMR型PGMA球
状体の質量増加率は50〜52%であるのに対し、ゲル型P
GMA球状体のそれは11.5%であった。
Usually, the reaction amount of amines or the like to the gel-type PGMA spheres is small, and for example, the mass increase rate of the MR-type PGMA spheres is 50 to 52% under predetermined similar reaction conditions, whereas the gel-type PGM spheres
That of GMA spheroids was 11.5%.

本発明に従えば、前記のようにして得た除菌剤を細菌で
汚染された水(以下、細菌含有水ともいう)に加え、か
きまぜ、これに細菌を十分に接触させることによって除
菌することができる。このようにかきまぜ接触を続ける
ことによって細菌は除菌剤に吸着され水中の生菌数は減
少する。接触初期(3〜4時間)では時間経過に伴う生
菌数の対数と接触時間との間にはほぼ直線関係が成立し
た。そこで、水中の生菌数を減少させる除菌剤の機能を
生菌数減少係数(D)と名づけ、これを次式から求めて
比較した。
According to the present invention, the disinfectant obtained as described above is added to water contaminated with bacteria (hereinafter, also referred to as bacteria-containing water), stirred, and bacteria are sufficiently contacted with the bacteria to disinfect them. be able to. Bacteria are adsorbed on the disinfectant by continuing the stirring contact as described above, and the number of viable bacteria in the water is reduced. At the initial stage of contact (3 to 4 hours), a nearly linear relationship was established between the logarithm of the viable cell count over time and the contact time. Therefore, the function of the disinfectant for reducing the viable cell count in water was named the viable cell count reduction coefficient (D), and this was calculated from the following equation and compared.

D=(V/Wt)log(No/Nt) ここでVは細菌含有水の容量(m)、Wは高分子の質
量(g)、tは接触時間(h)、N及びNはそれぞ
れ細菌含有水1m中の初生菌数及び接触t時間後の生
菌数である。
D = (V / Wt) log (N o / N t ), where V is the volume of water containing bacteria (m), W is the mass of the polymer (g), t is the contact time (h), N o and N t is the number of priming bacteria in 1 m of water containing bacteria and the number of viable bacteria after contact time t.

PGMA球状体と大腸菌(IFO12734)含有水とのか
きまぜ(約300rpm)接触で、そのDは1以下であった。
その値は本発明の除菌剤のDよりもはるかに小さかっ
た。また、菌懸濁液の660nmの吸光度(od660
を測定した。PGMAとの接触では4時間接触後のod
660は接触前よりもあまり減少しなかったが、本発明
の除菌剤との接触では4時間接触後のod660は接触
前の数値の1/2以下に減少した。このことから、PG
MA球状体は大腸菌をほとんど吸着除去しないが、本発
明の除菌剤は大腸菌を吸着除去することが分った。さら
に、このように接触処理させた本発明の除菌剤を水洗
後、走査型電子顕微鏡で観察すると、表面に菌体が観察
された。本発明の除菌剤の同種細菌吸着におけるDにつ
いては、初生菌数及び除菌剤使用量にある程度の差異が
あってもほとんど変りはなかった。
The D value was 1 or less when the PGMA spheroids were agitated (about 300 rpm) with water containing E. coli (IFO12734).
The value was much smaller than D of the disinfectant of the present invention. In addition, the absorbance of the bacterial suspension at 660 nm (od 660 )
Was measured. In contact with PGMA, od after 4 hours contact
660 did not decrease much than before contact, but in contact with the disinfectant of the present invention, od 660 after contact for 4 hours decreased to less than half of the value before contact. From this, PG
It was found that the MA spheroids hardly adsorb and remove E. coli, but the disinfectant of the present invention adsorbs and removes E. coli. Furthermore, when the disinfectant of the present invention thus contact-treated was washed with water and then observed with a scanning electron microscope, bacterial cells were observed on the surface. The D of the disinfectant of the present invention in adsorbing allogeneic bacteria was almost unchanged even if there were some differences in the number of priming bacteria and the amount of the disinfectant used.

カラム方式で水中の細菌を除去する場合、カラムに本発
明の除菌剤を充填し、一方の口から細菌含有水を供給
し、もう一方の口から除去された水を得ることができ
る。細菌を吸着し、飽和した本発明の除菌剤は1N程度
の水酸化ナトリウム液に浸せきするか、あるいはこれを
充填したカラムに同液を通過させることによって、その
吸着能を再生することができる。
When removing bacteria in water by a column method, a column can be filled with the disinfectant of the present invention, water containing bacteria can be supplied from one port, and water removed from the other port can be obtained. The sterilizing agent of the present invention, which adsorbs bacteria and is saturated, can regenerate its adsorptive capacity by immersing it in a sodium hydroxide solution of about 1N or by passing the solution through a column packed with this solution. .

発明の効果 本発明の除菌剤は、水中の細菌を捕捉、吸着して除去す
る性能に優れ、残留毒性がなく、取り扱いやすく、後処
理が容易で、かつ製造コストが低いという顕著な効果を
奏する。
EFFECT OF THE INVENTION The disinfectant of the present invention has excellent effects of capturing, adsorbing and removing bacteria in water, having no residual toxicity, easy to handle, easy to post-process, and low in manufacturing cost. Play.

本発明の浄水方法によれば、水中の細菌は効率よく、吸
着、捕捉される。またこの方法は不溶の高分子物質を接
触処理に用いているので、残留毒性の問題はなく、細菌
含有水を処理しやすく、処理コストを低くすることがで
きる。
According to the water purification method of the present invention, bacteria in water are efficiently adsorbed and captured. Further, since this method uses the insoluble polymer substance for the contact treatment, there is no problem of residual toxicity, the water containing bacteria is easily treated, and the treatment cost can be reduced.

実施例 次に実施例により本発明をさらに詳細に説明する。EXAMPLES Next, the present invention will be described in more detail with reference to Examples.

実施例1〜2 三口フラスコに水400m、1%ゼラチン水溶液20m
及び無水硫酸ナトリウム6gを入れ、かきまぜて均一溶
液とする。GMA55.7g(0.392mo)、ジビニルベ
ンゼン1.89g(純度55%として0.008mo)、過酸化
ベンゾイル0.50g及びトリメチルペンタン28mの混合
溶液を三口フラスコに加え、室温で1時間かきまぜた
後、かきまぜながら1時間かけて80℃まで昇温、さらに
80℃で1時間かきまぜた後放冷した。生成物をろ別し、
熱水及びメタノールで洗浄後減圧乾燥してPGMAの架
橋化物よりなる球状高分子を得た。収量53.2g。
Examples 1-2: 400 m water in a three-necked flask, 20 m 1% gelatin aqueous solution
And 6 g of anhydrous sodium sulfate are added and stirred to make a uniform solution. A mixed solution of 55.7 g (0.392 mo) of GMA, 1.89 g of divinylbenzene (0.008 mo as a purity of 55%), 0.50 g of benzoyl peroxide and 28 m of trimethylpentane was added to a three-necked flask, and the mixture was stirred at room temperature for 1 hour and then stirred for 1 hour. Temperature rises to 80 ℃ over time, and
After stirring at 80 ° C for 1 hour, the mixture was allowed to cool. The product is filtered off,
It was washed with hot water and methanol and dried under reduced pressure to obtain a spherical polymer composed of a cross-linked product of PGMA. Yield 53.2g.

この球状高分子の48〜100メッシュのもの2.00gとジオ
キサン40mを三口フラスコに入れ、分子量約600のポ
リエチレンイミン(以下、PEI600と略記する)10.0
gを加えて、約98℃で72時間かきまぜた。反応生成物を
ろ別し、熱水で充分洗い、さらに1N塩酸、0.2N水酸
化ナトリウムで洗い、次に洗液が中性になるまで水洗後
乾燥した。収量3.04g。
2.00 g of this spherical polymer of 48-100 mesh and 40 m of dioxane are placed in a three-necked flask, and polyethyleneimine (hereinafter abbreviated as PEI600) 10.0 having a molecular weight of about 10.0
g, and stirred at about 98 ° C. for 72 hours. The reaction product was separated by filtration, washed thoroughly with hot water, further washed with 1N hydrochloric acid and 0.2N sodium hydroxide, then washed with water until the washings became neutral, and then dried. Yield 3.04g.

また別に、上記ポリエチレンイミンに代えてテトラエチ
レンペンタミン5.20gを用いた以外は同様に反応させ、
反応生成物を後処理した。収量3.00g。
Separately, the same reaction was performed except that 5.20 g of tetraethylenepentamine was used in place of the polyethyleneimine,
The reaction product was worked up. Yield 3.00g.

さらにこれらの生成物をそれぞれ100mの三口フラス
コに入れ、水約80mを加え96〜100℃で12時間かきま
ぜ洗浄後熱水を除去した。この操作を10回繰り返した
後、ソックスレー抽出器を用い、エタノールで72時間洗
浄して所望の除菌剤を得た。
Further, each of these products was put into a 100 m three-necked flask, about 80 m of water was added, and the mixture was stirred and washed at 96 to 100 ° C. for 12 hours, and hot water was removed. After repeating this operation 10 times, it was washed with ethanol for 72 hours using a Soxhlet extractor to obtain a desired disinfectant.

このようにして得られた除菌剤と大腸菌(IFO1273
4)との接触は次のように行った。
The disinfectant thus obtained and E. coli (IFO1273
Contact with 4) was made as follows.

培養した大腸菌を遠心分離により集菌し、これを滅菌生
理食塩水に再懸濁した後、遠心分離によって集菌した。
これを合計2回行った後、生理食塩水に再懸濁した。各
球状高分子0.100〜0.150gをそれぞれ50mのナス型フ
ラスコに入れ、滅菌生理食塩水を18〜19m加えて除菌
剤を水によく濡らした。これを37℃に保ち、適当に薄め
た菌懸濁液を2〜1m加えて全容を20mとし、かき
まぜて接触処理した。一定時間ごとに接触処理液0.1m
を採取し、適当に薄めた後(例えば1/102、さらに
1/10、…など)、その0.1〜0.2mを寒天培地に植え
つけて培養し、生成したコロニー数から接触処理液中の
生菌数を求めた。
The cultured Escherichia coli was collected by centrifugation, resuspended in sterile physiological saline, and then collected by centrifugation.
This was repeated twice in total and then resuspended in physiological saline. 0.100 to 0.150 g of each spherical polymer was placed in a 50 m eggplant-shaped flask and 18 to 19 m of sterilized physiological saline was added to wet the sterilizing agent well with water. This was kept at 37 ° C., and an appropriately diluted bacterial suspension was added in an amount of 2 to 1 m so that the total volume was 20 m. Contact treatment liquid 0.1m at regular intervals
After harvesting and diluting appropriately (for example, 1/10 2 , further 1/10, ...), inoculating 0.1-0.2 m thereof into an agar medium and culturing. From the number of generated colonies, The viable cell count was determined.

各測定時の生菌数の対数と経過時間との間にほぼ直線関
係が成立した。これからDを求めた。表1に初生菌数、
D、接触前及び4時間接触させた後のod660を示
す。
A nearly linear relationship was established between the logarithm of the viable cell count at each measurement and the elapsed time. From this, D was obtained. Table 1 shows the number of primary bacteria,
D, od 660 before contact and after contact for 4 hours.

この除菌剤のDは球径を考慮に入れると、橋かけポリス
チレン−PEI600(特公平1−49725号公報参照)(生
理食塩水でのD=120m/g・h)に比較してあまり
小さくない。また、架橋化したポリビニルピリジニウム
ブロミドを主体とする除菌剤(除菌係数7.1)よりかな
り大きい。
Considering the spherical diameter, D of this disinfectant is much smaller than that of cross-linked polystyrene-PEI 600 (see Japanese Patent Publication No. 1-49725) (D = 120 m / g · h in physiological saline). Absent. In addition, it is considerably larger than the disinfectant mainly composed of cross-linked polyvinylpyridinium bromide (disinfection coefficient 7.1).

比較例 PEI600又はテトラエチレンペンタミンと反応させる
前のPGMAを実施例と同様に、大腸菌との接触試験に
付した。その結果を表1に示す。
Comparative Example PGMA before reacting with PEI600 or tetraethylenepentamine was subjected to a contact test with E. coli in the same manner as in Examples. The results are shown in Table 1.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】一般式 (式中のRはポリエチレンポリアミン残基又はポリエチ
レンイミン残基である) で表わされる構成単位を有するポリグリシジルメタクリ
レートの架橋化物を有効成分とすることを特徴とする除
菌剤。
1. A general formula (R in the formula is a polyethylene polyamine residue or a polyethylene imine residue) A cross-linked product of polyglycidyl methacrylate having a structural unit represented by the formula (1) as an active ingredient.
【請求項2】ポリグリシジルメタクリレートがジビニル
ベンゼンにより架橋化された特許請求の範囲第1項記載
の除菌剤。
2. The disinfectant according to claim 1, wherein polyglycidyl methacrylate is crosslinked with divinylbenzene.
【請求項3】ポリグリシジルメタクリレートの架橋化物
にポリエチレンポリアミン又はポリエチレンイミンを反
応させることを特徴とする特許請求の範囲第1項記載の
除菌剤の製造方法。
3. The method for producing a disinfectant according to claim 1, wherein a cross-linked product of polyglycidyl methacrylate is reacted with polyethylene polyamine or polyethylene imine.
【請求項4】ポリグリシジルメタクリレートの架橋化物
がジビニルベンゼンにより架橋化されたものである特許
請求の範囲第3項記載の方法。
4. The method according to claim 3, wherein the crosslinked product of polyglycidyl methacrylate is crosslinked with divinylbenzene.
【請求項5】細菌で汚染された水を、一般式 (式中のRはポリエチレンポリアミン残基又はポリエチ
レンイミン残基である) で表わされる構成単位を有するポリグリシジルメタクリ
レートの架橋化物と接触させることを特徴とする浄水方
法。
5. A method of treating water contaminated with bacteria with a general formula (Wherein R is a polyethylene polyamine residue or a polyethylene imine residue) is contacted with a cross-linked product of polyglycidyl methacrylate having a structural unit represented by the formula:
JP63186279A 1988-07-26 1988-07-26 Disinfectant, its manufacturing method and water purification method using the same Expired - Lifetime JPH0632815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63186279A JPH0632815B2 (en) 1988-07-26 1988-07-26 Disinfectant, its manufacturing method and water purification method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63186279A JPH0632815B2 (en) 1988-07-26 1988-07-26 Disinfectant, its manufacturing method and water purification method using the same

Publications (2)

Publication Number Publication Date
JPH0236211A JPH0236211A (en) 1990-02-06
JPH0632815B2 true JPH0632815B2 (en) 1994-05-02

Family

ID=16185520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63186279A Expired - Lifetime JPH0632815B2 (en) 1988-07-26 1988-07-26 Disinfectant, its manufacturing method and water purification method using the same

Country Status (1)

Country Link
JP (1) JPH0632815B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4646379B2 (en) 1999-12-02 2011-03-09 株式会社カネカ Peptidoglycan adsorbent, adsorption removal method and adsorption removal apparatus
CN108368201B (en) 2015-12-14 2021-03-23 Jsr株式会社 Polymer, antibacterial agent, bactericide, antibacterial material, bactericidal material, antibacterial method and bactericidal method
WO2018097260A1 (en) * 2016-11-25 2018-05-31 学校法人早稲田大学 Polymer, resin composition, antifouling coating material composition, method for producing polymer, method for forming structure for stabilizing carbamate on surface of coating film, and method for regenerating structure for stabilizing carbamate on surface of coating film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59139941A (en) * 1983-01-31 1984-08-11 Mitsubishi Chem Ind Ltd Surface functional type anion exchange resin and preparation thereof
DE3543348A1 (en) * 1985-12-07 1987-06-11 Bayer Ag PEARL-SHAPED CROSS-NETWORKED MIXED POLYMERS WITH EPOXY AND BASIC AMINO GROUPS, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE

Also Published As

Publication number Publication date
JPH0236211A (en) 1990-02-06

Similar Documents

Publication Publication Date Title
Kawabata et al. Removal of bacteria from water by adhesion to cross-linked poly (vinylpyridinium halide)
US3817860A (en) Method of disinfecting water and demand bactericide for use therein
JP3706320B2 (en) Disinfection method and apparatus using iodine / resin disinfectant
UA63943C2 (en) Method for purification of physiological liquids of organism, polymer adsorbent for its realization and method for production of polymer adsorbent
JP2010513331A (en) Fluid sterilization and storage
JP2021520443A (en) Multifunctional resin and its manufacturing method and application
CN109317115A (en) By filtering the degerming from drinking water
US6531519B2 (en) Antimicrobial synthetic ion exchange resins
Augusta et al. Synthesis and antibacterial activity of immobilized quaternary ammonium salts
JP2001081098A (en) Method for producing water-insoluble dna cross-linked product by irradiation of ultraviolet light and use of the cross-linked product as material for cleaning environment
JPH0632815B2 (en) Disinfectant, its manufacturing method and water purification method using the same
CN1164827C (en) Preparation method of macromolecular sterilization fibre with grafted antibacterial monomer on its surface
CN110776678B (en) Super absorbent resin, preparation method and application thereof
Walfish et al. A new approach to water disinfection: I. N, N-dimethylalkylbenzyl-polystyrene anion exchange resins as contact disinfectants
US4446103A (en) Method of disinfecting water with insoluble disinfectant compositions
US4427796A (en) Water insoluble disinfectant composition
JPH05285469A (en) Bacteria removing method
JP2988687B2 (en) Nonwoven fabric for microbial adsorption
JP4329421B2 (en) Materials for microbial adsorption
JP2556362B2 (en) Method for producing microbial adsorbent
JPH02235802A (en) Adsorbent of microorganism
RU2645137C1 (en) Bioicide sorbent based on chlormethylated styrene copolymers
JPS58183979A (en) Treatment of water
JPH0717808A (en) Antimicrobial high polymer and its production and antimicrobial material using antimicrobial high polymer and its production
JPH05286811A (en) Microorganism adsorbing material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term