JPH06326286A - Back surface incidence type solid-state imaging device - Google Patents

Back surface incidence type solid-state imaging device

Info

Publication number
JPH06326286A
JPH06326286A JP5131032A JP13103293A JPH06326286A JP H06326286 A JPH06326286 A JP H06326286A JP 5131032 A JP5131032 A JP 5131032A JP 13103293 A JP13103293 A JP 13103293A JP H06326286 A JPH06326286 A JP H06326286A
Authority
JP
Japan
Prior art keywords
solid
state imaging
imaging device
region
bias light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5131032A
Other languages
Japanese (ja)
Inventor
Isao Takayanagi
功 高柳
Kazuya Matsumoto
一哉 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP5131032A priority Critical patent/JPH06326286A/en
Publication of JPH06326286A publication Critical patent/JPH06326286A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To prevent generation of ununiform persistence in an imaging region, and enable reducing the picture element size. CONSTITUTION:A back surface incidence type solid-state imaging element 20 is constituted as follows; a source region 3 and a gate region 4 which is arranged so as to surround the source region 3 are formed on the surface of an N<-> type substrate 2, a gate electrode 6 is formed on the gate region 4 via an insulating film 5, and a drain diffusion layer 8 and a drain electrode 9 are formed on the back surface of the substrate 2. A bias light source 21 is arranged so as to irradiate the surface of the solid state imaging element 20, and a back surface incidence type solid state imaging device is constituted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、静電誘導トランジス
タ(以下、単にSITと略称する)などを画素として用
いた裏面入射型固体撮像装置に関し、特に医用,非破壊
検査等で実現が望まれている約0.3KeV 〜数十KeV のエ
ネルギーのX線や電子線に感度を有する裏面入射型固体
撮像装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a back-illuminated solid-state image pickup device using an electrostatic induction transistor (hereinafter simply referred to as SIT) as a pixel, and is particularly desired to be realized in medical and nondestructive inspection. The present invention relates to a back-illuminated solid-state imaging device having sensitivity to X-rays and electron beams having energies of approximately 0.3 KeV to several tens KeV.

【0002】[0002]

【従来の技術】従来、電子カメラ,ホームビデオカメ
ラ,ファクシミリ等に利用される半導体光電変換素子か
らなる固体撮像装置には、BBD,CCD等の電荷転送
素子あるいは、MOSトランジスタ等が広く用いられて
いる。しかし、これらの素子を用いた固体撮像装置に
は、信号電荷転送時に電荷の洩れがあること、光検出感
度が低いこと、集積度が低いこと等の種々の問題点があ
る。
2. Description of the Related Art Conventionally, charge transfer devices such as BBDs and CCDs, MOS transistors, etc. have been widely used in solid-state image pickup devices composed of semiconductor photoelectric conversion devices used in electronic cameras, home video cameras, facsimiles and the like. There is. However, the solid-state imaging device using these elements has various problems such as leakage of charges during signal charge transfer, low photodetection sensitivity, and low integration degree.

【0003】このような問題点を一挙に解決するものと
して、SITを用いた固体撮像装置が、既に提案されて
いる。このSITは光電変換作用及び光電荷増幅作用を
有するフォトトランジスタの一種であり、電界効果トラ
ンジスタや接合形トランジスタに比較して、高入力イン
ピーダンス,高速性,非飽和性,低雑音,低消費電力等
の特長を備えているものである。したがって、このSI
Tを受光素子として用いれば、高感度,高速応答性,及
び広ダイナミックレンジを有する固体撮像装置を得るこ
とができるものである。
As a solution to all of these problems at once, a solid-state image pickup device using SIT has already been proposed. This SIT is a kind of phototransistor having a photoelectric conversion function and a photocharge amplification function, and has higher input impedance, higher speed, non-saturation, lower noise, lower power consumption, etc. than a field effect transistor or a junction type transistor. It has the features of. Therefore, this SI
If T is used as a light receiving element, a solid-state imaging device having high sensitivity, high speed response, and wide dynamic range can be obtained.

【0004】図3は、この既知の固体撮像装置の各画素
を構成するSITの断面構成を示す図である。このSI
Tは、図に示すように、縦型構造で、ドレイン領域はn
+ 型のシリコン基板1からなり、ソース領域は、基板1
上に堆積されたチャネル領域を構成するn- 型エピタキ
シャル層2の表面に形成されたn+ 型領域3からなり、
このエピタキシャル層2の表面には、更にソース領域3
を取り囲むようにp+型の信号蓄積ゲート領域4が形成
されている。このゲート領域4上には、絶縁膜5を介し
て電極6が形成され、電極/絶縁膜/ゲート領域からな
るいわゆるMIS構造のゲート電極が形成されている。
チャネル領域を構成するn- 型エピタキシャル層2の不
純物濃度は、ゲート電極6の印加バイアスが0Vでもチ
ャネル領域2が空乏化され、高い電位障壁が生じてピン
チオフするような低濃度に選択されており、通常は1×
1014cm-3程度の低濃度となっている。なお、図3におい
て、7はn+ 型拡散層よりなる画素間の電気的アイソレ
ーション領域である。またドレイン領域1に印加される
直流ドレイン電位VD は、通常3.5Vとしている。
FIG. 3 is a diagram showing a sectional structure of an SIT which constitutes each pixel of this known solid-state image pickup device. This SI
As shown in the figure, T has a vertical structure and the drain region is n.
It consists of + type silicon substrate 1 and the source region is substrate 1.
Consisting of an n + type region 3 formed on the surface of an n type epitaxial layer 2 constituting the channel region deposited above,
On the surface of this epitaxial layer 2, a source region 3 is further formed.
A p + type signal storage gate region 4 is formed so as to surround the. An electrode 6 is formed on the gate region 4 via an insulating film 5, and a so-called MIS structure gate electrode composed of electrode / insulating film / gate region is formed.
The impurity concentration of the n -type epitaxial layer 2 forming the channel region is selected to be a low concentration such that the channel region 2 is depleted even when the applied bias of the gate electrode 6 is 0 V and a high potential barrier is generated to cause pinch-off. , Usually 1x
The concentration is as low as 10 14 cm -3 . In FIG. 3, reference numeral 7 is an electrical isolation region between pixels, which is formed of an n + type diffusion layer. The DC drain potential V D applied to the drain region 1 is usually 3.5V.

【0005】次に、かかるSITの動作原理について説
明する。深い逆バイアスVG1がゲート電極6に印加され
た状態において、光がチャネル領域2及びゲート領域4
に入射すると、ここで生成した電子−正孔対のうち正孔
はゲート領域4に蓄積され、一方電子はドレイン領域1
を経てアースに流れ去る。光入力に対応してゲート領域
4に蓄積された正孔は、ゲート領域4の電位を上げ、チ
ャネル領域2の電位障壁を光入力に応じて下げる。ゲー
トに読み出し電位VG2(VG1<VG2)を印加すると、ゲ
ート領域4の正孔蓄積量に応じドレイン・ソース間に電
流が流れ、光入力に対し増幅された出力が得られる。そ
の光増幅率μは通常103 以上あり、従来のバイポーラト
ランジスタより1桁以上も高感度である。l1 をゲート
領域の深さ、l2 をゲート・ドレイン領域間の距離とす
ると、103 〜104 の光増幅率μを得るには、通常l1
2〜3μm,l2 =5〜6μmが必要とされる。すなわ
ち、SITにおいて空乏化するn- 領域2の厚さは、表
面より約9μm程度の深さとなっている。この約9μm
厚のシリコン領域が有効光電変換領域である。
Next, the operating principle of the SIT will be described. With the deep reverse bias V G1 applied to the gate electrode 6, light is emitted from the channel region 2 and the gate region 4.
Of the electron-hole pairs generated here, holes are accumulated in the gate region 4, while electrons are accumulated in the drain region 1.
Through to the ground. The holes accumulated in the gate region 4 in response to the light input raise the potential of the gate region 4 and lower the potential barrier of the channel region 2 in response to the light input. When the read potential V G2 (V G1 <V G2 ) is applied to the gate, a current flows between the drain and source according to the amount of holes accumulated in the gate region 4, and an amplified output is obtained with respect to the optical input. The optical amplification factor μ is usually 10 3 or more, which is one digit or more higher than that of the conventional bipolar transistor. Assuming that l 1 is the depth of the gate region and l 2 is the distance between the gate and drain regions, in order to obtain an optical amplification factor μ of 10 3 to 10 4 , usually l 1 =
2-3 μm, l 2 = 5-6 μm are required. That is, the thickness of the n region 2 depleted in the SIT is about 9 μm deep from the surface. About 9 μm
The thick silicon region is the effective photoelectric conversion region.

【0006】前述のように、通常のSITの有効光電変
換領域の厚さは、表面より約9μm程度となっている。
一方、数KeV 〜数十KeV のエネルギーを有する光子の吸
収長(入射X線強度が1/eになる厚さ)は、SITの
有効光電変換領域の厚さより、オーダー的に長い。例え
ば、8KeV のX線では、シリコンの場合、吸収長は約60
μmとなり、24KeV のX線では約1mmとなる。
As described above, the thickness of the effective photoelectric conversion region of the normal SIT is about 9 μm from the surface.
On the other hand, the absorption length (thickness at which the incident X-ray intensity becomes 1 / e) of photons having an energy of several KeV to several tens KeV is orderly longer than the thickness of the effective photoelectric conversion region of the SIT. For example, with 8 KeV X-rays, the absorption length is about 60 for silicon.
μm, which is about 1 mm for a 24 KeV X-ray.

【0007】したがって、SITを用いた固体撮像装置
を利用してX線を検出しようとした場合、数KeV 〜数十
KeV のエネルギーを有するX線が通常のSITに入射す
ると、約9μm程度の有効光電変換領域では、X線は通
過してしまい吸収されず、したがって上記エネルギーを
有するX線に対しては、通常のSIT固体撮像装置は感
度がない、あるいは非常に低いことがわかる。
Therefore, when an X-ray is detected by using the solid-state imaging device using SIT, several KeV to several tens of KeV are detected.
When an X-ray having energy of KeV is incident on a normal SIT, the X-ray passes through the effective photoelectric conversion region of about 9 μm and is not absorbed. It can be seen that the SIT solid state imaging device has no sensitivity or very low sensitivity.

【0008】従来のSIT固体撮像装置をX線検出に用
いた場合における上記問題点を解消するために、本件発
明者は、先に特願平4−72987号において、上記エ
ネルギーを有するX線に対して良好な感度を有するSI
Tを用いたX線検出用固体撮像装置を提案した。上記出
願で提案したものは、2次元X線情報を検出する固体撮
像装置において、該固体撮像装置の各画素をSITで構
成し、該SITの光電変換動作中に受光領域に形成され
る空乏層の厚さが数十μm〜数mmの範囲になるように構
成したものである。このように構成されたX線検出用固
体撮像装置においては、SITはその光電変換動作中の
空乏層が数十μm〜数mmの厚さに形成されるので、約0.
3KeV 〜数十KeV という広範囲のX線に対して高い感度
をもたせることができるものである。
In order to solve the above-mentioned problems when a conventional SIT solid-state image pickup device is used for X-ray detection, the present inventor previously described in Japanese Patent Application No. 4-72987 that the X-ray having the above-mentioned energy is used. SI with good sensitivity to
We proposed a solid-state imaging device for X-ray detection using T. In the solid-state imaging device for detecting two-dimensional X-ray information, the one proposed in the above application is configured such that each pixel of the solid-state imaging device is composed of SIT and a depletion layer formed in a light receiving region during a photoelectric conversion operation of the SIT. The thickness is in the range of several tens of μm to several mm. In the solid-state imaging device for X-ray detection configured as described above, since the depletion layer of the SIT during the photoelectric conversion operation is formed to have a thickness of several tens of μm to several mm, the SIT has about 0.
It has high sensitivity to a wide range of X-rays from 3 KeV to several tens KeV.

【0009】次に、上記出願で提案したX線検出用固体
撮像装置について説明する。図4は、従来提案のX線検
出用固体撮像装置のSITよりなる1画素部分を示して
おり、図3に示した従来のSIT画素と同一又は対応す
る部分には同一符号を付して、その説明を省略する。従
来のSIT固体撮像装置は、入射光をSITの表面(図
3の上部側)より入射させる構成のものであるが、図4
に示すX線検出用固体撮像装置においては、入射線は裏
面(図4の下部側)より入射する方式の構成を採用し、
X線検出の場合の素子に与える損傷,ダメージの程度
を、表面入射方式に比べて軽減されるようにしている。
Next, the X-ray detecting solid-state image pickup device proposed in the above application will be described. FIG. 4 shows a 1-pixel portion formed of the SIT of the conventionally proposed solid-state imaging device for X-ray detection. The same or corresponding portions as those of the conventional SIT pixel shown in FIG. The description is omitted. The conventional SIT solid-state imaging device has a structure in which incident light is incident from the surface of the SIT (upper side of FIG. 3).
In the solid-state imaging device for X-ray detection shown in (4), the incident line adopts a configuration in which the incident line is incident from the back surface (lower side in FIG. 4),
The damage to the element and the degree of damage in the case of X-ray detection are reduced as compared with the front-illuminated method.

【0010】そしてチャネル領域に対応するn- 型基板
2は、不純物濃度NB が1×1011cm-3程度の超低濃度
で、厚さTは数十μm〜数mmに形成されている。8はn
- 型基板2の裏面に形成されたn+ 型ドレイン拡散層で
あり、その厚さは約1μm以下で、不純物濃度は1×10
19cm-3以上である。9は前記n+ 型ドレイン拡散層8に
接して形成された裏面ドレイン電極で、アルミニウム等
の金属よりなり、その厚さは数百Å〜数μmである。10
はドレイン端子、11はゲート電極端子、12はソース端子
である。
The n type substrate 2 corresponding to the channel region has an impurity concentration N B of an extremely low concentration of about 1 × 10 11 cm −3 and a thickness T of several tens μm to several mm. . 8 is n
An n + type drain diffusion layer formed on the back surface of the type substrate 2, the thickness thereof is about 1 μm or less, and the impurity concentration is 1 × 10 5.
It is at least 19 cm -3 . Reference numeral 9 denotes a back surface drain electrode formed in contact with the n + type drain diffusion layer 8, which is made of a metal such as aluminum and has a thickness of several hundred Å to several μm. Ten
Is a drain terminal, 11 is a gate electrode terminal, and 12 is a source terminal.

【0011】次に、図4に示したX線検出用固体撮像装
置の光電変換動作について説明する。裏面から入射した
X線13は、数μm以下の金属ドレイン電極9及びn+
ドレイン拡散層8を透過し、ドレイン電位により完全に
空乏化されたn- 型基板2に入る。そして、この厚い基
板2内において光電変換され、その結果発生した電子は
ドレイン端子10に、また正孔はゲート領域4へと、n-
型基板2の全領域に形成された電界により高速に転送さ
れる。この時、ゲート端子11には蓄積ゲート電位VG1
印加されている。所望の信号蓄積時間経過後、ゲート端
子11に読み出しゲート電位VG2を印加し、信号電流をソ
ース端子12より検出する。信号検出終了後は、リセット
ゲート電位VG3(VG3>VG2)を印加する。あるいは、
図示していないリセットトランジスタをオンにし、ゲー
ト領域4にリセット電位を印加しゲート領域4に蓄積さ
れた正孔のリセット動作を行い、1サイクルの光電変換
動作を終了する。
Next, the photoelectric conversion operation of the solid-state image pickup device for X-ray detection shown in FIG. 4 will be described. The X-ray 13 incident from the back surface passes through the metal drain electrode 9 and the n + type drain diffusion layer 8 having a thickness of several μm or less, and enters the n type substrate 2 which is completely depleted by the drain potential. Then, the electrons that are photoelectrically converted in the thick substrate 2 and the resulting electrons are transferred to the drain terminal 10, the holes are transferred to the gate region 4, and n
It is transferred at high speed by the electric field formed in the entire area of the mold substrate 2. At this time, the storage gate potential V G1 is applied to the gate terminal 11. After the desired signal accumulation time has elapsed, the read gate potential V G2 is applied to the gate terminal 11 and the signal current is detected from the source terminal 12. After the signal detection is completed, the reset gate potential V G3 (V G3 > V G2 ) is applied. Alternatively,
A reset transistor (not shown) is turned on, a reset potential is applied to the gate region 4 to reset the holes accumulated in the gate region 4, and one cycle of photoelectric conversion operation is completed.

【0012】以上、X線検出用固体撮像装置のSIT画
素単体の動作について説明を行ったが、SIT画素を2
次元的に配列して構成したX線検出固体撮像装置のエリ
アセンサとして動作させる構成及びその動作は、従来の
2次元SIT固体撮像装置と全く同じである。そして、
このX線検出用固体撮像装置においては、X線の光電変
換動作中は、基板表面から裏面まで完全に空乏化してい
る、すなわち基板全体に亘り電界が存在するため、光電
変換により発生した正孔は、正孔−電子対発生点直上の
画素のゲート領域へと効率的に転送される。すなわち数
十μm〜数mmという厚い基板にもかかわらず、空間解像
度の劣化が最小限に抑えられるようになっている。
The operation of the SIT pixel alone of the solid-state image pickup device for X-ray detection has been described above.
The configuration and the operation of the area sensor of the X-ray detection solid-state imaging device configured and arranged in a dimension are exactly the same as those of the conventional two-dimensional SIT solid-state imaging device. And
In this solid-state imaging device for X-ray detection, during photoelectric conversion operation of X-rays, holes are completely depleted from the front surface to the back surface of the substrate, that is, an electric field exists over the entire substrate, and therefore holes generated by photoelectric conversion are generated. Are efficiently transferred to the gate region of the pixel immediately above the hole-electron pair generation point. That is, even though the substrate is as thick as several tens of μm to several mm, the deterioration of the spatial resolution can be suppressed to the minimum.

【0013】[0013]

【発明が解決しようとする課題】ところで、図4に示し
た先に提案したX線検出用裏面入射型固体撮像装置にお
いては、信号検出終了後は、リセット電位VG3をゲート
端子11に印加し、リセット動作を行うようになっている
が、このようなリセット方法のみでは、完全にリセット
動作を終了させることは不可能で、撮像領域において不
均一な残像が発生することが、実験の結果判明した。ま
た、先に述べたように、リセットトランジスタを付加し
てリセット動作を行えば、完全なリセット動作が可能で
あるが、このリセットトランジスタの付加構成は、画素
サイズを縮小し、高解像化を図るという目標に対して
は、障害になるという問題点があった。
In the back-illuminated solid-state image pickup device for X-ray detection shown in FIG. 4, the reset potential V G3 is applied to the gate terminal 11 after signal detection is completed. Although the reset operation is performed, it is impossible to completely complete the reset operation only by such a reset method, and it is found from the result of the experiment that a non-uniform afterimage is generated in the imaging region. did. Further, as described above, if the reset operation is performed by adding the reset transistor, the complete reset operation can be performed. However, the additional configuration of the reset transistor reduces the pixel size and realizes high resolution. There was a problem that it was an obstacle to the goal of achieving it.

【0014】本発明は、先に提案したX線検出用裏面入
射型固体撮像装置における上記問題点を解消するために
なされたもので、撮像領域において不均一な残像が発生
せず、更に画素サイズの縮小が可能な裏面入射型固体撮
像装置を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems in the back-illuminated solid-state image pickup device for X-ray detection, which does not cause a non-uniform afterimage in the image pickup region, and further has a pixel size. It is an object of the present invention to provide a back-illuminated solid-state imaging device that can be reduced in size.

【0015】[0015]

【課題を解決するための手段】上記問題点を解決するた
め、本発明は、半導体基板の表面側に光電変換領域を備
え、検出入射線を裏面より入射させるようにした裏面入
射型固体撮像素子に対して、該固体撮像素子の表面にバ
イアスライトを照射する手段を設けて裏面入射型固体撮
像装置を構成するものである。
In order to solve the above problems, the present invention provides a back-illuminated solid-state image pickup device having a photoelectric conversion region on the front surface side of a semiconductor substrate so that a detection incident line is incident from the rear surface. On the other hand, a means for irradiating the surface of the solid-state imaging device with a bias light is provided to form a back-illuminated solid-state imaging device.

【0016】[0016]

【作用】上記のように、本発明に係る裏面入射型固体撮
像装置においては、バイアスライト照射手段を設けるも
のであるが、バイアスライトとは、残像の低減を図るた
め撮像素子あるいは撮像管の受光面全面に加える光のこ
とを言い、積層型CCDイメージセンサあるいはHAR
P管等で採用、あるいは検討されているものであり、H
ARP管におけるバイアスライトの検討については、例
えば1992年テレビジョン学会年次大会予稿集pp421 〜42
2 「極超高感度HARPカメラに適したバイアスライト
入射法の検討」という論文中において説明がなされてい
る。
As described above, in the back illuminated solid-state image pickup device according to the present invention, the bias light irradiation means is provided. The bias light is a light receiving device of the image pickup device or the image pickup tube in order to reduce the afterimage. The light applied to the entire surface, such as a stacked CCD image sensor or HAR
It has been adopted or is being considered for P pipes, etc.
Regarding the examination of the bias light in the ARP tube, for example, the 1992 Television Society Annual Conference Proceedings pp421-42.
2 The explanation is given in the paper “Examination of bias light injection method suitable for ultra-high sensitivity HARP camera”.

【0017】残像は、特に入射光量が低い時に問題とな
るが、受光面全面に均一に飽和量の10%前後のバイアス
ライトを入射することにより、受光面全面に均一な残像
を残すことが可能となり、残像の不均一性が改善され
る。その結果、バイアスライトを印加しない場合より
も、より低照度側での撮像が可能となる。
The afterimage is a problem especially when the amount of incident light is low, but a uniform afterimage can be left on the entire light receiving surface by uniformly entering a bias light of about 10% of the saturation amount on the entire light receiving surface. And the non-uniformity of the afterimage is improved. As a result, it is possible to capture an image at a lower illuminance side than when no bias light is applied.

【0018】本発明においては、上記のように、裏面入
射型固体撮像素子の表面側からバイアスライトを照射す
るようにバイアスライト照射手段を設けるものであり、
したがって裏面より入射させるX線等の検出入射線に対
しては何ら障害を与えることなく、バイアスライト照射
手段を設けることができ、且つ不均一な残像が発生せず
画素サイズの縮小化の可能な裏面入射型固体撮像装置を
実現することができる。
In the present invention, as described above, the bias light irradiating means is provided so as to irradiate the bias light from the front surface side of the back illuminated solid-state image pickup device.
Therefore, the bias light irradiating means can be provided without giving any trouble to the detection incident ray such as the X-ray incident from the back surface, and the non-uniform afterimage does not occur, and the pixel size can be reduced. A back-illuminated solid-state imaging device can be realized.

【0019】[0019]

【実施例】次に本発明に係る裏面入射型固体撮像装置の
実施例について説明する。図1は、基本的な実施例を示
す概略断面図である。この実施例において、図4に示し
た裏面入射型固体撮像装置と異なる点は、裏面入射型固
体撮像素子20の表面上部にバイアスライト光源21を配置
し、固体撮像素子20の表面にバイアスライト22を照射す
るように構成した点である。
Embodiments Next, embodiments of the back illuminated solid-state image pickup device according to the present invention will be described. FIG. 1 is a schematic sectional view showing a basic embodiment. This embodiment is different from the back-illuminated solid-state imaging device shown in FIG. 4 in that a bias light source 21 is arranged above the back-illuminated solid-state imaging device 20 and a bias light 22 is provided on the front surface of the solid-state imaging device 20. It is a point configured to irradiate.

【0020】従来のバイアスライトを用いた積層型CC
D撮像素子等では、入射光及びバイアスライトが同一表
面に入射するように構成されている。そのため、バイア
スライト光源は、固体撮像素子の受光面直上に形成する
ことは不可能となり、受光面内に均一なバイアスライト
を入射させるためには、種々の工夫を必要とする。本発
明においては、上記実施例に示すように、X線あるいは
電子線等の入射線13は固体撮像素子20の裏面から、一
方、バイアスライト22は固体撮像素子20の表面から入射
するように構成されているので、バイアスライト光源21
の構成は、制約が少なくなる。
Stacked CC using conventional bias light
The D image sensor and the like are configured such that the incident light and the bias light are incident on the same surface. Therefore, it is impossible to form the bias light source right above the light receiving surface of the solid-state image pickup element, and various measures are required to make the uniform bias light enter the light receiving surface. In the present invention, as shown in the above embodiment, the incident ray 13 such as an X-ray or an electron beam is incident from the back surface of the solid-state image sensor 20, while the bias light 22 is incident from the front surface of the solid-state image sensor 20. Bias light source 21
The configuration is less constrained.

【0021】図2は、本発明に係る裏面入射型固体撮像
装置の具体的な実施例を示す断面図である。この実施例
は、X線等の入射線を検出する裏面入射型固体撮像素子
31と、エレクトロミネッセンス(EL)等よりなる面状
バイアスライト光源32とを、パッケージ33内に実装し、
入射線34は裏面入射型固体撮像素子31の裏面35に入射す
るようにし、面状バイアスライト光源32からのバイアス
ライト37は、裏面入射型固体撮像素子31の表面36の受光
領域全面に均一に照射されるように構成されている。な
お、図2において、38は裏面入射型固体撮像素子31の接
続用ボンディングワイヤである。また、このように構成
した実施例において、バイアスライト光源32からのバイ
アスライト光量は、裏面入射型固体撮像素子31を構成す
る各受光画素(図示せず)の飽和光量の約1/10が望ま
しい。
FIG. 2 is a sectional view showing a specific embodiment of the back illuminated solid-state image pickup device according to the present invention. This embodiment is a back-illuminated solid-state image sensor for detecting incident rays such as X-rays.
31 and a planar bias light source 32 made of electroluminescence (EL) or the like are mounted in a package 33,
The incident line 34 is made incident on the back surface 35 of the back-illuminated solid-state imaging device 31, and the bias light 37 from the planar bias light source 32 is evenly distributed over the entire light-receiving region of the surface 36 of the back-illuminated solid-state imaging device 31. It is configured to be illuminated. In FIG. 2, reference numeral 38 is a bonding wire for connecting the back illuminated solid-state image pickup device 31. Further, in the embodiment thus configured, the amount of bias light from the bias light source 32 is preferably about 1/10 of the saturated amount of light of each light receiving pixel (not shown) that constitutes the back-illuminated solid-state imaging device 31. .

【0022】バイアスライトは、動画対応の場合、常時
均一な照度で固体撮像素子に対して照射されるが、静止
画の対応の場合、AC的なバイアスライト照射方式も可
能となる。例えば、信号蓄積時間中はバイアスライトを
オフしておき、信号蓄積動作終了後、順次各画素の信号
読み出し動作を行い、この読み出し動作が終了したのち
にバイアスライトをオンし、バイアスライト照射終了
後、順次各画素のリセット動作を行い、そして次フィー
ルド(あるいはフレーム)の信号蓄積動作に移行するよ
うにしてもよい。このようなAC的なバイアスライト照
射方式を用いた場合には、バイアスライトの光量の制限
はなくなり、飽和光量以上で照射することも可能であ
る。このように、各種のバイアスライト照射方式を、本
発明の裏面入射型固体撮像装置に適用可能である。
The bias light is always applied to the solid-state image pickup device with a uniform illuminance for moving images, but an AC bias light irradiation system is also possible for still images. For example, the bias light is turned off during the signal accumulation time, the signal reading operation of each pixel is sequentially performed after the signal accumulation operation is completed, the bias light is turned on after the reading operation is completed, and the bias light irradiation is completed. The reset operation of each pixel may be sequentially performed, and the signal storage operation of the next field (or frame) may be performed. When such an AC bias light irradiation method is used, the light quantity of the bias light is not limited, and it is possible to irradiate with a saturated light quantity or more. As described above, various bias light irradiation methods can be applied to the back illuminated solid-state imaging device of the present invention.

【0023】なお、上記実施例では、バイアスライト光
源を、EL等よりなる面状光源を用いたものを示した
が、バイアスライト光源は、点あるいは線状のランプに
光拡散板等を付加して構成したもののように、固体撮像
素子の受光面全面に対して均一な光量を照射できるよう
に構成したものであれば、どのような構成のものでも用
いることができる。
In the above embodiment, the bias light source is a planar light source made of EL or the like. However, the bias light source is a point or linear lamp provided with a light diffusion plate or the like. Any structure can be used as long as it can uniformly irradiate the entire light receiving surface of the solid-state image pickup device.

【0024】また上記実施例は、SITを受光素子とし
て用いた裏面入射型固体撮像素子に本発明を適用したも
のを示したが、本発明は、CCD型イメージセンサなど
各種の裏面入射型固体撮像素子に適用することができ
る。
In the above-mentioned embodiment, the present invention is applied to a back-illuminated solid-state image pickup device using SIT as a light-receiving element. However, the present invention is applicable to various back-illuminated solid-state image pickup devices such as CCD image sensors. It can be applied to devices.

【0025】[0025]

【発明の効果】以上実施例に基づいて説明したように、
本発明によれば、撮像領域において不均一な残像が発生
せず、広ダイナミック特性並び高S/N特性を有し且つ
画素サイズの縮小化の可能な裏面入射型固体撮像装置を
実現することができる。
As described above on the basis of the embodiments,
According to the present invention, it is possible to realize a back-illuminated solid-state imaging device that does not cause non-uniform afterimage in an imaging region, has a wide dynamic characteristic and a high S / N characteristic, and can reduce the pixel size. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る裏面入射型固体撮像装置の基本的
な実施例を示す概略断面図である。
FIG. 1 is a schematic cross-sectional view showing a basic embodiment of a back-illuminated solid-state imaging device according to the present invention.

【図2】本発明の具体的な実施例を示す概略断面図であ
る。
FIG. 2 is a schematic sectional view showing a specific example of the present invention.

【図3】従来のSIT固体撮像装置の画素部分を示す断
面図である。
FIG. 3 is a sectional view showing a pixel portion of a conventional SIT solid-state imaging device.

【図4】先に提案したX線検出用裏面入射型固体撮像装
置の画素部分を示す断面図である。
FIG. 4 is a cross-sectional view showing a pixel portion of a back-illuminated solid-state image pickup device for X-ray detection proposed above.

【符号の説明】[Explanation of symbols]

2 n- 型基板 3 ソース領域 4 ゲート領域 5 絶縁膜 6 ゲート電極 8 n+ 型ドレイン拡散層 9 金属ドレイン電極 10 ドレイン端子 11 ゲート端子 12 ソース端子 13 入射線 20 裏面入射型固体撮像素子 21 バイアスライト光源 22 バイアスライト2 n type substrate 3 source region 4 gate region 5 insulating film 6 gate electrode 8 n + type drain diffusion layer 9 metal drain electrode 10 drain terminal 11 gate terminal 12 source terminal 13 incident line 20 back-illuminated solid-state imaging device 21 bias light Light source 22 bias light

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の表面側に光電変換領域を備
え、検出入射線を裏面より入射させるようにした裏面入
射型固体撮像素子に対して、該固体撮像素子の表面にバ
イアスライトを照射する手段を設けたことを特徴とする
裏面入射型固体撮像装置。
1. A back-illuminated solid-state image pickup device having a photoelectric conversion region on the front surface side of a semiconductor substrate so that a detection incident line is made incident from the back surface, and a bias light is applied to the front surface of the solid-state image pickup device. A backside incident type solid-state imaging device, characterized in that means is provided.
【請求項2】 前記裏面入射型固体撮像素子は、CCD
型固体撮像素子又は静電誘導トランジスタ型固体撮像素
子であることを特徴とする請求項1記載の裏面入射型固
体撮像装置。
2. The back-illuminated solid-state image sensor is a CCD
The back-illuminated solid-state imaging device according to claim 1, wherein the back-illuminated solid-state imaging device is a solid-state imaging device or a static induction transistor solid-state imaging device.
【請求項3】 前記バイアスライト照射手段は、前記固
体撮像素子を構成する各画素の読み出し動作終了後から
リセット動作開始前までの期間中に選択的に照射するよ
うに構成されていることを特徴とする請求項1又は2記
載の裏面入射型固体撮像装置。
3. The bias light irradiating means is configured to selectively irradiate during a period from the end of the read operation of each pixel forming the solid-state image sensor to the start of the reset operation. The backside incident type solid-state imaging device according to claim 1.
JP5131032A 1993-05-10 1993-05-10 Back surface incidence type solid-state imaging device Withdrawn JPH06326286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5131032A JPH06326286A (en) 1993-05-10 1993-05-10 Back surface incidence type solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5131032A JPH06326286A (en) 1993-05-10 1993-05-10 Back surface incidence type solid-state imaging device

Publications (1)

Publication Number Publication Date
JPH06326286A true JPH06326286A (en) 1994-11-25

Family

ID=15048429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5131032A Withdrawn JPH06326286A (en) 1993-05-10 1993-05-10 Back surface incidence type solid-state imaging device

Country Status (1)

Country Link
JP (1) JPH06326286A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002040144A (en) * 2000-07-28 2002-02-06 Canon Inc Equipment and device for photoelectric conversion, and image information processing system and its drive method
WO2007063997A1 (en) * 2005-11-29 2007-06-07 Canon Kabushiki Kaisha Radiation imaging apparatus, its control method, and recording medium storing program for executing the control method
WO2008059825A1 (en) * 2006-11-15 2008-05-22 Hamamatsu Photonics K. K. Distance image sensor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002040144A (en) * 2000-07-28 2002-02-06 Canon Inc Equipment and device for photoelectric conversion, and image information processing system and its drive method
WO2007063997A1 (en) * 2005-11-29 2007-06-07 Canon Kabushiki Kaisha Radiation imaging apparatus, its control method, and recording medium storing program for executing the control method
JP2007181183A (en) * 2005-11-29 2007-07-12 Canon Inc Radiation imaging apparatus, its control method, and recording medium with program for executing the control method recorded therein
US7989772B2 (en) 2005-11-29 2011-08-02 Canon Kabushiki Kaisha Radiation imaging apparatus, its control method, and recording medium storing program for executing the control method
US8222611B2 (en) 2005-11-29 2012-07-17 Canon Kabushiki Kaisha Radiation imaging apparatus, its control method, and recording medium storing program for executing the control method
WO2008059825A1 (en) * 2006-11-15 2008-05-22 Hamamatsu Photonics K. K. Distance image sensor
JP2008122342A (en) * 2006-11-15 2008-05-29 Hamamatsu Photonics Kk Range image sensor
US8013413B2 (en) 2006-11-15 2011-09-06 Hamamatsu Photonics K.K. Distance image sensor

Similar Documents

Publication Publication Date Title
JP3410016B2 (en) Amplification type solid-state imaging device
JP4307230B2 (en) Radiation imaging apparatus and radiation imaging method
US20070145503A1 (en) Pixel structure with improved charge transfer
JP2006073736A (en) Photoelectric converter, solid state imaging device and system
JP2009181986A (en) Solid-state image pickup element and solid-state image pickup device
JP4002601B2 (en) Solid fluoroscopic radiation imaging apparatus and solid fluoroscopic X-ray imaging apparatus
WO2010137269A1 (en) Solid-state image pickup device
JP4155568B2 (en) Solid-state imaging device and camera
JP4761491B2 (en) Solid-state imaging device and imaging system using the same
JPH06326286A (en) Back surface incidence type solid-state imaging device
JP3655760B2 (en) Infrared solid-state image sensor
JP3590158B2 (en) MOS amplification type imaging device
JPH05235317A (en) Solid-state image pickup element
JP2006210680A (en) Solid-state imaging element
JP2003240861A (en) Radiation detecting device, radiation imaging unit, and radiation detecting method
Matsunaga et al. A high-sensitivity MOS photo-transistor for area image sensor
JP3049930B2 (en) Non-destructive readout solid-state imaging device
JPH0775020A (en) Charge coupled device
Bhaskaran et al. Performance based CID imaging: past, present, and future
JPH05243544A (en) X-ray detection solid-state image sensing device
Kosonocky et al. Schottky-barrier image sensor with 100% fill factor
US20240186340A1 (en) Light-receiving element, x-ray imaging element, and electronic apparatus
JPH05243546A (en) Solid-state image sensing device
JP3689619B2 (en) Radiation imaging device
JPH039565A (en) Solid-state image sensing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000801