JPH0632331B2 - Semiconductor laser device and method of manufacturing the same - Google Patents

Semiconductor laser device and method of manufacturing the same

Info

Publication number
JPH0632331B2
JPH0632331B2 JP59166172A JP16617284A JPH0632331B2 JP H0632331 B2 JPH0632331 B2 JP H0632331B2 JP 59166172 A JP59166172 A JP 59166172A JP 16617284 A JP16617284 A JP 16617284A JP H0632331 B2 JPH0632331 B2 JP H0632331B2
Authority
JP
Japan
Prior art keywords
convex portion
thin film
substrate
adjacent side
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59166172A
Other languages
Japanese (ja)
Other versions
JPS6144485A (en
Inventor
昭男 吉川
隆 杉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59166172A priority Critical patent/JPH0632331B2/en
Priority to DE8585301989T priority patent/DE3579929D1/en
Priority to EP85301989A priority patent/EP0157555B1/en
Priority to US06/715,392 priority patent/US4719633A/en
Publication of JPS6144485A publication Critical patent/JPS6144485A/en
Priority to US07/114,065 priority patent/US4948753A/en
Publication of JPH0632331B2 publication Critical patent/JPH0632331B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、各種電子機器、光学機器の光源として近年急
速に用途が拡大し、需要が高まつている半導体レーザ装
置およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser device, which has been rapidly used in recent years as a light source for various electronic devices and optical devices and is in high demand, and a manufacturing method thereof. .

従来例の構成とその問題点 電子機器、光学機器のコヒーレント光源として半導体レ
ーザに要求される重要な性能の1つに、単一スポツトで
の発振、すなわち単一横モード発振があげられる。これ
を実現するためには、レーザ光が伝播する活性領域付近
にレーザ素子中を流れる電流が集中するように、その拡
がりを抑制し、かつ光を閉じこめる必要がある。このよ
うな半導体レーザは、通常、ストライプ型半導体レーザ
と呼ばれている。
Configuration of Conventional Example and Problems Thereof One of the important performances required of a semiconductor laser as a coherent light source for electronic equipment and optical equipment is oscillation in a single spot, that is, single transverse mode oscillation. In order to realize this, it is necessary to suppress the spread and confine the light so that the current flowing in the laser element is concentrated near the active region where the laser light propagates. Such a semiconductor laser is usually called a stripe type semiconductor laser.

比較的簡単なストライプ化の方法に、電流狭さくだけを
用いるものがある。これらのレーザは単一横モード発振
を実現するが、しきい値は高い。最もしきい値を低くす
るストライプ構造として、埋め込みストライプ型半導体
レーザ(通常、BHレーザと呼ばれる)がある。しかし
ながら、このレーザを作成するには、通常、他のレーザ
では1回ですむ結晶成長工程が2回必要であり、他に技
術的にやや作製が困難である。
A relatively simple striping method uses only current narrowing. These lasers achieve single transverse mode oscillation, but the threshold is high. A buried stripe type semiconductor laser (generally called a BH laser) is known as a stripe structure which has the lowest threshold value. However, in order to produce this laser, it is usually necessary to perform the crystal growth step twice, which is required only once for other lasers, and it is technically somewhat difficult to produce.

発明の目的 本発明は、上記欠点に鑑み、単一横モード発振をし、か
つ低しきい値動作するのに必要な埋め込みストライプ構
造を1回の結晶成長で作製できる半導体レーザ装置を提
供することを目的とするものである。
SUMMARY OF THE INVENTION In view of the above-mentioned drawbacks, the present invention provides a semiconductor laser device capable of producing a buried stripe structure required for single-transverse-mode oscillation and operating at a low threshold by a single crystal growth. The purpose is.

発明の構成 この目的を達成するために、本発明の半導体レーザ装置
は、導電性基板の表面に、先端平坦面とその隣接側面の
なす角が鈍角で、かつ前記隣接側面に続く基端の少なく
とも一側面と前記平坦面のなす角が90゜以下であるよ
うに形成されたストライプ状の凸部と、前記凸部上に活
性層を含む二重ヘテロ構造を持つ第1の多層薄膜が形成
され、前記凸部の隣接側面に沿う両側面においても、前
記活性層直上の薄膜層までは、積層方向に同一の順序で
第2の多層薄膜が独立に形成され、前記第1の多層薄膜
上に、前記基板とは逆の導電型を示す薄膜が形成され、
かつ前記第2の多層薄膜上に前記基板と同じ導電型を示
す薄膜が形成されたものであり、この構成により、スト
ライプ状の凸部上の活性層中に電流を狭さくし、単一横
モード発振で、低しきい電流値動作の半導体レーザ装置
が実現できる。また、上記半導体レーザ装置の製造方法
として、有機金属気相エピタキシヤル成長法を用いると
1回の結晶成長で埋め込みストライプ構造が容易に形成
できる。
In order to achieve this object, the semiconductor laser device of the present invention is such that, on the surface of the conductive substrate, the angle formed between the flat tip surface and its adjacent side surface is an obtuse angle, and at least the base end continuing to the adjacent side surface is formed. A stripe-shaped convex portion formed so that an angle formed between one side surface and the flat surface is 90 ° or less, and a first multilayer thin film having a double hetero structure including an active layer is formed on the convex portion. Also on the both side surfaces along the adjacent side surfaces of the convex portion, the second multilayer thin films are independently formed in the same order in the stacking direction up to the thin film layer directly above the active layer, and on the first multilayer thin film. , A thin film having a conductivity type opposite to that of the substrate is formed,
In addition, a thin film having the same conductivity type as that of the substrate is formed on the second multilayer thin film. With this structure, the current is narrowed in the active layer on the stripe-shaped convex portion, and the single transverse mode is formed. Oscillation can realize a semiconductor laser device having a low threshold current value operation. If a metalorganic vapor phase epitaxial growth method is used as a method for manufacturing the above semiconductor laser device, a buried stripe structure can be easily formed by one crystal growth.

実施例の説明 以下本発明の一実施例を図面に基づいて説明する。一例
として導電性基板にn型GaAs基板を用いる。n型GaAs基
板(10)の<100>面上に、第2図に示すようにメサマス
ク幅dのメサエツチ用フオトレジスト(16)をマスクとし
て、化学エツチングにより<100>方向に平行に凹凸を
設ける。これにより、第3図に示すような幅5μm、高
さ1.5μmのストライプ状の凸部(10a)が、その先端平
担面と隣接側面のなす内角が鈍角で、前記隣接側面に続
く基端の少なくとも一側面と前記平担面のなす内角が90
゜以下であるように形成される。
Description of Embodiments An embodiment of the present invention will be described below with reference to the drawings. As an example, an n-type GaAs substrate is used as the conductive substrate. As shown in FIG. 2, unevenness is provided on the <100> surface of the n-type GaAs substrate (10) in parallel with the <100> direction by chemical etching using a photo resist (16) for mesa etching having a mesa mask width d as a mask. . As a result, the stripe-shaped convex portion (10a) having a width of 5 μm and a height of 1.5 μm as shown in FIG. 3 has an obtuse internal angle between the flat surface of the tip and the adjacent side surface, and the base end continuing to the adjacent side surface. The internal angle between at least one side of the
Formed to be less than or equal to °.

次に、有機金属気相エピタキシヤル成長法(通常MOCVD
法)により、第4図に示すように、n型Ga1-xAlxAsクラ
ツド層(11)を1.5μm、アンドープGa1-yAlyAs(0≦y
<x)活性層(12)を0.08μm、p型Ga1-xAlxAsクラツド
層(13)を1.2μm形成したのち、n型GaAsキヤツプ層(1
4)を2μm結晶成長させる。一例として、結晶成長条件
は、成長速度2μm/時、成長温度770℃、全ガス流量
5/分、III族元素に対するV族元素のモル比は 40
である。第4図からもわかるように、p型Ga1-xAlxAsク
ラツド層(13)までは、凸部(10a)上と他の部分とは独
立にエピタキシヤル成長としており、成長材料の成長基
板面に平行な方向での拡散等の効果が加わつた結晶成長
は見られない。
Next, metalorganic vapor phase epitaxy method (normal MOCVD
Method, as shown in FIG. 4, the n-type Ga 1-x Al x As cladding layer (11) is 1.5 μm thick and undoped Ga 1-y Al y As (0 ≦ y
<X) After forming an active layer (12) of 0.08 μm and a p-type Ga 1-x Al x As cladding layer (13) of 1.2 μm, an n-type GaAs cap layer (1)
4) is grown to 2 μm. As an example, the crystal growth conditions are a growth rate of 2 μm / hour, a growth temperature of 770 ° C., a total gas flow rate of 5 / min, and a molar ratio of the group V element to the group III element is 40.
Is. As can be seen from FIG. 4, up to the p-type Ga 1-x Al x As cladding layer (13), epitaxial growth was performed independently on the convex portion (10a) and other portions, and the growth of the growth material No crystal growth accompanied by effects such as diffusion in a direction parallel to the substrate surface is observed.

結晶成長後、表面を洗浄処理したのち、n型GaAsキヤツ
プ層(14)にフオトレジスト(17)を塗布し、 5000rpm
で回転すると、第4に示すように、n型GaAsキヤツプ層
(14)の凸部(14a)でフオトレジスト膜(17)は薄くな
り、他の部分で厚くなる。露光条件を最適化することに
より、凸部(14a)とフオトレジスト膜(17)を取り去
り、n型GaAsキヤツプ層(14)上面を第4図に示す面(18)
(19)となるように平担にする。さらに、ストライプ幅w
でZn拡散を行ない、凸部(10a)上に対応するクラツ
ド層(13)の凸部(13a)上にストライプ状のp型GaAs領
域(15)を形成する。結果として、第1図に示す半導体レ
ーザ構造が形成され、オーミツク電極を面(20)(21)に付
ける。電極を通して電流注入を行なうと、電流はn型Ga
As基板(10)の凸部(10a)と拡散により形成されたp型G
aAs領域(15)により上下で狭さくされる。しかも第1図
に示すように基板(10)上の凸部(10a)先端の幅w
比べてp型GaAs領域(15)のストライプ幅wの方が小さく
なり、電流狭さく効果が大きい。これは、凸部形状の先
端を順メサ形状にして結晶成長を行なつたことによるも
ので、凸部側面で結晶成長面にファセットが出るものに
よると考えられる。その結果、25mAのしきい電流値
で、単一横モード発振する半導体レーザ装置が得られ
た。
After crystal growth, clean the surface and apply photoresist (17) to the n-type GaAs cap layer (14) at 5000 rpm.
When rotated at, n-type GaAs cap layer
The photoresist film (17) becomes thin at the convex portion (14a) of (14) and becomes thick at other portions. By optimizing the exposure conditions, the projections (14a) and the photoresist film (17) are removed, and the upper surface of the n-type GaAs cap layer (14) is the surface (18) shown in FIG.
Flatten so that it becomes (19). Furthermore, stripe width w
Zn diffusion is carried out to form a striped p-type GaAs region (15) on the convex portion (13a) of the cladding layer (13) corresponding to the convex portion (10a). As a result, the semiconductor laser structure shown in FIG. 1 is formed, and ohmic electrodes are attached to the surfaces (20) and (21). When current is injected through the electrodes, the current is n-type Ga
P-type G formed by diffusion with the convex portion (10a) of the As substrate (10)
It is narrowed up and down by the aAs region (15). Moreover, as shown in FIG. 1, the stripe width w of the p-type GaAs region (15) is smaller than the width w R of the tip of the convex portion (10a) on the substrate (10), and the effect of narrowing the current is great. This is due to the fact that the tip of the convex portion was formed into a normal mesa shape for crystal growth, and it is considered that facets appear on the crystal growth surface on the side surface of the convex portion. As a result, a semiconductor laser device having a single transverse mode oscillation with a threshold current value of 25 mA was obtained.

また、本発明の半導体レーザ構造は埋め込み型となつて
おり、他の埋め込み型レーザは2回の結晶成長が必要で
あるのに対し、本発明の埋め込み型レーザは1回の結晶
成長で作製が可能である。なお、第1図で、n型GaAs基
板(10)とn型Ga1-xAlxAsクラツド層(11)の間にn型GaAs
バツファ層を入れた構造にしても同様の結果が得られ
た。
Further, the semiconductor laser structure of the present invention is of a buried type, and other buried lasers require crystal growth twice, whereas the buried laser of the present invention can be manufactured by one crystal growth. It is possible. In FIG. 1, the n-type GaAs substrate (10) and the n-type GaAs between the n-type Ga 1-x Al x As cladding layer (11) are shown.
Similar results were obtained with a structure including a buffer layer.

第5図は他の実施例を示し、n型GaAs基板(30)の凸部
(30a)の形状は基端側面(31)の裾部が外拡がりの斜面
(32)に形成されたもので、これに結晶成長を行なつても
同じ結果が得られた。
FIG. 5 shows another embodiment. The shape of the convex portion (30a) of the n-type GaAs substrate (30) is a slope with the skirt of the base end side surface (31) expanding outward.
It was formed in (32), and the same result was obtained when the crystal was grown on it.

なお、本実施例では、GaAs系、GaAlAs系半導体レーザに
ついて述べたが、InP系や他の多元混晶系を含む化合物
半導体を材料とする半導体レーザについても同様に本発
明を適用可能である。さらに、導電性基板については、
p型基板を用いても、結晶成長に他の物質供給律速の結
晶成長方法、たとえば、分子線エピタキシヤル成長法
(MBE法)を用いてもよい。
In the present embodiment, the GaAs-based and GaAlAs-based semiconductor lasers have been described, but the present invention can be similarly applied to a semiconductor laser made of a compound semiconductor containing InP-based or other multi-element mixed crystal system. Furthermore, regarding the conductive substrate,
A p-type substrate may be used, or another crystal growth method in which the material supply is controlled may be used for the crystal growth, for example, a molecular beam epitaxial growth method (MBE method).

発明の効果 以上本発明によれば、ストライプ状の凸部の先端部が順
メサ構造で、その下の部分が逆メサ構造を有する基板上
の二重ヘテロ構造をクラッド層まで基板凸部上とそれ以
外の領域上において独立に形するようにしたので、レー
ザ発振に寄与しない無効電流を極力排除し、発振しきい
値電流および消費電流を低減し得るという多大な効果を
有しており、またその作製にあたって、基板の形状に平
面的に成長するという特徴を持つ有機金属気相エピタキ
シャル成長法を使用しているため、1回の結晶成長で形
成することができるというい効果をも有している。
EFFECTS OF THE INVENTION According to the present invention, the double heterostructure on the substrate in which the tip of the stripe-shaped convex portion has the forward mesa structure and the lower portion has the reverse mesa structure is formed on the substrate convex portion up to the cladding layer. Since it is formed independently in other regions, it has a great effect that the reactive current that does not contribute to laser oscillation can be eliminated as much as possible, and the oscillation threshold current and the consumption current can be reduced. Since the organic metal vapor phase epitaxial growth method, which has the characteristic of planar growth in the shape of the substrate, is used in its fabrication, it also has the effect that it can be formed by one-time crystal growth. .

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の半導体レーザ装置の一実施例を示す構
造図、第2図〜第4図はその製造過程を示す図、第5図
は他の実施例に用いた基板の断面形状を示す図である。 (10)……n型GaAs基板、(11)……n型Ga1-xAlxAsクラツ
ド層、(12)……Ga1-yAlyAs活性層、(13)……p型Ga1-xA
lxAsクラツド層、(14)……n型GaAs領域、(15)……p型
GaAs領域、(16)……メサエツチ用フオトレジスト膜、(1
7)……フオトレジスト膜、(wR)……凸部先端の幅、
(w)……電流狭さくストライプ幅、(d)……メサマスク
幅。
FIG. 1 is a structural view showing an embodiment of a semiconductor laser device of the present invention, FIGS. 2 to 4 are views showing the manufacturing process thereof, and FIG. 5 is a sectional view of a substrate used in another embodiment. FIG. (10) …… n-type GaAs substrate, (11) …… n-type Ga 1-x Al x As cladding layer, (12) …… Ga 1-y Al y As active layer, (13) …… p-type Ga 1-x A
l x As cladding layer, (14) …… n type GaAs region, (15) …… p type
GaAs region, (16) ... Photoresist film for mesa etching, (1
7) …… Photoresist film, (w R ) …… Width of convex tip,
(w) ...... current narrowing stripe width, (d) ...... mesa mask width.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】導電性基板の表面に、先端平坦面とその隣
接側面のなす角が鈍角で、かつ前記隣接側面に続く基端
の少なくとも一側面と前記平坦面のなす角が90゜以下
であるように形成されたストライプ状の凸部と、前記凸
部上に活性層を含む二重ヘテロ構造を持つ第1の多層薄
膜が形成され、前記凸部の隣接側面に沿う両側面におい
ても、前記活性層直上の薄膜層までは、積層方向に同一
の順序で第2の多層薄膜が独立に形成され、前記第1の
多層薄膜上に、前記基板とは逆の導電型を示す薄膜が形
成され、かつ前記第2の多層薄膜上に前記基板と同じ導
電型を示す薄膜が形成された半導体レーザ装置。
1. The surface of the conductive substrate has an obtuse angle between the flat end surface and its adjacent side surface, and an angle between the flat surface and at least one side surface of the base end following the adjacent side surface is 90 ° or less. A stripe-shaped convex portion formed in a certain manner, and a first multilayer thin film having a double heterostructure including an active layer is formed on the convex portion, and even on both side surfaces along the adjacent side surface of the convex portion, A second multilayer thin film is independently formed in the same order in the stacking direction up to the thin film layer directly above the active layer, and a thin film having a conductivity type opposite to that of the substrate is formed on the first multilayer thin film. And a thin film having the same conductivity type as the substrate is formed on the second multilayer thin film.
【請求項2】導電性基板の表面にストライプ状の凸部
を、この凸部の先端平坦面とその隣接側面のなす角が鈍
角で、かつ前記隣接側面に続く基端の少なくとも一側面
と前記先端平坦面のなす角が90゜以下であるように形
成し、前記凸部を含む導電性基板上に、有機金属気相エ
ピタキシャル成長法により、前記凸部上と前記凸部以外
の領域上に活性層を含む二重ヘテロ構造を前記活性層直
上の薄膜層までは独立に形成し、さらに前記二重ヘテロ
接合上の最上層に前記基板と同じ導電型を示す薄膜を成
長させ、Zn拡散により、前記最上層の前記凸部直上の
領域のみを前記基板とは逆の導電型を示す薄膜層とする
半導体レーザの製造方法。
2. A stripe-shaped convex portion is formed on the surface of a conductive substrate, and an angle between a flat surface of the convex portion of the convex portion and an adjacent side surface thereof is an obtuse angle, and at least one side surface of a base end continuing to the adjacent side surface is formed. The tip flat surface is formed to have an angle of 90 ° or less, and is activated on the convex portion and a region other than the convex portion by a metal organic vapor phase epitaxial growth method on a conductive substrate including the convex portion. A double heterostructure including layers is independently formed up to the thin film layer directly above the active layer, and a thin film showing the same conductivity type as that of the substrate is grown on the uppermost layer on the double heterojunction, and by Zn diffusion, A method for manufacturing a semiconductor laser, wherein only a region of the uppermost layer immediately above the convex portion is a thin film layer having a conductivity type opposite to that of the substrate.
JP59166172A 1984-03-27 1984-08-08 Semiconductor laser device and method of manufacturing the same Expired - Lifetime JPH0632331B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59166172A JPH0632331B2 (en) 1984-08-08 1984-08-08 Semiconductor laser device and method of manufacturing the same
DE8585301989T DE3579929D1 (en) 1984-03-27 1985-03-22 SEMICONDUCTOR LASER AND METHOD FOR ITS FABRICATION.
EP85301989A EP0157555B1 (en) 1984-03-27 1985-03-22 A semiconductor laser and a method of producing the same
US06/715,392 US4719633A (en) 1984-03-27 1985-03-25 Buried stripe-structure semiconductor laser
US07/114,065 US4948753A (en) 1984-03-27 1987-10-29 Method of producing stripe-structure semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59166172A JPH0632331B2 (en) 1984-08-08 1984-08-08 Semiconductor laser device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPS6144485A JPS6144485A (en) 1986-03-04
JPH0632331B2 true JPH0632331B2 (en) 1994-04-27

Family

ID=15826405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59166172A Expired - Lifetime JPH0632331B2 (en) 1984-03-27 1984-08-08 Semiconductor laser device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JPH0632331B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6376392A (en) * 1986-09-17 1988-04-06 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPS6373689A (en) * 1986-09-17 1988-04-04 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPS6373693A (en) * 1986-09-17 1988-04-04 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPS6373690A (en) * 1986-09-17 1988-04-04 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPH0799785B2 (en) * 1986-10-09 1995-10-25 松下電器産業株式会社 Semiconductor laser device
JPS63197395A (en) * 1987-02-12 1988-08-16 Matsushita Electric Ind Co Ltd Semiconductor laser device and its manufacture
JP2708949B2 (en) * 1990-08-30 1998-02-04 シャープ株式会社 Method of manufacturing semiconductor laser device
JP2960838B2 (en) * 1993-07-30 1999-10-12 シャープ株式会社 Semiconductor device and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5666084A (en) * 1979-11-02 1981-06-04 Nec Corp Semiconductor light-emitting element
JPS5911621A (en) * 1982-07-12 1984-01-21 Toshiba Corp Manufacture of optical semiconductor element by liquid phase crystal growth

Also Published As

Publication number Publication date
JPS6144485A (en) 1986-03-04

Similar Documents

Publication Publication Date Title
JP2827326B2 (en) Manufacturing method of semiconductor laser
US4569721A (en) Method for the production of semiconductor lasers
US4948753A (en) Method of producing stripe-structure semiconductor laser
JP3206555B2 (en) Gallium nitride based semiconductor light emitting device and method of manufacturing the same
US20090168827A1 (en) Nitride semiconductor laser chip and method of fabricating same
JPH0632331B2 (en) Semiconductor laser device and method of manufacturing the same
US4599787A (en) Method of manufacturing a light emitting semiconductor device
US5887011A (en) Semiconductor laser
US5805628A (en) Semiconductor laser
JP2771587B2 (en) Manufacturing method of semiconductor laser
JP3151096B2 (en) Semiconductor light emitting device
JPH067621B2 (en) Semiconductor laser device and method of manufacturing the same
US4360920A (en) Terraced substrate semiconductor laser
JPH0632327B2 (en) Semiconductor laser device and method of manufacturing the same
JPH084180B2 (en) Semiconductor laser device and method of manufacturing the same
JPH0572118B2 (en)
JP2751306B2 (en) Semiconductor light emitting device
JP2554192B2 (en) Semiconductor laser manufacturing method
JP2973215B2 (en) Semiconductor laser device
JP2000174388A (en) Semiconductor laser and manufacture thereof
JPH11354880A (en) Semiconductor laser element and its manufacturing method
JP2547459B2 (en) Semiconductor laser device and manufacturing method thereof
JP2736382B2 (en) Embedded semiconductor laser and method of manufacturing the same
JPH07235725A (en) Semiconductor laser element and its manufacture
JP2001144374A (en) Semiconductor laser