JPH0632142A - Refrigerating cycle control device - Google Patents

Refrigerating cycle control device

Info

Publication number
JPH0632142A
JPH0632142A JP4186812A JP18681292A JPH0632142A JP H0632142 A JPH0632142 A JP H0632142A JP 4186812 A JP4186812 A JP 4186812A JP 18681292 A JP18681292 A JP 18681292A JP H0632142 A JPH0632142 A JP H0632142A
Authority
JP
Japan
Prior art keywords
pipe
refrigerant
evaporator
solenoid valve
closed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4186812A
Other languages
Japanese (ja)
Other versions
JP3141902B2 (en
Inventor
Shin Nishida
伸 西田
Hiroshi Inazu
宏 稲津
Shigeo Numazawa
成男 沼澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP04186812A priority Critical patent/JP3141902B2/en
Publication of JPH0632142A publication Critical patent/JPH0632142A/en
Application granted granted Critical
Publication of JP3141902B2 publication Critical patent/JP3141902B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

PURPOSE:To prevent beforehand the occurrence of vibration or noise caused by a water hammer phenomenon by restraining the occurrence of the water hammer phenomenon caused when operation is stopped in one of both evaporators connected in parallel to each other. CONSTITUTION:Both always opening type solenoid valves 60 and 90 are interposed respectively upstream and downstream of an evaporator 80. Simultaneously when the solenoid valve 90 is closed by closing an operation switch Sf when an operation switch Sc is closed, a timer 100 starts to count delay time Td. When time count of this timer 100 is finished, the solenoid valve 60 is closed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、車両や一般建造物内に
装備した空調装置及び冷蔵装置に兼用される冷凍サイク
ル、又は車室内のフロントシート側及びリアシート側の
両空調や一般建造物内の互いに離れた箇所の両空調を共
に或いは選択的に行うようにした空調装置等の冷凍サイ
クルに係り、特に、当該冷凍サイクルを制御するに適し
た冷凍サイクル制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating cycle which is also used as an air conditioner and a refrigerating device equipped in a vehicle or a general building, or both air conditioning on the front seat side and the rear seat side in a passenger compartment and in a general building. The present invention relates to a refrigerating cycle such as an air conditioner adapted to selectively or selectively perform both air conditioning at mutually distant locations, and particularly to a refrigerating cycle controller suitable for controlling the refrigerating cycle.

【0002】[0002]

【従来の技術】従来、例えば、車室内のフロントシート
側及びリアシート側の両空調を共に或いは選択的に行う
ようにした空調装置の冷凍サイクルにおいては、フロン
トシート側用エバポレータとリアシート側エバポレータ
とを並列に接続し、各エバポレータの上流側に電磁弁を
それぞれ介装して、これら各電磁弁を選択的に閉じるこ
とによってフロントシート側又はリアシート側のみのエ
バポレータを切り替え運転するするようにしたものがあ
る。
2. Description of the Related Art Conventionally, for example, in a refrigeration cycle of an air conditioner in which both front seat side and rear seat side air conditioning in a vehicle compartment are performed together or selectively, a front seat side evaporator and a rear seat side evaporator are provided. One that is connected in parallel and has an electromagnetic valve installed on the upstream side of each evaporator, and selectively operates each electromagnetic valve to switch between the evaporators on the front seat side or the rear seat side to operate the evaporator. is there.

【0003】また、各エバポレータの下流側にも電磁弁
をそれぞれ介装して、一方のエバポレータの運転停止に
あたりその上流側の電磁弁を閉じるとき、その下流側の
電磁弁も同時に閉じて、コンプレッサ内への液冷媒の吸
入を防止するようにした冷凍サイクルが実用化されてい
る。
Further, a solenoid valve is also provided on the downstream side of each evaporator, and when the operation of one of the evaporators is stopped, the solenoid valve on the upstream side is closed, and the solenoid valve on the downstream side is also closed at the same time. A refrigeration cycle that prevents the inhalation of liquid refrigerant into the inside has been put into practical use.

【0004】[0004]

【発明が解決しようとする課題】しかし、このような構
成においては、エバポレータの上流側の電磁弁の閉成
時、或いはエバポレータの上下流側の両電磁弁の同時閉
成時に、その上流側の液冷媒の流れを急激に停止させる
ことになるため、同電磁弁の上流側の配管内で液冷媒に
よるウォータハンマ現象を引き起こす。その結果、これ
ら配管やエバポレータが振動したり騒音を発生するとい
う不具合がある。
However, in such a configuration, when the solenoid valve on the upstream side of the evaporator is closed or both solenoid valves on the upstream and downstream sides of the evaporator are simultaneously closed, the upstream side of the evaporator is closed. Since the flow of the liquid refrigerant is suddenly stopped, a water hammer phenomenon due to the liquid refrigerant is caused in the pipe on the upstream side of the solenoid valve. As a result, there is a problem that these pipes and evaporators vibrate and generate noise.

【0005】そこで、本発明は、このようなことに対処
すべく、冷凍サイクル制御装置において、互いに並列接
続した両エバポレータの一方の運転停止時における上述
のようなウォータハンマ現象の発生を抑制し、このウォ
ータハンマ現象に伴う振動や騒音の発生を未然に防止し
ようとするものである。
Therefore, in order to cope with such a situation, the present invention suppresses the occurrence of the water hammer phenomenon as described above when one of the evaporators connected in parallel to each other is stopped in the refrigeration cycle controller. It is intended to prevent the generation of vibration and noise due to the water hammer phenomenon.

【0006】[0006]

【課題を解決するための手段】上記課題の解決にあた
り、本発明は、コンプレッサと、このコンプレッサに直
列接続されるとともに互いに並列接続した両エバポレー
タと、これら両エバポレータの少なくとも一方の上流側
に介装した上流側電磁弁と、この上流側電磁弁の介装さ
れたエバポレータの下流側に介装してなる下流側電磁弁
とを備えた冷凍サイクル制御装置において、前記上流側
電磁弁を前記下流側電磁弁の閉弁に対し所定の遅延時間
だけ遅延して閉弁するように駆動制御する駆動制御手段
を設けるようにしたことにその構成上の特徴がある。
In order to solve the above problems, the present invention relates to a compressor, both evaporators connected in series to the compressor and connected in parallel with each other, and at least one of the evaporators provided on the upstream side of the evaporator. In the refrigeration cycle control device including the upstream solenoid valve and the downstream solenoid valve that is provided on the downstream side of the evaporator in which the upstream solenoid valve is provided, the upstream solenoid valve is provided at the downstream side. The structure is characterized in that the drive control means for controlling the drive so that the electromagnetic valve is closed after being delayed by a predetermined delay time is provided.

【0007】[0007]

【発明の作用・効果】このように本発明を構成したこと
により、前記両エバポレータの片方のみにより冷却作動
制御をする場合には、前記駆動制御手段が、前記上流側
電磁弁を、前記下流側電磁弁の閉弁に対し、前記遅延時
間だけ遅延して閉弁するように駆動制御する。従って、
前記遅延時間を適正に定めておけば、前記下流側電磁弁
の閉弁時に、その上流側に位置する前記エバポレータや
配管部分内の液冷媒の流れが停止されるため、同液冷媒
の急激な圧力変動が、前記両エバポレータの一方内の気
化冷媒の圧力変動吸収作用により吸収されて抑制され
る。その結果、前記両エバポレータの一方や配管部分内
におけるウォータハンマ現象の発生が確実に抑制されて
騒音や機械的振動の発生を最小限に抑制し得る。
With the above configuration of the present invention, when the cooling operation control is performed by only one of the both evaporators, the drive control means causes the upstream side solenoid valve to move to the downstream side. With respect to the closing of the electromagnetic valve, drive control is performed so that the electromagnetic valve is closed with a delay of the delay time. Therefore,
If the delay time is properly determined, when the downstream solenoid valve is closed, the flow of the liquid refrigerant in the evaporator or the pipe portion located on the upstream side is stopped. The pressure fluctuation is absorbed and suppressed by the pressure fluctuation absorbing action of the vaporized refrigerant in one of the evaporators. As a result, it is possible to reliably suppress the occurrence of the water hammer phenomenon in one of the both evaporators or in the pipe portion, and to suppress the generation of noise and mechanical vibration to the minimum.

【0008】[0008]

【実施例】以下、本発明の一実施例について説明する
と、図1は車両用空調システムの冷凍サイクル制御装置
に本発明が適用された例を示している。この冷凍サイク
ル制御装置の冷凍サイクルRはコンプレッサ10を備え
ており、このコンプレッサ10は、電磁クラッチ10a
を介して当該車両のエンジンから動力を伝達されて作動
し、配管P1 の下流部内の冷媒を吸入圧縮して高温高圧
の圧縮冷媒として配管P2 内に吐出する。電磁クラッチ
10aはその係合により前記エンジンからの動力をコン
プレッサ10に伝達する。コンデンサ20は、図示しな
い空冷ファンの空冷作用のもとに、配管P2内の圧縮冷
媒を凝縮し二層の凝縮冷媒として配管P3を通しレシー
バ30内に流入させる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below. FIG. 1 shows an example in which the present invention is applied to a refrigeration cycle control device for a vehicle air conditioning system. The refrigeration cycle R of this refrigeration cycle control device includes a compressor 10, and the compressor 10 includes an electromagnetic clutch 10a.
Power is transmitted from the engine of the vehicle via the engine to operate, and the refrigerant in the downstream portion of the pipe P1 is sucked and compressed to be discharged into the pipe P2 as high-temperature and high-pressure compressed refrigerant. The engagement of the electromagnetic clutch 10a transmits the power from the engine to the compressor 10. The condenser 20 condenses the compressed refrigerant in the pipe P2 into the receiver 30 through the pipe P3 as a two-layer condensed refrigerant under the air-cooling action of an air-cooling fan (not shown).

【0009】レシーバ30は、その流入凝縮冷媒を気液
分離して、液層成分を循環冷媒として配管P4の上流部
内に流入させる。温度作動式膨張弁40は、配管P4の
上流部から配管P5 の上流部を通し循環冷媒を受け、そ
の開度に応じた絞り量にて同循環冷媒の流量を絞り配管
P5 の下流部を通してフロントシート側エバポレータ5
0内に流入させる。膨張弁40の開度、即ち冷媒絞り量
は、エバポレータ50の冷媒出口近傍にて配管P6に付
設した感温筒40aによる同配管P6内の検出冷媒温度
に応じて変化する。エバポレータ50は、その流入冷媒
に応じて、フロントシートに向けて吹き出すべき空気流
を冷却するとともに、同流入冷媒を、配管P6及び配管
P1の下流部を通してコンプレッサ10内に還流する。
The receiver 30 separates the inflowing condensed refrigerant into gas and liquid, and causes the liquid layer component to flow into the upstream portion of the pipe P4 as a circulating refrigerant. The temperature-operated expansion valve 40 receives the circulating refrigerant from the upstream portion of the pipe P4 through the upstream portion of the pipe P5 and reduces the flow rate of the circulating refrigerant at the throttle amount according to the opening degree through the downstream portion of the throttle pipe P5. Seat side evaporator 5
Flow into 0. The opening degree of the expansion valve 40, that is, the refrigerant throttle amount changes according to the detected refrigerant temperature in the pipe P6 by the temperature-sensing cylinder 40a attached to the pipe P6 near the refrigerant outlet of the evaporator 50. The evaporator 50 cools the airflow to be blown toward the front seat according to the inflowing refrigerant, and also recirculates the inflowing refrigerant into the compressor 10 through the downstream portions of the pipes P6 and P1.

【0010】常開型電磁弁60、温度作動式膨張弁7
0、リアシート側エバポレータ80及び常開型電磁弁9
0は、図1にて示すごとく、配管 P5、膨張弁40、エ
バポレータ50及び配管P6 からなる直列回路に、配管
P4の下流部、配管P7及び配管P1の上流部により並列
に接続されている。電磁弁60は配管P4の下流部内に
介装されているもので、この電磁弁60はその開弁状態
にて配管P4 の上流部からの循環冷媒を配管P4 の下流
部を通して膨張弁70内に流入させる。また、電磁弁6
0は、そのソレノイド60aの励磁により閉弁し、配管
P4 の上流部から配管P4の下流部を介する膨張弁70
内への循環冷媒の流入を遮断する。
Normally open solenoid valve 60, temperature operated expansion valve 7
0, rear seat side evaporator 80 and normally open solenoid valve 9
As shown in FIG. 1, 0 is connected in parallel to the series circuit composed of the pipe P5, the expansion valve 40, the evaporator 50 and the pipe P6 by the downstream portion of the pipe P4 and the upstream portion of the pipe P7 and the pipe P1. The solenoid valve 60 is interposed in the downstream portion of the pipe P4. The solenoid valve 60, in its open state, circulates the circulating refrigerant from the upstream portion of the pipe P4 into the expansion valve 70 through the downstream portion of the pipe P4. Inflow. Also, the solenoid valve 6
0 is an expansion valve 70 that is closed by the excitation of its solenoid 60a and passes from the upstream portion of the pipe P4 to the downstream portion of the pipe P4.
The flow of the circulating refrigerant into the inside is blocked.

【0011】膨張弁70は、その流入循環冷媒の流量
を、その開度に応じた絞り量にて絞り配管P7 を通して
エバポレータ80内に流入させる。膨張弁70の開度、
即ち冷媒絞り量は、エバポレータ80の冷媒出口近傍に
て配管P1 の上流部に付設した感温筒70aによる同配
管P1 の上流部内の検出冷媒温度に応じて変化する。エ
バポレータ80は、その流入冷媒に応じて、リアシート
に向けて吹き出すべき空気流を冷却するとともに、同流
入冷媒を、配管P1の上流部、配管P1の上流部内に介装
した電磁弁90及び配管P1 の下流部を通してコンプレ
ッサ10内に還流する。電磁弁90は、そのソレノイド
90aの励磁によってのみ閉弁し、配管P1の上流部を
介しエバポレータ80から配管P1の下流部内へ冷媒の
流入を遮断する。
The expansion valve 70 causes the flow rate of the inflowing circulating refrigerant to flow into the evaporator 80 through the throttle pipe P7 with a throttle amount corresponding to the opening degree. Opening of the expansion valve 70,
That is, the refrigerant throttle amount changes according to the detected refrigerant temperature in the upstream portion of the pipe P1 by the temperature-sensitive cylinder 70a attached to the upstream portion of the pipe P1 near the refrigerant outlet of the evaporator 80. The evaporator 80 cools the air flow to be blown out toward the rear seat in accordance with the inflow refrigerant, and also supplies the inflow refrigerant to the upstream portion of the pipe P1 and the solenoid valve 90 and the pipe P1 interposed in the upstream portion of the pipe P1. And returns to the compressor 10 through the downstream portion of the. The solenoid valve 90 is closed only by the excitation of its solenoid 90a, and shuts off the inflow of the refrigerant from the evaporator 80 into the downstream portion of the pipe P1 via the upstream portion of the pipe P1.

【0012】次に、冷凍サイクル制御装置の電気回路構
成について説明する。操作スイッチScは、その閉成操
作により、バッテリBからの直流電圧を電磁クラッチ1
0aに印加して同電磁クラッチ10aを係合させる。操
作スイッチSfは、その閉成操作により、操作スイッチ
Scの閉成状態にて、バッテリBからの直流電圧を電磁
弁90のソレノイドに印加して同ソレノイドを励磁す
る。タイマ100は、操作スイッチScの閉成状態に
て、操作スイッチSfの閉成により、バッテリBから直
流電圧を印加されて作動する。しかして、このタイマ1
00は、その作動により、所定の遅延時間Tdの計時を
開始し、同遅延時間Tdの計時を終了したとき、両操作
スイッチSc、Sfを介するバッテリBからの直流電圧
を電磁弁60のソレノイド60aに印加して同ソレノイ
ド60aを励磁する。このことは、電磁弁90の閉弁後
遅延時間Tdの経過時に電磁弁60を閉弁することを意
味する。但し、上述の遅延時間Tdは、エバポレータ8
0への冷媒流入継続中において電磁弁90が閉弁した直
後に、配管 P7、エバポレータ80及び電磁弁90の上
流側に位置する配管P1 の部分内の液冷媒の流れの急停
止のために生ずるであろう冷媒圧力変動を効果的に吸収
し、ウォータハンマ現象の発生を未然に防止し得る値に
設定されている。
Next, the electric circuit configuration of the refrigeration cycle controller will be described. The operation switch Sc causes the DC voltage from the battery B to be applied to the electromagnetic clutch 1 by the closing operation.
0a to engage the electromagnetic clutch 10a. When the operation switch Sf is closed, the operation switch Sf applies the DC voltage from the battery B to the solenoid of the solenoid valve 90 to excite the solenoid in the closed state of the operation switch Sc. When the operation switch Sc is closed, the timer 100 is operated by applying a DC voltage from the battery B when the operation switch Sf is closed. Then, this timer 1
00 starts the clocking of a predetermined delay time Td by its operation, and when the clocking of the delay time Td is finished, the direct current voltage from the battery B via the operation switches Sc and Sf is applied to the solenoid 60a of the solenoid valve 60. To energize the solenoid 60a. This means that the solenoid valve 60 is closed when the delay time Td after the solenoid valve 90 is closed. However, the above-mentioned delay time Td depends on the evaporator 8
Immediately after the solenoid valve 90 is closed while the refrigerant is flowing into 0, it occurs due to the sudden stop of the flow of the liquid refrigerant in the pipe P7, the evaporator 80, and the pipe P1 located upstream of the solenoid valve 90. It is set to a value that can effectively absorb the fluctuations in the refrigerant pressure and prevent the occurrence of the water hammer phenomenon.

【0013】このように構成した本実施例において、当
該車両のエンジンの作動状態にて操作スイッチScを閉
じれば、電磁クラッチ10aが係合し、コンプレッサ1
0がエンジンから電磁クラッチ10aを介し動力を伝達
されて作動する。すると、このコンプレッサ10が、配
管P1 の下流部内の冷媒を吸入圧縮し圧縮冷媒として配
管P2 を通しコンデンサ20に流入させる。このため、
コンデンサ20がその流入圧縮冷媒を凝縮し凝縮冷媒と
して配管P3 を通しレシーバ30内に流入させる。つい
で、レシーバ30がその流入凝縮冷媒を気液分離して液
層成分を循環冷媒として配管P4の上流部内に流入させ
る。
In this embodiment thus constructed, when the operation switch Sc is closed while the engine of the vehicle is operating, the electromagnetic clutch 10a is engaged and the compressor 1
0 operates by receiving power from the engine via the electromagnetic clutch 10a. Then, the compressor 10 sucks and compresses the refrigerant in the downstream portion of the pipe P1 and causes it to flow into the condenser 20 as the compressed refrigerant through the pipe P2. For this reason,
The condenser 20 condenses the inflowing compressed refrigerant and causes it to flow into the receiver 30 as a condensed refrigerant through the pipe P3. Then, the receiver 30 separates the inflowing condensed refrigerant into gas and liquid and causes the liquid layer component to flow into the upstream portion of the pipe P4 as a circulating refrigerant.

【0014】このようにして配管P4 の上流部内に循環
冷媒が流入すると、膨張弁40が、同循環冷媒を配管P
5 の上流部を通して受け、同循環冷媒を、感温筒40a
の検出冷媒温度に応じた絞り量にて配管P5 の下流部を
通してエバポレータ50内に流入させる。すると、この
エバポレータ50が、その流入冷媒により、フロントシ
ートに向けて吹き出すべき空気流を冷却するとともに、
同流入冷媒を配管P6及び配管P1 の下流部を通してコ
ンプレッサ10内に還流する。また、現段階では、両電
磁弁60、90が開弁状態にあるため、上述のように配
管P4 の上流部内に流入した循環冷媒が配管P4 の下流
部及び電磁弁60を通して膨張弁70に流入する。この
ため、膨張弁70が、その流入循環冷媒を、感温筒70
aの検出冷媒温度に応じた絞り量にて配管P7を通して
エバポレータ80内に流入させる。すると、このエバポ
レータ80が、その流入冷媒により、リアシートに向け
て吹き出すべき空気流を冷却するとともに、同流入冷媒
を配管P1 及び電磁弁90を通してコンプレッサ10内
に還流する。以上により、空調システムによるフロント
シート及びリアシートの各乗員の冷房を同時に実現し得
る。
When the circulating refrigerant flows into the upstream portion of the pipe P4 in this manner, the expansion valve 40 causes the circulating refrigerant to flow through the pipe P4.
5 through the upstream portion of the same circulation refrigerant, temperature sensing tube 40a
The flow rate is made to flow into the evaporator 50 through the downstream portion of the pipe P5 with a throttle amount corresponding to the detected refrigerant temperature. Then, the evaporator 50 cools the air flow to be blown out toward the front seat by the inflowing refrigerant,
The inflowing refrigerant is returned into the compressor 10 through the pipe P6 and the downstream portion of the pipe P1. At the present stage, since both solenoid valves 60 and 90 are open, the circulating refrigerant flowing into the upstream portion of the pipe P4 flows into the expansion valve 70 through the downstream portion of the pipe P4 and the solenoid valve 60 as described above. To do. For this reason, the expansion valve 70 causes the inflowing circulation refrigerant to pass through the temperature sensing cylinder 70.
It is made to flow into the evaporator 80 through the pipe P7 with a throttle amount corresponding to the detected refrigerant temperature of a. Then, the evaporator 80 cools the air flow to be blown out toward the rear seat by the inflowing refrigerant, and recirculates the inflowing refrigerant into the compressor 10 through the pipe P1 and the electromagnetic valve 90. As described above, the air conditioning system can simultaneously realize the cooling of the front seat and the rear seat.

【0015】このような状態において、フロントシート
側の冷房のみに切り替えるため、操作スイッチSfを閉
じれば、バッテリBからの直流電圧が、両操作スイッチ
Sc、Sfを通して、電磁弁90のソレノイド90aに
印加されると同時にタイマ100にも印加される。この
ため、電磁弁90がソレノイド90aの励磁により閉弁
し、エバポレータ80から配管P1を介する同配管P1の
下流部への冷媒の還流を遮断すると同時に、タイマ10
0が遅延時間Tdを計時し始める。かかる場合、電磁弁
90の閉弁のため、配管P4の上流部内への循環冷媒
が、配管P4の下流部側へ流入することなく、配管P5
及び膨張弁40を通してエバポレータ50内に流入す
る。従って、上述のようなフロントシート側の冷房のみ
がエバポレータ50への冷媒の流入により継続される。
In such a state, since only the cooling on the front seat side is switched, when the operation switch Sf is closed, the DC voltage from the battery B is applied to the solenoid 90a of the solenoid valve 90 through both operation switches Sc and Sf. At the same time, it is also applied to the timer 100. For this reason, the solenoid valve 90 is closed by the excitation of the solenoid 90a, shutting off the circulation of the refrigerant from the evaporator 80 to the downstream portion of the pipe P1 via the pipe P1, and at the same time the timer 10
0 starts measuring the delay time Td. In this case, since the solenoid valve 90 is closed, the circulating refrigerant in the upstream portion of the pipe P4 does not flow into the downstream portion of the pipe P4, and the pipe P5
And through the expansion valve 40 into the evaporator 50. Therefore, only the cooling on the front seat side as described above is continued by the inflow of the refrigerant into the evaporator 50.

【0016】然る後、タイマ100が遅延時間Tdの計
時を終了すると、同タイマ100が、両操作スイッチS
c、Sfを介するバッテリBからの直流電圧を電磁弁6
0のソレノイド60aに印加する。このため、電磁弁6
0が、ソレノイド60aの励磁により閉弁して、配管P
4の上流部への同配管P4の下流部を介する膨張弁70の
接続を遮断する。かかる場合、遅延時間Tdは、上述の
ごとく、エバポレータ80への冷媒流入継続中において
電磁弁90が閉弁した直後に、配管 P7、エバポレータ
80及び電磁弁90の上流側に位置する配管P1 の部分
内の液冷媒の流れの急停止のために生ずるであろう冷媒
圧力変動を効果的に吸収し、ウォータハンマ現象の発生
を未然に防止し得る値に設定されている。従って、電磁
弁90が閉弁した時に同電磁弁90の上流側に位置する
配管P1 部分、エバポレータ80及び配管P7等の内部
の液冷媒の流れが急速に停止されるために、同配管P1
部分、エバポレータ80及び配管P7 等の内部に急激な
圧力変動が生じても、遅延時間Tdの経過までは電磁弁
60が開弁状態に維持されるので、急激な圧力変動が、
エバポレータ80内の気化冷媒のクッション作用即ち圧
力変動吸収作用により吸収されて抑制される。その結
果、電磁弁90の上流側の配管P1 部分、エバポレータ
80及び配管P7 等の内部におけるウォータハンマ現象
の発生が確実に抑制されて配管P1部分、エバポレータ
80及び配管P7等の騒音や機械的振動の発生を最小限
に抑制し得る。
After that, when the timer 100 finishes measuring the delay time Td, the timer 100 causes the two operation switches S to operate.
The direct current voltage from the battery B via c and Sf is applied to the solenoid valve 6
0 to the solenoid 60a. Therefore, the solenoid valve 6
0 is closed by the excitation of the solenoid 60a, and the pipe P
The connection of the expansion valve 70 to the upstream portion of 4 through the downstream portion of the pipe P4 is cut off. In such a case, as described above, the delay time Td is determined by the pipe P7, the evaporator 80 and the portion of the pipe P1 located upstream of the solenoid valve 90 immediately after the solenoid valve 90 is closed while the refrigerant is continuously flowing into the evaporator 80. It is set to a value capable of effectively absorbing the refrigerant pressure fluctuation that would occur due to the sudden stop of the flow of the liquid refrigerant inside and preventing the occurrence of the water hammer phenomenon. Therefore, when the solenoid valve 90 is closed, the flow of the liquid refrigerant inside the pipe P1 located on the upstream side of the solenoid valve 90, the evaporator 80, the pipe P7, etc. is rapidly stopped, so that the pipe P1
Even if a rapid pressure change occurs inside the portion, the evaporator 80, the pipe P7, etc., the solenoid valve 60 is kept open until the delay time Td elapses.
The vaporized refrigerant in the evaporator 80 is absorbed and suppressed by the cushioning effect, that is, the pressure fluctuation absorbing effect. As a result, the occurrence of the water hammer phenomenon inside the pipe P1 portion on the upstream side of the solenoid valve 90, the evaporator 80, the pipe P7, etc. is reliably suppressed, and the noise and mechanical vibration of the pipe P1 portion, the evaporator 80, the pipe P7, etc. Can be minimized.

【0017】因みに、従来のように両電磁弁60、90
を経過時間t1 にて同時に閉弁した場合と、本実施例の
ように電磁弁90の経過時間t1 での閉弁後遅延時間T
dの経過時、即ち、経過時間t2 にて電磁弁60を閉弁
した場合とにおいて、液冷媒の圧力変動がどのようにな
るかを実験により調べたところ、図2(A)にて示すご
とく、従来の場合には、電磁弁60の上流側の圧力変動
が曲線Laにより特定され、一方、電磁弁90の下流側
の圧力変動が曲線Lbにより特定されることが分かっ
た。また、本実施例の場合には、図2(B)にて示すご
とく、電磁弁60の上流側の圧力変動が曲線Lcにより
特定され、一方、電磁弁90の下流側の圧力変動が曲線
Ldにより特定されることが分かった。しかして、両曲
線La、Lcを比較すれば分かるように、本実施例の方
が従来に比べて著しく液冷媒の圧力変動が小さく、従っ
て、上記ウォータハンマ現象の発生が大幅に抑制される
ことが理解される。なお、電磁弁90の下流側の圧力変
動は両曲線Lb、Ldから分かるように従来の場合も本
実施例の場合も実質的に同様である。
Incidentally, both solenoid valves 60, 90 as in the conventional case.
Are closed simultaneously at the elapsed time t1, and the delay time T after the closing of the solenoid valve 90 at the elapsed time t1 as in the present embodiment.
When the change in the pressure of the liquid refrigerant is experimentally investigated when d is elapsed, that is, when the solenoid valve 60 is closed at the elapsed time t2, as shown in FIG. It has been found that, in the conventional case, the pressure fluctuation on the upstream side of the solenoid valve 60 is specified by the curve La, while the pressure fluctuation on the downstream side of the solenoid valve 90 is specified by the curve Lb. Further, in the case of the present embodiment, as shown in FIG. 2B, the pressure variation on the upstream side of the solenoid valve 60 is specified by the curve Lc, while the pressure variation on the downstream side of the solenoid valve 90 is represented by the curve Ld. It was found to be specified by. As can be seen from the comparison between the curves La and Lc, the pressure fluctuation of the liquid refrigerant is much smaller in the present embodiment than in the conventional case, and therefore the occurrence of the water hammer phenomenon is significantly suppressed. Is understood. The pressure fluctuation on the downstream side of the solenoid valve 90 is substantially the same in both the conventional case and the present embodiment, as can be seen from the curves Lb and Ld.

【0018】次に、前記実施例の変形例につき図3を参
照して説明すると、この変形例においては、前記実施例
にて述べた冷凍サイクルR、操作スイッチSf及びタイ
マ100に代えて、冷凍サイクルRa、操作スイッチS
r及びタイマ100Aを採用するようにしたことにその
構成上の特徴がある。冷凍サイクルRaは、冷凍サイク
ルRにおいて、膨張弁40及びフロントシート側エバポ
レータ50に代えて、定圧膨張弁110、冷蔵用エバポ
レータ120及び逆止弁130を採用し、かつ、膨張弁
70及びリアシート側エバポレータ80に代えて、膨張
弁40及びフロントシート側エバポレータ50を採用し
た点を除き、冷凍サイクルRと同様の構成を有する。な
お、前記実施例にいう空調システムはエバポレータ50
との関連でフロントシート側の空調機能を発揮する。
Next, a modification of the embodiment will be described with reference to FIG. 3. In this modification, the refrigeration cycle R, the operation switch Sf, and the timer 100 described in the embodiment are replaced with a refrigeration cycle. Cycle Ra, operation switch S
The configuration is characterized in that the r and the timer 100A are adopted. The refrigeration cycle Ra employs, in the refrigeration cycle R, a constant pressure expansion valve 110, a refrigeration evaporator 120 and a check valve 130 instead of the expansion valve 40 and the front seat side evaporator 50, and the expansion valve 70 and the rear seat side evaporator. It has the same configuration as the refrigeration cycle R except that the expansion valve 40 and the front seat side evaporator 50 are adopted in place of 80. The air-conditioning system referred to in the above embodiment is the evaporator 50.
The air conditioning function on the front seat side is demonstrated in relation to.

【0019】定圧膨張弁110は前記実施例にて述べた
配管P5 中に膨張弁40に代えて介装されており、この
定圧膨張弁110は、その下流側即ち低圧側の配管 P5
部分内の冷媒圧が設定圧以下になると開弁し、同低圧側
の冷媒圧を一定圧力に維持するように制御する。エバポ
レータ120は、前記実施例にて述べた両配管 P5、P
6間にエバポレータ50に代えて介装されており、この
エバポレータ120は、当該車両の車室内後方のリアト
レイやトランクルーム内に設置した小型の冷蔵庫(缶ジ
ュースを数本冷やせる程度のもの)の冷蔵手段としての
役割を果たす。逆止弁130は前記実施例にて述べた配
管P6 中に介装されており、この逆止弁130は、空調
運転時に空調側回路の圧力の高い冷媒がエバポレータ1
20へ逆流し圧力が上昇するのを阻止する。膨張弁40
は、配管P4 の下流部を介する電磁弁60からの循環冷
媒の流量を、その開度に応じた絞り量にて絞り配管P7
を通してフロント側エバポレータ50内に流入させる。
膨張弁40の開度、即ち冷媒絞り量は、エバポレータ5
0の冷媒出口近傍にて配管P1 の上流部に付設した感温
筒40aによる同配管P1 の上流部内の検出冷媒温度に
応じて変化する。エバポレータ50は、その流入冷媒に
応じて、フロントシートに向けて吹き出すべき空気流を
冷却するとともに、同流入冷媒を、配管P1の上流部、
配管P1の上流部内に介装した電磁弁90及び配管P1
の下流部を通してコンプレッサ10内に還流する。
The constant pressure expansion valve 110 is inserted in the pipe P5 described in the above embodiment in place of the expansion valve 40. The constant pressure expansion valve 110 is connected to the downstream side, that is, the low pressure side pipe P5.
When the refrigerant pressure in the portion becomes equal to or lower than the set pressure, the valve is opened, and the refrigerant pressure on the low pressure side is controlled to be maintained at a constant pressure. The evaporator 120 is composed of both pipes P5 and P described in the above embodiment.
The evaporator 120 is installed between the six units in place of the evaporator 50, and the evaporator 120 is a refrigerating unit of a small refrigerator (for cooling a few canned juices) installed in a rear tray or a trunk room behind the vehicle interior of the vehicle. Play a role as a means. The check valve 130 is interposed in the pipe P6 described in the above embodiment, and the check valve 130 has a high pressure refrigerant in the air conditioning side circuit during the air conditioning operation.
Reverse flow to 20 to prevent pressure buildup. Expansion valve 40
Is a throttle pipe P7 for restricting the flow rate of the circulating refrigerant from the solenoid valve 60 through the downstream portion of the pipe P4 with a throttle amount corresponding to the opening degree.
Through the front side evaporator 50.
The opening degree of the expansion valve 40, that is, the refrigerant throttle amount is determined by the evaporator 5
The temperature varies depending on the temperature of the refrigerant detected in the upstream portion of the pipe P1 by the temperature-sensing cylinder 40a attached to the upstream portion of the pipe P1 near the 0 refrigerant outlet. The evaporator 50 cools the air flow to be blown out toward the front seat in accordance with the inflow refrigerant, and also supplies the inflow refrigerant to the upstream portion of the pipe P1.
Solenoid valve 90 and pipe P1 interposed in the upstream portion of pipe P1
And returns to the compressor 10 through the downstream portion of the.

【0020】操作スイッチSrは冷蔵用スイッチであっ
て、この操作スイッチSrは、その閉成操作により、バ
ッテリBからの直流電圧をタイマ100Aに印加する。
タイマ100Aは、操作スイッチSrを介するバッテリ
Bからの直流電圧の印加に応答して同直流電圧を電磁弁
90のソレノイド90aに付与してこれを励磁する。ま
た、タイマ100Aは操作スイッチSrを介する直流電
圧の印加に応答して前記実施例にて述べた遅延時間Td
の計時を開始し、同計時の終了時に前記直流電圧を電磁
弁60のソレノイド60aに印加してこれを励磁する。
その他の構成は前記実施例と同様である。
The operation switch Sr is a refrigeration switch, and the operation switch Sr applies the DC voltage from the battery B to the timer 100A by the closing operation thereof.
In response to the application of the DC voltage from the battery B via the operation switch Sr, the timer 100A applies the DC voltage to the solenoid 90a of the solenoid valve 90 to excite it. In addition, the timer 100A responds to the application of the DC voltage via the operation switch Sr, and the delay time Td described in the above embodiment.
Is started, and at the end of the time measurement, the DC voltage is applied to the solenoid 60a of the solenoid valve 60 to excite it.
The other structure is the same as that of the above embodiment.

【0021】以上のように構成した本変形例において、
前記実施例と同様に操作スイッチScを閉じれば、コン
プレッサ10が、電磁クラッチ10aの係合により、エ
ンジンから動力を伝達されて作動する。すると、前記実
施例と同様に、コンプレッサ10からの圧縮冷媒が、コ
ンデンサ20により凝縮された後レシーバ30により気
液分離されて循環冷媒として配管P4の上流部内に流入
する。
In this modified example configured as described above,
When the operation switch Sc is closed as in the above-described embodiment, the compressor 10 operates by receiving power from the engine due to the engagement of the electromagnetic clutch 10a. Then, similarly to the above-described embodiment, the compressed refrigerant from the compressor 10 is condensed by the condenser 20, is separated into gas and liquid by the receiver 30, and flows into the upstream portion of the pipe P4 as a circulating refrigerant.

【0022】然るに、一般に、前記冷蔵庫では車室内の
空調制御に対し低い蒸発温度や蒸発圧力を必要とするた
め、上述のように、定圧膨張弁110がエバポレータ1
20の上流側に設けられている。かかる場合、定圧膨張
弁110は、その低圧側冷媒圧が設定圧以下になる毎に
開弁し同低圧側冷媒圧を一定圧力に維持するように制御
する。従って、上述のように配管P4 の上流部内に流入
した循環冷媒は、定圧膨張弁110の上記開弁制御下毎
にエバポレータ120内に膨張冷媒として流入する。す
ると、このエバポレータ120が、その流入冷媒によ
り、前記冷蔵庫内を還流させるべき空気流を冷却すると
ともに、同流入冷媒を配管P6及び配管P1の下流部を通
してコンプレッサ10内に還流する。なお、空調運転時
のみの場合には、定圧膨張弁110の上流側圧力がエバ
ポレータ120での蒸発圧力(即ち、定圧膨張弁110
の設定圧力)より高いため、定圧膨張弁110は閉じた
ままであり、エバポレータ120には冷媒は流れ込まな
い。
However, in general, the refrigerator requires a low evaporation temperature and evaporation pressure for air-conditioning control in the vehicle compartment, so that the constant pressure expansion valve 110 is used as the evaporator 1 as described above.
It is provided on the upstream side of 20. In such a case, the constant pressure expansion valve 110 is controlled to open every time the low pressure side refrigerant pressure becomes equal to or lower than the set pressure and maintain the low pressure side refrigerant pressure at a constant pressure. Therefore, the circulating refrigerant that has flowed into the upstream portion of the pipe P4 as described above flows into the evaporator 120 as expansion refrigerant every time the constant pressure expansion valve 110 is controlled to open. Then, the evaporator 120 cools the air flow to be recirculated in the refrigerator by the inflow refrigerant, and also recirculates the inflow refrigerant into the compressor 10 through the downstream parts of the pipes P6 and P1. In the case of only the air conditioning operation, the pressure on the upstream side of the constant pressure expansion valve 110 is the evaporation pressure in the evaporator 120 (that is, the constant pressure expansion valve 110).
Constant pressure expansion valve 110 remains closed, and the refrigerant does not flow into the evaporator 120.

【0023】また、現段階では、両電磁弁60、90が
開弁状態にあるため、上述のように配管P4 の上流部内
に流入した循環冷媒が、前記実施例と同様にして、電磁
弁60及び膨張弁40を通り膨張冷媒としてエバポレー
タ50内に流入する。すると、このエバポレータ50
が、その流入冷媒により、フロントシートに向けて吹き
出すべき空気流を冷却するとともに、同流入冷媒を配管
P1 及び電磁弁90を通してコンプレッサ10内に還流
する。以上により、空調システムによるフロントシート
の乗員の冷房及び前記冷蔵庫による冷蔵が、電磁弁60
の開閉制御をすれば、並行して実現され得る。
At this stage, since both solenoid valves 60 and 90 are open, the circulating refrigerant that has flowed into the upstream portion of the pipe P4 as described above is operated by the solenoid valve 60 in the same manner as in the above embodiment. And, it passes through the expansion valve 40 and flows into the evaporator 50 as expansion refrigerant. Then, this evaporator 50
However, the inflowing refrigerant cools the airflow to be blown out toward the front seat, and also recirculates the inflowing refrigerant into the compressor 10 through the pipe P1 and the solenoid valve 90. As described above, the cooling of the front seat occupant by the air conditioning system and the refrigeration by the refrigerator are performed by the solenoid valve 60.
It can be realized in parallel by controlling the opening and closing of.

【0024】このような状態において、前記冷蔵庫の冷
蔵のみに切り替えるため、操作スイッチSrを閉じれ
ば、バッテリBからの直流電圧が、操作スイッチSrを
通してタイマ100Aに印加される。このため、タイマ
100Aが、同印加直流電圧を電磁弁90のソレノイド
90aに付与してこれを励磁する。これにより、電磁弁
90が閉弁し、エバポレータ50から配管P1を介する
同配管P1の下流部への冷媒の還流を遮断する。また、
タイマ100Aが上述のようなバッテリBからの直流電
圧の印加に応答して遅延時間Tdを計時し始める。かか
る場合、電磁弁90の閉弁のため、冷媒の流れが止ま
り、エバポレータ120内の圧力が低下することで、定
圧膨張弁110での圧力が低下し、設定圧になったとこ
ろで定圧膨張弁110が開弁する。しかして、配管P4
の上流部内への循環冷媒が、配管P4の下流部側へ流入
することなく、配管P5 及び定圧膨張弁110を通して
エバポレータ120内に流入する。従って、上述のよう
な冷蔵庫による冷蔵のみが、定圧膨張弁110による制
御のもとに、エバポレータ120への冷媒の流入により
継続される。
In such a state, since the refrigerator is only switched to refrigeration, if the operation switch Sr is closed, the DC voltage from the battery B is applied to the timer 100A through the operation switch Sr. Therefore, the timer 100A applies the same applied DC voltage to the solenoid 90a of the solenoid valve 90 to excite it. As a result, the solenoid valve 90 is closed, and the circulation of the refrigerant from the evaporator 50 to the downstream portion of the pipe P1 via the pipe P1 is blocked. Also,
The timer 100A starts measuring the delay time Td in response to the application of the DC voltage from the battery B as described above. In such a case, since the electromagnetic valve 90 is closed, the flow of the refrigerant is stopped and the pressure in the evaporator 120 is reduced, so that the pressure in the constant pressure expansion valve 110 is reduced and when the set pressure is reached, the constant pressure expansion valve 110 is reached. Opens. Then, pipe P4
The circulating refrigerant into the upstream portion of the above does not flow into the downstream side of the pipe P4, but flows into the evaporator 120 through the pipe P5 and the constant pressure expansion valve 110. Therefore, only the refrigeration as described above is continued by the inflow of the refrigerant into the evaporator 120 under the control of the constant pressure expansion valve 110.

【0025】然る後、タイマ100Aが遅延時間Tdの
計時を終了すると、同タイマ100Aが、操作スイッチ
Srを介するバッテリBからの直流電圧を電磁弁60の
ソレノイド60aに印加する。このため、電磁弁60
が、ソレノイド60aの励磁により閉弁して、配管P4
の上流部への同配管P4の下流部を介する膨張弁40の
接続を遮断する。かかる場合、遅延時間Tdは、前記実
施例にて述べたごとく設定されている。従って、電磁弁
90が閉弁した時に電磁弁90の上流側に位置する配管
P1部分、エバポレータ50及び配管P7等の内部に生じ
る急激な圧力変動が、遅延時間Tdの経過までに、前記
実施例と同様に、抑制されてウォータハンマ現象の発生
を抑制して騒音や機械的振動の発生を最小限にし得る。
After that, when the timer 100A finishes measuring the delay time Td, the timer 100A applies the DC voltage from the battery B via the operation switch Sr to the solenoid 60a of the solenoid valve 60. Therefore, the solenoid valve 60
Is closed by exciting the solenoid 60a, and the pipe P4
The connection of the expansion valve 40 to the upstream part of the pipe via the downstream part of the pipe P4 is cut off. In such a case, the delay time Td is set as described in the above embodiment. Therefore, when the solenoid valve 90 is closed, a rapid pressure change occurring inside the pipe P1 portion, the evaporator 50, the pipe P7, etc. located upstream of the solenoid valve 90, is caused before the delay time Td elapses. Similarly, it can be suppressed to suppress the occurrence of the water hammer phenomenon and minimize the occurrence of noise and mechanical vibrations.

【0026】なお、本発明の実施にあたっては、前記実
施例にて述べた冷凍サイクル制御装置に限ることなく、
一般建造物内に装備した空調装置及び冷蔵装置に兼用さ
れる冷凍サイクル、又は一般建造物内の互いに離れた箇
所の両空調を共に或いは選択的に行うようにした空調装
置の冷凍サイクルを制御するに適した冷凍サイクル制御
装置に本発明を適用して実施してもよい。
In carrying out the present invention, the refrigerating cycle control device described in the above embodiment is not limited.
Controls a refrigeration cycle that is also used as an air conditioner and a refrigeration system installed in a general building, or a refrigeration cycle of an air conditioner that selectively or selectively performs both air conditionings at locations apart from each other in a general building. The present invention may be applied to and implemented in a refrigeration cycle control device suitable for.

【0027】また、本発明の実施にあたっては、前記実
施例における各エバポレータ50、80を、相互に入れ
替えて実施してもよい。また、前記実施例にて述べた両
電磁弁60、90、操作スイッチSf及びタイマ100
をエバポレータ50側にも採用し、リアシート側或いは
フロントシート側のいずれか一方を単独冷房するように
して実施してもよい。
Further, in carrying out the present invention, the evaporators 50 and 80 in the above-mentioned embodiment may be replaced with each other. Further, both solenoid valves 60, 90, the operation switch Sf, and the timer 100 described in the above embodiment are provided.
May be adopted also on the evaporator 50 side, and either the rear seat side or the front seat side may be independently cooled.

【0028】また、本発明の実施にあたっては、前記実
施例にて述べた各常開型電磁弁60及び90に代えて、
それぞれ、第1及び第2の常閉型電磁弁を採用して実施
してもよい。かかる場合には、前記実施例にて述べた操
作スイッチSfを介しタイマ100の入力端子を直接接
地するように同操作スイッチSfの接続を変更する。そ
して、タイマ100が、バッテリBからの直流電圧を操
作スイッチScの閉成時にバッテリBの直流電圧を前記
両常閉型電磁弁に印加してこれら両電磁弁を共に開弁
し、前記接続変更に係る操作スイッチSfの閉成時に前
記第2の常閉型電磁弁を閉弁すると同時に前記所定遅延
時間Tdの計時を開始し、この計時の終了時に前記第1
の常閉型電磁弁を閉弁するように、同タイマ100の構
成を変更する。これにより、前記実施例と実質的に同様
の作用効果を確保できる。
Further, in carrying out the present invention, instead of the normally open solenoid valves 60 and 90 described in the above embodiment,
The first and second normally closed solenoid valves may be adopted and implemented, respectively. In such a case, the connection of the operation switch Sf is changed so that the input terminal of the timer 100 is directly grounded via the operation switch Sf described in the above embodiment. Then, the timer 100 applies the DC voltage from the battery B to the both normally closed solenoid valves when the operation switch Sc is closed to open the both solenoid valves, and the connection is changed. The second normally closed solenoid valve is closed when the operation switch Sf according to the above is closed, and at the same time, the timing of the predetermined delay time Td is started.
The configuration of the timer 100 is changed so that the normally closed solenoid valve is closed. As a result, it is possible to secure substantially the same operational effects as those of the above embodiment.

【0029】このようなことは、前記変形例においても
同様に実現できる。即ち、前記変形例において、上述と
同様に、各常開型電磁弁60及び90に代えて、それぞ
れ、第1及び第2の常閉型電磁弁を採用する。そして、
タイマ100Aが、操作スイッチScの閉成時にバッテ
リBからの直流電圧を前記両常閉型電磁弁に印加してこ
れら両電磁弁を開弁し、操作スイッチSrの閉成時に前
記第2常閉型電磁弁を閉弁すると同時に前記所定遅延時
間Tdの計時を開始し、この計時の終了時に前記第1の
常閉型電磁弁を閉弁するように、同タイマ100Aの構
成を変更する。これにより、前記変形例と実質的に同様
の作用効果を確保できる。
Such a thing can be similarly realized in the modification. That is, in the modified example, as in the above, instead of the normally open solenoid valves 60 and 90, the first and second normally closed solenoid valves are respectively adopted. And
The timer 100A applies a DC voltage from the battery B to the normally closed solenoid valves when the operation switch Sc is closed to open both solenoid valves, and when the operation switch Sr is closed, the second normally closed solenoid valve is opened. The configuration of the timer 100A is changed such that the type solenoid valve is closed at the same time that the predetermined delay time Td is started, and the first normally closed solenoid valve is closed at the end of the time measurement. As a result, it is possible to secure substantially the same operational effects as those of the modification.

【0030】また、本発明の実施にあたっては、前記変
形例において、膨張弁40及びフロントシート側エバポ
レータ50に代えて、前記実施例にて述べた膨張弁70
及びリアシート側エバポレータ80を採用して実施して
もよい。
Further, in carrying out the present invention, in the modified example, instead of the expansion valve 40 and the front seat side evaporator 50, the expansion valve 70 described in the above embodiment.
Alternatively, the rear seat side evaporator 80 may be adopted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る車両用冷凍サイクル制御装置の一
実施例を示す回路構成図である。
FIG. 1 is a circuit configuration diagram showing an embodiment of a vehicle refrigeration cycle control device according to the present invention.

【図2】両電磁弁60、90を同時に閉弁した場合と、
電磁弁90の閉弁後遅延時間Tdの経過時に電磁弁60
を閉弁した場合との液冷媒の圧力の時間的変化を比較す
るためのグラフである。
FIG. 2 shows a case where both solenoid valves 60 and 90 are closed at the same time,
When the delay time Td after closing the solenoid valve 90 elapses, the solenoid valve 60
5 is a graph for comparing a temporal change in the pressure of the liquid refrigerant with that when the valve is closed.

【図3】前記実施例の変形例を示す回路構成図である。FIG. 3 is a circuit configuration diagram showing a modified example of the embodiment.

【符号の説明】[Explanation of symbols]

10…コンプレッサ、50、80、120…エバポレー
タ、60、90…常開型電磁弁、100、100A…タ
イマ、B…バッテリ、Sc、Sf、Sr…操作スイッ
チ。
10 ... Compressor, 50, 80, 120 ... Evaporator, 60, 90 ... Normally open solenoid valve, 100, 100A ... Timer, B ... Battery, Sc, Sf, Sr ... Operation switch.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】コンプレッサと、このコンプレッサに直列
接続されるとともに互いに並列接続した両エバポレータ
と、これら両エバポレータの少なくとも一方の上流側に
介装した上流側電磁弁と、この上流側電磁弁の介装され
たエバポレータの下流側に介装してなる下流側電磁弁と
を備えた冷凍サイクル制御装置において、 前記上流側電磁弁を前記下流側電磁弁の閉弁に対し所定
の遅延時間だけ遅延して閉弁するように駆動制御する駆
動制御手段を設けるようにしたことを特徴とする冷凍サ
イクル制御装置。
1. A compressor, both evaporators connected in series to the compressor and connected in parallel with each other, an upstream solenoid valve provided upstream of at least one of these evaporators, and an upstream solenoid valve interposed therebetween. In a refrigeration cycle control device including a downstream electromagnetic valve interposed on the downstream side of the mounted evaporator, the upstream electromagnetic valve is delayed by a predetermined delay time with respect to the closing of the downstream electromagnetic valve. A refrigeration cycle control device characterized in that a drive control means for controlling the drive so as to close the valve is provided.
JP04186812A 1992-07-14 1992-07-14 Refrigeration cycle control device Expired - Fee Related JP3141902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04186812A JP3141902B2 (en) 1992-07-14 1992-07-14 Refrigeration cycle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04186812A JP3141902B2 (en) 1992-07-14 1992-07-14 Refrigeration cycle control device

Publications (2)

Publication Number Publication Date
JPH0632142A true JPH0632142A (en) 1994-02-08
JP3141902B2 JP3141902B2 (en) 2001-03-07

Family

ID=16195026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04186812A Expired - Fee Related JP3141902B2 (en) 1992-07-14 1992-07-14 Refrigeration cycle control device

Country Status (1)

Country Link
JP (1) JP3141902B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021024701A (en) * 2019-08-06 2021-02-22 シチズン時計株式会社 Printer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021024701A (en) * 2019-08-06 2021-02-22 シチズン時計株式会社 Printer

Also Published As

Publication number Publication date
JP3141902B2 (en) 2001-03-07

Similar Documents

Publication Publication Date Title
EP1666287A1 (en) Vehicle air conditioning system comprising a refrigerant recovery vessel
JP2007163074A (en) Refrigeration cycle
JP4665601B2 (en) Cycle using ejector
JP3257109B2 (en) Vehicle refrigeration cycle control device
JPH09318166A (en) Refrigerating apparatus
JPH0632142A (en) Refrigerating cycle control device
US10202018B2 (en) Vehicle air conditioner with heating startup expansion valve control
JP3282329B2 (en) Vehicle air conditioner
JP2006082604A (en) Vehicular refrigerator
JPH06174319A (en) Air conditioner for vehicle
JP2006145170A (en) Refrigerating cycle
JPH11125472A (en) Coolant flow controller for refrigeration cycle
JP2002081825A (en) Refrigerator-freezer
JP3924935B2 (en) Thermal expansion valve
JP2003291624A (en) Air conditioner for vehicle
JPH07139827A (en) Cooling and freezing device
WO2024101062A1 (en) Vehicular heat pump cycle device
JPH05193347A (en) Air conditioner for vehicle
JPH0534168B2 (en)
JP2006132800A (en) Refrigerating cycle device
JPH10220888A (en) Refrigerating cycle
JPH1038421A (en) Refrigerating cycle
JPH10267438A (en) Freezing cycle
JPH08207554A (en) Air conditioner for automobile
KR200156895Y1 (en) Auto closing device of heater duct

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees