JPH0632323B2 - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPH0632323B2
JPH0632323B2 JP58233666A JP23366683A JPH0632323B2 JP H0632323 B2 JPH0632323 B2 JP H0632323B2 JP 58233666 A JP58233666 A JP 58233666A JP 23366683 A JP23366683 A JP 23366683A JP H0632323 B2 JPH0632323 B2 JP H0632323B2
Authority
JP
Japan
Prior art keywords
semiconductor laser
laser device
laser
layer
reflection region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58233666A
Other languages
Japanese (ja)
Other versions
JPS60126881A (en
Inventor
伸二 辻
俊 梶村
直樹 茅根
芳久 藤崎
泰利 柏田
元尚 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58233666A priority Critical patent/JPH0632323B2/en
Publication of JPS60126881A publication Critical patent/JPS60126881A/en
Publication of JPH0632323B2 publication Critical patent/JPH0632323B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は光通信用光源や分光用光源に用いられる高出力
半導体レーザ装置に関するものである。
The present invention relates to a high-power semiconductor laser device used for a light source for optical communication and a light source for spectroscopy.

〔発明の背景〕[Background of the Invention]

半導体レーザ装置の高出力化をはかる従来の手段として
は、複数個の半導体レーザ素子を並置し、かつこれらの
レーザ素子同志を光学的に結合して達成させることがよ
く知られている。しかし単一モードの半導体レーザ装置
では単なる光学的結合により高出力化することが困難で
あり実用化されていない。
As a conventional means for increasing the output of a semiconductor laser device, it is well known that a plurality of semiconductor laser elements are arranged side by side and these laser elements are optically coupled to each other. However, single-mode semiconductor laser devices have not been put to practical use because it is difficult to increase the output by simple optical coupling.

〔発明の目的〕[Object of the Invention]

本発明は、高出力動作が可能な縦単一モードの半導体レ
ーザ装置を得ることを目的とする。
It is an object of the present invention to obtain a vertical single mode semiconductor laser device capable of high output operation.

〔発明の概要〕[Outline of Invention]

上記の目的を達成するために本発明による半導体レーザ
装置は、同一面上に並置した複数個の横モードレーザス
トライプからなるレーザ発光部と、上記ストライプ方向
に形成した周期性を有するブラック反射領域とにより構
成され、上記各レーザストライプ部が共通の上記ブラッ
グ反射領域で光学的に結合したものである。
In order to achieve the above object, a semiconductor laser device according to the present invention comprises a laser emitting portion composed of a plurality of transverse mode laser stripes juxtaposed on the same surface, and a periodic black reflection region formed in the stripe direction. The laser stripe portions are optically coupled to each other at the common Bragg reflection region.

〔発明の実施例〕Example of Invention

つぎの本発明の実施例を図面とともに説明する。第1図
は本発明による半導体レーザ装置の一実施例を示す平面
図、第2図は上記実施例のA−A断面図、第3図は上記
実施例のB−B断面図である。上記実施例に示す半導体
レーザ装置はレーザ発光部1と回折格子部2とにより構
成されている。レーザ発光部1はそれぞれ横モード制御
されたレーザ発光部1a〜1eからなり、各レーザ発光
部におけるA−A断面構造の一例を第2図に示す。本実
施例はn型InP結晶3上に、He-Cdレーザによる干渉露光
法を用いてピッチ2300Å、深さ800Åの回折格子31を作
成したのち、液相エピタキシャル法を用いてInGaAsPガ
イド層4(アンドープ、厚さ0.2〜0.4μm、組成λg〜
1.3μm相当)を形成した。つぎに第1のH2SO4系エッチ
ング液(H2SO4:H2O:H2O2=1:1:8)を用いてInGaA
sPガイド層4を選択的にエッチングして除去したのち、
上記除去部についてはさらに第2のH2SO4系エッチング
液(H2SO4:H2O:H2O2=5:1:1)を用いてエッチン
グして回折格子31を消失させた。この結晶に再度液相エ
ピタキシャル法を用いて、InGaAsP活性層5(アンドー
プ、厚さ0.1〜0.2μm、組成λg〜1.5μm相当)、InGa
AsPアンチメルトバック層6(アンドープ、厚さ0.1μ
m、組成λg〜1.3μm相当)、p型InPクラッド層7(Z
nドープ、キャリア濃度1×1018cm-3、厚さ3〜4μ
m)、p型InGaAsP表面層8(Znドープ、キャリア濃度
5×1018cm-3、厚さ0.2μm、組成λg〜1.15μm相当)
を順次成長させて、レーザ発光部1にダブルヘテロ構造
を形成した。その後上記レーザ発光部1に幅6μmのス
トライプ状のSiO2膜を間隔5〜50μmごとに形成し、こ
のSiO2膜をマスクにしてBrメタノール溶液で蝕刻したの
ち液相エピタキシャル法で積層する通常のBHレーザ装
置形成法と同様の手法で、第3図のB−B断面図として
示すようなフィラメント状発光部を屈折率が小さい結晶
で囲まれたBH構造を得た。このBH構造の埋込み部は
p型InP層71(Znドープ、キャリア濃度1×1018cm-3、厚
さ0.8μm)、n型InP層72(Teドープ、キャリア濃度1
×1018cm-3、厚さ2〜3μm)、InGaAsP表面層73(ア
ンドープ、厚さ0.2〜0.3μm、組成λg〜1.15μm相当
とした。上記のレーザ結晶を作成したのち、p側電極9
(Au/Cr)およびn側電極10(Au/Sn)を蒸着により形成
し、へき開を行って半導体レーザ装置を形成した。上記
の構造により同一面上に並置され横モード制御されたレ
ーザ発光部が、その光電界がおよぶ範囲で、上記発光部
のストライプ方向に形成した周期性を有するブラッグ領
域で結合されているため、縦単一モードのレーザ発振を
高出力化することができる。
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a plan view showing an embodiment of a semiconductor laser device according to the present invention, FIG. 2 is a sectional view taken along line AA of the above embodiment, and FIG. 3 is a sectional view taken along line BB of the above embodiment. The semiconductor laser device shown in the above embodiment comprises a laser emitting section 1 and a diffraction grating section 2. The laser emitting section 1 is composed of laser emitting sections 1a to 1e each of which is controlled in the transverse mode, and an example of the AA cross-sectional structure of each laser emitting section is shown in FIG. In this embodiment, a diffraction grating 31 having a pitch of 2300Å and a depth of 800Å is formed on an n-type InP crystal 3 by using an interference exposure method using a He-Cd laser, and then a liquid phase epitaxial method is used to form an InGaAsP guide layer 4 ( Undoped, thickness 0.2-0.4 μm, composition λg-
1.3 μm) was formed. Next, using the first H 2 SO 4 -based etching solution (H 2 SO 4 : H 2 O: H 2 O 2 = 1: 1: 8), InGaA
After selectively removing the sP guide layer 4 by etching,
The removed portion was further etched using a second H 2 SO 4 based etching solution (H 2 SO 4 : H 2 O: H 2 O 2 = 5: 1: 1) to eliminate the diffraction grating 31. . Using the liquid phase epitaxial method again for this crystal, the InGaAsP active layer 5 (undoped, thickness 0.1 to 0.2 μm, composition λg to 1.5 μm equivalent), InGaP
AsP anti-melt back layer 6 (undoped, thickness 0.1μ
m, composition λg to 1.3 μm), p-type InP clad layer 7 (Z
n-doped, carrier concentration 1 × 10 18 cm -3 , thickness 3-4μ
m), p-type InGaAsP surface layer 8 (Zn-doped, carrier concentration 5 × 10 18 cm -3 , thickness 0.2 μm, composition λg to 1.15 μm equivalent)
Were sequentially grown to form a double hetero structure in the laser emitting section 1. After that, a stripe-shaped SiO 2 film having a width of 6 μm is formed at intervals of 5 to 50 μm on the laser emitting portion 1, and the SiO 2 film is used as a mask for etching with Br methanol solution and then laminated by a liquid phase epitaxial method. By the same method as the method for forming the BH laser device, a BH structure in which the filament light emitting portion was surrounded by crystals having a small refractive index was obtained as shown in the BB sectional view of FIG. The buried portion of this BH structure includes a p-type InP layer 71 (Zn-doped, carrier concentration 1 × 10 18 cm −3 , thickness 0.8 μm), an n-type InP layer 72 (Te-doped, carrier concentration 1
X10 18 cm -3 , thickness 2 to 3 μm), InGaAsP surface layer 73 (undoped, thickness 0.2 to 0.3 μm, composition λg to 1.15 μm). After forming the above laser crystal, p-side electrode 9
(Au / Cr) and the n-side electrode 10 (Au / Sn) were formed by vapor deposition, and cleavage was performed to form a semiconductor laser device. Laser emission sections that are juxtaposed on the same plane by the above structure and controlled in the transverse mode are coupled by the Bragg region having the periodicity formed in the stripe direction of the emission section within the range where the optical electric field extends, It is possible to increase the output power of the laser oscillation in the single longitudinal mode.

上記実施例におけるレーザ発光部1が20個のBH構造部か
らなる半導体レーザ装置において、出力が100mWまで
の単一モード動作が可能であった。
In the semiconductor laser device in which the laser emitting section 1 in the above-mentioned embodiment is composed of 20 BH structure sections, single mode operation with an output of up to 100 mW was possible.

上記実施例ではn型InP結晶3上に回折格子31を形成
し、InGaAsPガイド層4を設けたのち、上記ガイド層4
を選択的にエッチングで除去し、この除去部の回折格子
31を再度エッチングして除いた結晶に、液相エピタキシ
ャル法により活性層5、アンチメルトバック層6、クラ
ッド層7、表面層8を順次積層して半導体レーザ装置を
形成したが、他の方法、例えばn型InP結晶3上にガイ
ド層4、活性層5、アンチメルトバック層6、クラッド
層7、表面層8を液相エピタキシャル法で順次積層した
のち、選択エッチングにより部分的に上記活性層5まで
を除去し、この除去した部分に回折格子31を形成してIn
GaAsPガイド層4を積層し、その上に上記各半導体層を
順次積層して埋込むことによって半導体レーザ装置を形
成しても、上記実施例と同じ構造を有するため同様の作
用効果が得られる。
In the above embodiment, the diffraction grating 31 is formed on the n-type InP crystal 3 and the InGaAsP guide layer 4 is provided, and then the guide layer 4 is formed.
Is selectively removed by etching, and the diffraction grating of this removed portion
A semiconductor laser device was formed by sequentially laminating the active layer 5, the anti-meltback layer 6, the clad layer 7, and the surface layer 8 on the crystal from which 31 was removed by etching again by the liquid phase epitaxial method. For example, a guide layer 4, an active layer 5, an anti-meltback layer 6, a clad layer 7, and a surface layer 8 are sequentially laminated on the n-type InP crystal 3 by a liquid phase epitaxial method, and then the active layer 5 is partially etched by selective etching. Are removed, and the diffraction grating 31 is formed on the removed portion to
Even if the semiconductor laser device is formed by stacking the GaAsP guide layer 4 and sequentially stacking and embedding the semiconductor layers on the GaAsP guide layer 4, the same effect can be obtained because the semiconductor laser device has the same structure as that of the above embodiment.

また上記実施例はInGaAsP/InP系について記したが、例
えばGaAlAs/GaAs系など結晶の材料は限定しない。
Further, although the above-mentioned embodiment describes the InGaAsP / InP system, the crystalline material such as GaAlAs / GaAs system is not limited.

〔発明の効果〕〔The invention's effect〕

本発明による半導体レーザ装置は、同一面上に並置した
複数個の横モードレーザストライプからなるレーザ発光
部と、上記ストライプ方向に形成した周期性を有するブ
ラッグ反射領域とにより構成され、上記各レーザストラ
イプ部が共通の上記ブラッグ反射領域で光学的に結合し
たことにより、結合された上記レーザ発光部の数に対応
して縦単一モードのレーザ発振を高出力化することがで
きるため、光通信用光源に用いた場合には100Km以上の
長距離光通信を可能にする半導体レーザ装置を得ること
ができる。
A semiconductor laser device according to the present invention comprises a laser emitting portion composed of a plurality of transverse mode laser stripes juxtaposed on the same plane, and a periodic Bragg reflection region formed in the stripe direction. Since the parts are optically coupled in the common Bragg reflection region, it is possible to increase the output power of the longitudinal single mode laser oscillation corresponding to the number of the coupled laser emitting parts. When used as a light source, a semiconductor laser device capable of long-distance optical communication of 100 km or more can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による半導体レーザ装置の一実施例を示
す平面図、第2図は上記実施例のA−A断面図、第3図
は上記実施例のB−B断面図である。 1a、1b、1c、1d、1e……レーザ発光部、31…
…回折格子(ブラッグ反射領域)。
FIG. 1 is a plan view showing an embodiment of a semiconductor laser device according to the present invention, FIG. 2 is a sectional view taken along line AA of the above embodiment, and FIG. 3 is a sectional view taken along line BB of the above embodiment. 1a, 1b, 1c, 1d, 1e ... Laser emitting section, 31 ...
… Diffraction grating (Bragg reflection area).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤崎 芳久 東京都国分寺市東恋ヶ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 柏田 泰利 東京都国分寺市東恋ヶ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 平尾 元尚 東京都国分寺市東恋ヶ窪1丁目280番地 株式会社日立製作所中央研究所内 (56)参考文献 特開 昭60−42887(JP,A) 特開 昭60−16484(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshihisa Fujisaki 1-280, Higashi Koigakubo, Kokubunji, Tokyo Inside Central Research Laboratory, Hitachi, Ltd. (72) Inventor Yasushi Kashida 1-280, Higashi Koigakubo, Kokubunji, Tokyo Hitachi, Ltd. Central Research Laboratory (72) Inventor Motohisa Hirao 1-280, Higashi Koigakubo, Kokubunji City, Tokyo Central Research Laboratory, Hitachi, Ltd. (56) Reference JP 60-42887 (JP, A) JP 60-16484 ( JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】同一面上に並置した複数個の横モードレー
ザストライプからなるレーザ発光部と、上記ストライプ
方向に形成した周期性を有するブラッグ反射領域とによ
り構成され、上記各レーザストライプ部が共通の上記ブ
ラッグ反射領域で、光学的に結合した半導体レーザ装
置。
1. A laser light emitting portion composed of a plurality of transverse mode laser stripes juxtaposed on the same surface, and a periodic Bragg reflection region formed in the stripe direction, wherein each of the laser stripe portions is common. An optically coupled semiconductor laser device in the Bragg reflection region of.
JP58233666A 1983-12-13 1983-12-13 Semiconductor laser device Expired - Lifetime JPH0632323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58233666A JPH0632323B2 (en) 1983-12-13 1983-12-13 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58233666A JPH0632323B2 (en) 1983-12-13 1983-12-13 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPS60126881A JPS60126881A (en) 1985-07-06
JPH0632323B2 true JPH0632323B2 (en) 1994-04-27

Family

ID=16958624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58233666A Expired - Lifetime JPH0632323B2 (en) 1983-12-13 1983-12-13 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH0632323B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7541201B2 (en) 2000-08-30 2009-06-02 Kla-Tencor Technologies Corporation Apparatus and methods for determining overlay of structures having rotational or mirror symmetry
US7317531B2 (en) 2002-12-05 2008-01-08 Kla-Tencor Technologies Corporation Apparatus and methods for detecting overlay errors using scatterometry
US10451412B2 (en) 2016-04-22 2019-10-22 Kla-Tencor Corporation Apparatus and methods for detecting overlay errors using scatterometry

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6016484A (en) * 1983-07-08 1985-01-28 Agency Of Ind Science & Technol Semiconductor laser
JPS6042887A (en) * 1983-08-19 1985-03-07 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser device of high output single mode

Also Published As

Publication number Publication date
JPS60126881A (en) 1985-07-06

Similar Documents

Publication Publication Date Title
US6238943B1 (en) Optical semiconductor device and a method of manufacturing the same
US4045749A (en) Corrugation coupled twin guide laser
EP0617471A2 (en) Optical functional devices, integrated optical devices, and methods for producing such devices
EP0492854A2 (en) Apparatus comprising a laser adapted for emission of single mode radiation having low transverse divergence
JP2001308451A (en) Semiconductor light emitting element
JP3484394B2 (en) Optical semiconductor device and method of manufacturing the same
EP0572917A1 (en) Compound semiconductor device and fabrication method of producing the compound semiconductor device
JP2746326B2 (en) Semiconductor optical device
JPH0656906B2 (en) Semiconductor laser device
JP2943510B2 (en) Tunable semiconductor laser device
US4782035A (en) Method of forming a waveguide for a DFB laser using photo-assisted epitaxy
EP0104712B1 (en) Semiconductor laser
EP0106305A2 (en) Double heterostructure semiconductor laser with periodic structure formed in guide layer
US6204078B1 (en) Method of fabricating photonic semiconductor device using selective MOVPE
US5570385A (en) Semiconductor laser and method for manufacturing the same
JPH0632323B2 (en) Semiconductor laser device
JPH0248151B2 (en)
JP2852663B2 (en) Semiconductor laser device and method of manufacturing the same
JPH10242577A (en) Semiconductor laser and manufacture thereof
JPH0147031B2 (en)
JP2542570B2 (en) Method for manufacturing optical integrated device
JP2903321B2 (en) Method of manufacturing semiconductor laser device
JPS62199085A (en) Semiconductor laser
JPH0437598B2 (en)
JPS61220389A (en) Integrated type semiconductor laser