JPH06320428A - Manufacture of metal bonded grinding wheel - Google Patents

Manufacture of metal bonded grinding wheel

Info

Publication number
JPH06320428A
JPH06320428A JP13388593A JP13388593A JPH06320428A JP H06320428 A JPH06320428 A JP H06320428A JP 13388593 A JP13388593 A JP 13388593A JP 13388593 A JP13388593 A JP 13388593A JP H06320428 A JPH06320428 A JP H06320428A
Authority
JP
Japan
Prior art keywords
metal
abrasive grains
layer
abrasive grain
abrasive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP13388593A
Other languages
Japanese (ja)
Inventor
Tsutomu Takahashi
務 高橋
Jun Ishibashi
純 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP13388593A priority Critical patent/JPH06320428A/en
Publication of JPH06320428A publication Critical patent/JPH06320428A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PURPOSE:To provide a manufacturing method, by which recessed and projecting parts and nonuniformity of thickness are not caused by an abrasive grain layer, deterioration of abrasive grain due to frame-spray heat can be prevented, and a metal bonded grinding wheel can be manufactured with high production efficiency. CONSTITUTION:Metal coating layers 11, 12, 13 are formed on the outer periphery of an abrasive grain 10 to obtain a metal coating abrasive grain 14 having the average diameter 1.2-4 times as large as the average grain diameter of the abrasive grain 10. The metal coating abrasive grain 14 is heated to melt at least a part of the metal coating abrasive layers 11, 12, 13, and flame-sprayed to the abrasive grain layer forming surface of a grinding wheel substrate 23 to form an abrasive grain layer 24.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶射法を用いたメタル
ボンド砥石の製造方法に関し、特に、溶射材料として外
周に金属被覆層を形成した金属被覆砥粒を用いる方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a metal bond grindstone using a thermal spraying method, and more particularly to a method for using a metal coated abrasive grain having a metal coating layer on the outer periphery as a thermal spray material.

【0002】[0002]

【従来の技術】一般的なメタルボンド砥石は、通常、粉
末状の金属結合材に砥粒を均一に混合し、この混合粉末
を台金とともに型込めした後、これらを圧粉成形および
焼結して製造されているが、この製造方法では、圧粉成
形および焼結工程に手間と時間がかかり、生産性には自
ずと限界がある。
2. Description of the Related Art A general metal-bonded grindstone is generally prepared by uniformly mixing abrasive particles with a powdery metal binder, molding the mixed powder with a base metal, and then compacting and sintering the powder. However, in this manufacturing method, the compacting and sintering steps take time and labor, and the productivity is naturally limited.

【0003】そこでメタルボンド砥石の生産性を改善す
る試みとして、特開昭54−14090号公報には、金
属または金属間化合物の粉末と超砥粒とを混合し、溶射
ガンで高温に加熱したうえ台金の外周面に溶射し、メタ
ルボンド砥粒層を形成する方法が提案されている。
Therefore, as an attempt to improve the productivity of a metal bond grindstone, Japanese Patent Laid-Open No. 14090/1979 discloses that a powder of a metal or an intermetallic compound and superabrasive grains are mixed and heated to a high temperature by a spray gun. A method has been proposed in which a metal bond abrasive grain layer is formed by thermal spraying on the outer peripheral surface of the upper base metal.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来のメタルボンド砥石の製造方法では、異種の粒子を混
合しただけで溶射するため、たとえ混合性を高めるため
に砥粒と結合材粉末の粒径を揃えたとしても、融点や比
重の違いから材料を均一に溶射することは困難で、砥粒
層内での砥粒や結合材成分の分布の不均一が避けられ
ず、砥粒保持力のバラツキ、耐摩耗性バラツキ等を生じ
るだけでなく、砥粒層に凹凸や厚み不均一が生じること
が避けられない。また、溶射温度は焼結温度よりも高い
ため、砥粒としてダイヤモンドを使用した場合には、砥
粒表面が炭化あるいは劣化するおそれもある。
However, in the above-mentioned conventional method for producing a metal bond grindstone, thermal spraying is performed only by mixing different kinds of particles, so even if the particle size of the abrasive particles and the binder powder is increased in order to improve the mixing property. Even if they are aligned, it is difficult to spray the material uniformly due to the difference in melting point and specific gravity, and it is unavoidable that the distribution of the abrasive grains and the binder component in the abrasive grain layer is non-uniform. It is unavoidable that not only variations and abrasion resistance variations occur, but also unevenness and uneven thickness occur in the abrasive grain layer. Further, since the spraying temperature is higher than the sintering temperature, when diamond is used as the abrasive grains, the surface of the abrasive grains may be carbonized or deteriorated.

【0005】本発明は上記課題を解決するためになされ
たもので、砥粒層内の均質性を向上し、砥粒層に凹凸や
厚さ不均一が生じることを防ぎ、溶射熱による砥粒の劣
化が防止でき、しかも高い生産効率を以て、多孔質でか
つ砥粒保持力に優れるメタルボンド砥石が簡単に製造で
きるメタルボンド砥石の製造方法を提供することを課題
としている。
The present invention has been made to solve the above-mentioned problems, and improves the homogeneity in the abrasive grain layer, prevents unevenness and uneven thickness in the abrasive grain layer, and prevents the abrasive grains from being sprayed by heat. It is an object of the present invention to provide a method for producing a metal bond grindstone which can prevent deterioration of the metal bond grindstone and which can easily manufacture a metal bond grindstone that is porous and has excellent abrasive grain holding power with high production efficiency.

【0006】[0006]

【課題を解決するための手段】以下、本発明に係るメタ
ルボンド砥石の製造方法を具体的に説明する。本発明の
製造方法は、砥粒の外周に金属被覆層を形成して前記砥
粒の平均粒径の1.2〜4倍の平均粒径を有する金属被
覆砥粒を得た後、これら金属被覆砥粒を加熱して金属被
覆層の少なくとも一部が溶融状態で砥石基体の砥粒層形
成面に溶射し、砥粒層を形成することを主たる特徴とし
ている。
A method for manufacturing a metal bond grindstone according to the present invention will be specifically described below. The manufacturing method of the present invention comprises forming a metal coating layer on the outer periphery of an abrasive grain to obtain a metal coated abrasive grain having an average particle diameter of 1.2 to 4 times the average particle diameter of the abrasive grain, The main feature is that the coated abrasive grains are heated to spray at least a part of the metal coating layer in a molten state on the abrasive grain layer forming surface of the grindstone substrate to form the abrasive grain layer.

【0007】この製造方法に使用する砥粒は、ダイヤモ
ンドやCBN等の超砥粒、あるいはSiC、Al23
の一般砥粒のいずれでもよい。砥粒の形状は、後述する
加圧攪拌中の砥粒の転がり性を向上し、圧着被覆層の均
一形成を容易にするために、球状に近い方が好ましい。
しかし、極端な鱗片状でない限り、不定形の砥粒を用い
ても圧着被覆層は十分形成可能である。
The abrasive grains used in this manufacturing method may be either superabrasive grains such as diamond or CBN, or general abrasive grains such as SiC or Al 2 O 3 . The shape of the abrasive grains is preferably close to a spherical shape in order to improve the rolling property of the abrasive grains during pressure stirring described later and facilitate the uniform formation of the pressure-bonding coating layer.
However, the pressure-bonding coating layer can be sufficiently formed even if irregular-shaped abrasive grains are used unless it is in an extremely scale-like shape.

【0008】砥粒の平均粒径は使用目的によっても異な
るが、製造上の理由から10〜500μm程度、特に2
0〜100μmが好ましい。10μm未満では圧着被覆
層を形成する際に中心核となりにくく、500μmより
大では摩擦圧接作用による被覆が困難になる。
Although the average grain size of the abrasive grains varies depending on the purpose of use, it is about 10 to 500 μm, particularly 2 for manufacturing reasons.
0 to 100 μm is preferable. If it is less than 10 μm, it will be difficult to form a central core when forming the pressure-bonding coating layer, and if it is more than 500 μm, coating by friction welding will be difficult.

【0009】最終的に得られた溶射による砥粒層が充分
な強度と寿命、切れ味を示すためには、金属被覆砥粒の
平均粒径が砥粒の平均粒径の1.2〜4倍となるよう
に、金属被覆層の厚さを設定することが好ましい。ま
た、砥粒がダイヤモンドである場合、溶射によるダイヤ
砥粒の熱損傷を抑制するために、金属被覆層の厚さは最
低でも5μm以上必要である。
In order for the finally obtained abrasive grain layer by thermal spraying to exhibit sufficient strength, life and sharpness, the average particle size of the metal-coated abrasive grains is 1.2 to 4 times the average particle size of the abrasive grains. The thickness of the metal coating layer is preferably set so that Further, when the abrasive grains are diamond, the thickness of the metal coating layer must be at least 5 μm or more in order to suppress thermal damage to the diamond abrasive grains due to thermal spraying.

【0010】砥粒の外周に金属被覆層を形成する方法と
しては、従来使用されているいかなる金属被覆方法を用
いてもよい。しかし、本発明では必要な金属被覆層の厚
さが大きいから、生産効率を上げるためには、(a)無
電解めっき工程、(b)電解めっき工程、および(c)
圧着被覆工程の3工程からなる方法が好適であり、中で
も特に(c)工程の比重を高めるのが好ましい。ただ
し、(a)工程のみでも金属被覆層は形成できるし、
(a)工程+(b)工程、または(a)工程+(c)工
程の組み合せでも可能である。さらには、(a)工程の
後に(b)工程と(c)工程を適宜複数回繰り返しても
よい。以下、これらの工程(a)〜(c)を順に説明す
る。
As a method for forming the metal coating layer on the outer periphery of the abrasive grains, any conventionally used metal coating method may be used. However, in the present invention, since the required thickness of the metal coating layer is large, in order to improve the production efficiency, (a) an electroless plating step, (b) an electrolytic plating step, and (c)
A method comprising three steps of the pressure-bonding coating step is preferable, and it is particularly preferable to increase the specific gravity of the step (c). However, the metal coating layer can be formed only by the step (a),
A combination of (a) step + (b) step or (a) step + (c) step is also possible. Furthermore, after the step (a), the steps (b) and (c) may be appropriately repeated a plurality of times. Hereinafter, these steps (a) to (c) will be described in order.

【0011】(a)無電解めっき工程 砥粒の表面に無電解めっき法を用いてNi,Cu,A
g,Coから選択される1種または2種以上の金属から
なる無電解めっき層を形成する。この無電解めっき層
は、次に電気めっき層を形成する場合には砥粒表面に導
電性を付与するためのもので、無電解めっき層上に直
接、圧着被覆層を形成する場合は圧着被覆性を向上させ
るためのものである。無電解めっき層として、熱伝導率
の高い銅やAg等の金属を砥粒表面に無電解めっきした
場合には、砥粒に発生する研削熱を放散させる役割も果
たす。無電解めっき法としては、従来行われている如何
なる方法であってもよい。無電解めっき法のみで金属被
覆層を完成させても良いが、無電解めっきでは金属被覆
層の形成速度が遅く、生産性に劣るため、他の2行程
(b)、(c)の少なくとも一方と組合せるのが良い。
(A) Electroless plating step Ni, Cu, A is formed on the surface of the abrasive grains by electroless plating.
An electroless plating layer made of one or more metals selected from g and Co is formed. This electroless plating layer is for imparting conductivity to the surface of the abrasive grains when the electroplating layer is to be formed next, and when the pressure-bonding coating layer is directly formed on the electroless plating layer, it is pressure-bonding coated. It is for improving the sex. When a metal having a high thermal conductivity, such as copper or Ag, is electrolessly plated on the surface of the abrasive grains as the electroless plating layer, it also serves to dissipate the grinding heat generated in the abrasive grains. The electroless plating method may be any conventionally used method. The metal coating layer may be completed only by the electroless plating method. However, in the electroless plating, since the metal coating layer formation rate is slow and productivity is poor, at least one of the other two steps (b) and (c) is performed. Good to combine with.

【0012】無電解めっき層の厚さは、砥粒の平均粒径
にもよるが0.1〜50μm、特に1〜10μm程度が
望ましい。0.1μmより薄いとめっき層の接合強度が
不足して剥離するおそれがある。他方、50μmより厚
くすると無電解めっきに要する時間が増すのみで生産性
が低下する。
The thickness of the electroless plating layer is preferably 0.1 to 50 μm, particularly preferably 1 to 10 μm, though it depends on the average grain size of the abrasive grains. If the thickness is less than 0.1 μm, the bonding strength of the plating layer may be insufficient and peeling may occur. On the other hand, when the thickness is more than 50 μm, the productivity is reduced because the time required for electroless plating is increased.

【0013】(b)電解めっき工程 無電解めっきした砥粒の外周に、電解めっき法を用いて
Fe,Ni,Co,Cu,Ag,Sn,Cr,Pb,Z
nから選択される1種または2種以上の金属からなる電
解めっき層を形成し、所定の粒径にする。(c)工程の
前処理として電解めっきを行う場合、電解めっき層の厚
さは5〜20μm程度が好適である。
(B) Electrolytic plating step Fe, Ni, Co, Cu, Ag, Sn, Cr, Pb, Z are formed on the outer periphery of the electroless plated abrasive grains by electrolytic plating.
An electrolytic plating layer made of one or more metals selected from n is formed to have a predetermined grain size. When electrolytic plating is performed as the pretreatment of the step (c), the thickness of the electrolytic plated layer is preferably about 5 to 20 μm.

【0014】電気めっきを採るのは、無電解めっきより
もコストが安いうえ析出速度が大きく、また、後述する
遠心めっき法により電解めっきを行うと、全てのめっき
砥粒の粒径を均一化する作用(等粒化作用)が得られる
ためである。めっき砥粒を等粒化すれば、溶射工程後の
砥粒層の均質性を向上することが可能である。
Electroplating is cheaper than electroless plating and has a high deposition rate, and when electrolytic plating is carried out by a centrifugal plating method described later, the grain size of all plating abrasive grains is made uniform. This is because the action (granulation action) can be obtained. By homogenizing the plated abrasive grains, it is possible to improve the homogeneity of the abrasive grain layer after the thermal spraying process.

【0015】遠心めっき法としては、例えば次のような
方法が可能である。まず、内面が導電性を有する回転容
器内に、電解めっき液および無電解めっきされた砥粒を
入れ、回転容器の中心に沿って陽極を配置する。次い
で、回転容器内面を電源陰極に接続する一方、前記陽極
を電源陽極に接続して通電しつつ、回転容器を一定時間
毎に逆回転させながら定速回転させる。すると、定速回
転中に砥粒が遠心力で容器内面に単層もしくは多層状に
付着して容器内面と導通し、最内周に位置する砥粒の陽
極との対向面に電解めっき層が形成される。
As the centrifugal plating method, for example, the following method is possible. First, an electrolytic plating solution and electroless-plated abrasive grains are placed in a rotary container whose inner surface has conductivity, and an anode is arranged along the center of the rotary container. Next, while the inner surface of the rotating container is connected to the power source cathode and the anode is connected to the power source anode to energize, the rotating container is rotated at a constant speed while being reversely rotated at regular intervals. Then, while rotating at a constant speed, the abrasive grains are attached to the inner surface of the container in a single layer or multiple layers by centrifugal force to conduct with the inner surface of the container, and the electrolytic plating layer is formed on the surface facing the anode of the abrasive particles located at the innermost circumference. It is formed.

【0016】次に回転容器が逆回転すると、全ての砥粒
が一旦容器内面から離脱し、再度、遠心力により砥粒が
容器内面に積層付着する。この過程において、電解めっ
き層が形成された砥粒は重量が相対的に大きいため、遠
心力がより強く作用して他の砥粒よりも先に容器内面に
付着し、他の砥粒はその上に続いて積層する。
Next, when the rotary container is rotated in the reverse direction, all the abrasive grains are once detached from the inner surface of the container, and again, the abrasive particles are laminated and attached to the inner surface of the container by centrifugal force. In this process, since the abrasive grains on which the electrolytic plating layer is formed have a relatively large weight, centrifugal force acts more strongly and adheres to the inner surface of the container before other abrasive grains, and other abrasive grains are The layers are laminated on top of each other.

【0017】この配列作用により、電解めっき層が未だ
形成されていない、あるいは形成割合の少ない砥粒が常
に内周側に配置され、これらに電解めっき層が優先的に
形成されるため、前記の付着,電着,離脱のサイクルを
繰り返すことにより、全ての砥粒に均一に電解めっき層
が形成される。砥粒の粒径そのものにばらつきがある場
合にも、前記配列作用により粒径の小さい砥粒が内周側
に配置され、電解めっき層が形成される率が大きくなる
ので、最終的に得られる電解めっき砥粒の外径が均一化
できる。
Due to this arranging action, the abrasive grains on which the electrolytic plating layer has not yet been formed or whose forming ratio is small are always arranged on the inner peripheral side, and the electrolytic plating layer is preferentially formed on these, so that By repeating the cycle of adhesion, electrodeposition, and separation, the electrolytic plating layer is uniformly formed on all the abrasive grains. Even when there are variations in the grain size of the abrasive grains, the arraying action allows the abrasive grains having a small grain size to be arranged on the inner peripheral side, and the electrolytic plating layer is formed at a higher rate, so that the final result is obtained. The outer diameter of electrolytically plated abrasive grains can be made uniform.

【0018】(c)圧着被覆工程 無電解めっきおよび電解めっきした砥粒を、これらめっ
き砥粒より平均粒径が小さいAg,Sn,Cu,Ni,
Fe,Co,Al,Ti,Pb,Cr,In,Znから
選択される1種または2種以上の金属からなる金属粉末
と混合し、図1に示すような装置を用いて加圧転動運動
を加え、機械的な摩擦圧接作用により前記電解めっき層
上に金属粉末を圧着させて圧着被覆層を形成する。
(C) Pressure-bonding coating step Electroless-plated and electrolytically-plated abrasive grains are made of Ag, Sn, Cu, Ni, whose average particle size is smaller than those of the plated abrasive grains.
Mixing with a metal powder consisting of one or more metals selected from Fe, Co, Al, Ti, Pb, Cr, In and Zn, and using a device as shown in FIG. Then, the metal powder is pressure-bonded onto the electrolytic plating layer by mechanical friction welding to form a pressure-bonding coating layer.

【0019】図1に示す加圧転動装置の構成を説明する
と、図中符号1は軸線水平に設置された円筒状のドラム
であり、軸線を中心として回転される。ドラム1の内部
には、軸線に沿って固定シャフト2が配置され、このシ
ャフト2には下向きに加圧アーム3、およびその回転方
向後方側の斜め下方に延びる掻き取りアーム4がそれぞ
れ固定されている。ドラム1内にめっき砥粒と金属粉末
を添加した後、蓋(図示略)で塞ぐことにより、ドラム
1内はほぼ密閉される。
The structure of the pressure rolling device shown in FIG. 1 will be described. In the figure, reference numeral 1 is a cylindrical drum installed horizontally with its axis being rotated about its axis. A fixed shaft 2 is arranged inside the drum 1 along the axis, and a pressing arm 3 and a scraping arm 4 extending obliquely downward on the rear side in the rotational direction thereof are fixed to the shaft 2. There is. After the plating abrasive grains and the metal powder are added to the drum 1, the inside of the drum 1 is almost sealed by closing it with a lid (not shown).

【0020】加圧アーム3の下端には、ドラム1の内面
と平行な円弧状をなす加圧板5が固定され、この加圧板
5とドラム1内面との間には、一定の間隙が形成されて
いる。一方、掻き取りアーム4の下端は刃先状に形成さ
れ、ドラム1内面に付着した粉末を掻き落とす構成とな
っている。
An arcuate pressure plate 5 parallel to the inner surface of the drum 1 is fixed to the lower end of the pressure arm 3, and a constant gap is formed between the pressure plate 5 and the inner surface of the drum 1. ing. On the other hand, the lower end of the scraping arm 4 is formed in the shape of a cutting edge to scrape off the powder adhering to the inner surface of the drum 1.

【0021】圧着被覆を行なうには、まず、めっき砥粒
と金属粉末とを所定の割合でドラム1に入れる。使用す
る金属粉末の平均粒径は0.1〜50μmとされ、かつ
めっき砥粒の平均粒径の1〜25%程度であることが望
ましい。0.1μm未満あるいは1%未満では金属粉末
の粒子数が多く、被覆と同時に金属粉末同士の凝集が起
こり、圧着被覆層の形成が困難である。逆に、50μm
より大あるいは25%より大では、めっき砥粒が中心核
になりにくく、金属粉末粒子同士の圧着凝集が起こり好
ましくない。
In order to perform pressure-bonding coating, first, plating abrasive grains and metal powder are put in the drum 1 at a predetermined ratio. It is desirable that the average particle size of the metal powder used is 0.1 to 50 μm and that it is approximately 1 to 25% of the average particle size of the plating abrasive grains. If the thickness is less than 0.1 μm or less than 1%, the number of particles of the metal powder is large, and the metal powder particles agglomerate simultaneously with the coating, and it is difficult to form the pressure-bonding coating layer. Conversely, 50 μm
If it is larger than 25% or larger than 25%, the plated abrasive grains are less likely to form a central nucleus, and the metal powder particles are agglomerated under pressure, which is not preferable.

【0022】金属粉末の材質は、電解めっき層を構成す
る金属よりも柔軟かつ低融点の材質であることが好まし
い。柔軟な材質の方がこれら金属粉末粒子がめっき砥粒
に固着しやすく、圧着被覆層の形成が容易に行なえる。
また、低融点の材質の方が溶射時の温度を低く設定で
き、砥粒の酸化や炭化を防止することができる。圧着被
覆層の具体的な金属種としては、Ag,Sn,Cu,N
i,Co,Fe,Al,Ti,In,Cr,Pb,Zn
から選択される1種または2種以上の金属の混合物が好
適である。
The material of the metal powder is preferably softer and has a lower melting point than the metal forming the electrolytic plating layer. The softer the material, the more easily these metal powder particles adhere to the plating abrasive particles, and the pressure-bonding coating layer can be formed more easily.
Further, a material having a low melting point can set the temperature at the time of thermal spraying lower, and can prevent oxidation and carbonization of the abrasive grains. Specific metal species of the pressure-bonding coating layer include Ag, Sn, Cu, N
i, Co, Fe, Al, Ti, In, Cr, Pb, Zn
Mixtures of one or more metals selected from are preferred.

【0023】金属粉末にP,カーボン等の還元性粉末を
添加したうえ、圧着被覆層を形成することも可能であ
る。この場合は、溶射した際に金属層に対し還元作用が
働くため、溶射性すなわち結合健全性の向上が図れる。
It is also possible to add a reducing powder such as P or carbon to the metal powder and then form the pressure-bonding coating layer. In this case, since the reducing action acts on the metal layer when sprayed, the sprayability, that is, the integrity of the bond can be improved.

【0024】めっき砥粒と金属粉末との混合比は、形成
すべき圧着被覆層の厚さに応じて決定されるが、効率良
く圧着被覆層を形成するには、粉末の体積比で、以下の
範囲に設定することが望ましい。 めっき砥粒量: 金属粉末量=10:1〜1:20 1回の圧接被覆では被覆厚さが足りない場合には、途中
で金属粉末を追加して圧着被覆を続行すればよい。
The mixing ratio of the plating abrasive grains and the metal powder is determined according to the thickness of the pressure-bonding coating layer to be formed. To efficiently form the pressure-bonding coating layer, the volume ratio of the powder is as follows: It is desirable to set within the range. Amount of plating abrasive grains: Amount of metal powder = 10: 1 to 1:20 If the coating thickness is insufficient in one press contact coating, the metal powder may be added in the middle and the pressure coating may be continued.

【0025】上記の混合粉末をドラム1に入れて蓋をし
た後、ドラム1を回転させると、混合粉末が加圧板5と
ドラム1の隙間で加圧され、混合粉末に転動運動が加わ
りつつ互いに擦り合わされる。このような粉末同士の衝
突および摩擦によって各粒子の界面に局所的な発熱およ
び衝撃力、延性力が生じ、金属めっき砥粒の表面に圧着
粒子が団子状に固着する。さらにこれら団子状粒子の表
面に、隣接する団子状粒子から力が繰返し加わることに
より、前記固着層が延びて偏平化し、さらに金属めっき
層に練り込まれて互いに結合される。
After the above-mentioned mixed powder is put into the drum 1 and the lid is covered, when the drum 1 is rotated, the mixed powder is pressurized in the gap between the pressure plate 5 and the drum 1, and the rolling motion is applied to the mixed powder. Rubbed against each other. Due to such collision and friction between the powders, local heat generation, impact force, and ductility force are generated at the interface of each particle, and the pressure-bonded particles are fixed in the shape of a ball on the surface of the metal-plated abrasive grain. Further, a force is repeatedly applied to the surface of these dumpling particles from the adjacent dumping particles, whereby the fixing layer is extended and flattened, and further kneaded into the metal plating layer to be bonded to each other.

【0026】ドラム1の内面に付着した粉末は掻き取り
アーム4で剥がされ、未付着の金属粉末は再び加圧アー
ム3でめっき砥粒の表面に団子状に固着される。この作
業を一定時間繰り返すことにより、金属粉末はめっき砥
粒の表面に順次圧着被覆され、最終的には均一な被覆厚
さを有する圧着被覆層となる。
The powder adhering to the inner surface of the drum 1 is peeled off by the scraping arm 4, and the non-adhering metal powder is fixed again on the surface of the plating abrasive grains by the pressing arm 3 in the form of a ball. By repeating this operation for a certain period of time, the metal powder is sequentially pressure-bonded and coated on the surfaces of the plating abrasive grains, and finally a pressure-bonding coating layer having a uniform coating thickness is formed.

【0027】図2は、上記各工程を経て得られた金属被
覆砥粒14の一例を示す断面拡大図であり、符号10は
砥粒、11は無電解めっき層、12は電解めっき層、1
3は圧着被覆層を示している。
FIG. 2 is an enlarged cross-sectional view showing an example of the metal-coated abrasive grains 14 obtained through the above-mentioned steps. Reference numeral 10 is abrasive grains, 11 is an electroless plating layer, 12 is an electrolytic plating layer, 1
Reference numeral 3 indicates a pressure-bonding coating layer.

【0028】金属被覆砥粒14の平均粒径は20〜20
0μm、特に50〜60μmが溶射に適する。20μm
未満では熱容量が小さいため、溶射時に金属被覆砥粒の
内部まで熱が及び、例えばダイヤ砥粒の場合には砥粒の
熱劣化を生じるおそれがある。一方、金属被覆砥粒14
の平均粒径が200μmより大では、個々の金属被覆砥
粒14の熱容量が大きく、金属被覆砥粒14が砥石基体
の砥粒層形成面に溶着しない、あるいはキャリアガスに
よる金属被覆砥粒14の高温搬送が難しくなり、基体と
の密着性が得られないという問題を生じる。金属被覆層
(11,12,13)の合計厚さは、溶射による砥粒1
0の熱損傷を防ぐために、5μm以上より好ましくは1
0μm以上とされる。
The average particle size of the metal-coated abrasive grains 14 is 20 to 20.
0 μm, especially 50-60 μm is suitable for thermal spraying. 20 μm
If the amount is less than this, the heat capacity is small, so that the heat may reach the inside of the metal-coated abrasive grains during thermal spraying, and for example, in the case of diamond abrasive grains, the abrasive grains may be thermally deteriorated. On the other hand, metal-coated abrasive grains 14
When the average particle diameter of the metal-coated abrasive grains is larger than 200 μm, the heat capacity of the individual metal-coated abrasive grains 14 is large and the metal-coated abrasive grains 14 do not adhere to the abrasive grain layer-forming surface of the grindstone substrate, or the metal-coated abrasive grains 14 of the carrier gas It becomes difficult to convey the material at a high temperature, which causes a problem that the adhesiveness to the substrate cannot be obtained. The total thickness of the metal coating layers (11, 12, 13) is the abrasive grain 1 obtained by thermal spraying.
0 μm or more, more preferably 1 to prevent heat damage of 0.
It is set to 0 μm or more.

【0029】次に、金属被覆砥粒14を、図3に示すよ
うな溶射装置を使用して、砥石基体23の砥粒層形成面
に溶射する。図中符号20は溶射ノズル、21は溶射ノ
ズル20内に配置された陽極であり、溶射ノズル20に
は基端部からArガスが供給される。Arガスは陽極2
1と溶射ノズル20との間でプラズマ化され、ノズル孔
20Aから砥石基体23に向け噴射される。
Next, the metal-coated abrasive grains 14 are sprayed onto the surface of the grindstone base 23 on which the abrasive grain layer is formed, using a spraying apparatus as shown in FIG. In the figure, reference numeral 20 is a thermal spray nozzle, 21 is an anode disposed in the thermal spray nozzle 20, and Ar gas is supplied to the thermal spray nozzle 20 from the base end portion. Ar gas is anode 2
1 is turned into plasma between the spraying nozzle 20 and sprayed toward the grindstone base 23 from the nozzle hole 20A.

【0030】同時に、金属被覆砥粒14は砥粒導入路2
2を通じてプラズマの進路内に供給され、金属被覆層1
1,12,13の外周部が溶融した状態で砥粒層形成面
に溶射され、砥粒層24が形成される。なお、溶射方法
および条件は、目的とする砥石の種類やメタルボンドの
組成により随時変更される。
At the same time, the metal-coated abrasive grains 14 are used in the abrasive grain introducing passage 2
Is supplied into the course of the plasma through 2 and the metal coating layer 1
The outer peripheral portions 1, 12, 13 are melted and sprayed onto the abrasive grain layer forming surface to form an abrasive grain layer 24. The thermal spraying method and conditions are changed at any time depending on the type of the target grindstone and the composition of the metal bond.

【0031】溶射に先立ち、砥石基体23の砥粒層形成
面を、Rmaxが前記砥粒10の平均粒径の0.05〜
2倍である粗面としておくことが望ましい。このように
すると、金属被覆砥粒14の付着率を高めることが可能
である。砥粒層形成面のRmaxが平均粒径の0.2倍
未満であると付着率を高める効果が弱く、2倍より大で
あると得られた砥粒層表面の粗度が大きくなって好まし
くない。また、砥粒層形成面に予め凹凸加工し、その凹
凸の高さの差が前記砥粒10の平均粒径の0.2〜2倍
であるように、かつその凹凸の周期が前記砥粒10の1
〜10倍であるようにしておくと、砥粒層の径方向内の
砥粒分布の層構造性がなくなり、切れ刃の連続性が向上
し、安定した切れ味が得られる。
Prior to thermal spraying, the Rmax of the surface of the grindstone base 23 on which the abrasive grain layer is formed is from 0.05 to the average particle diameter of the abrasive grains 10.
It is desirable to have a rough surface that is twice as large. By doing so, it is possible to increase the attachment rate of the metal-coated abrasive grains 14. If the Rmax of the surface on which the abrasive layer is formed is less than 0.2 times the average particle diameter, the effect of increasing the adhesion rate is weak, and if it is more than 2 times, the roughness of the surface of the obtained abrasive layer becomes large, which is preferable. Absent. Further, the surface of the abrasive grain layer is irregularly processed so that the difference in height of the irregularities is 0.2 to 2 times the average particle diameter of the abrasive grains 10, and the period of the irregularities is the abrasive grains. 1 of 10
When it is set to 10 times, the layer structure of the abrasive grain distribution in the radial direction of the abrasive grain layer is lost, the continuity of the cutting edge is improved, and stable sharpness is obtained.

【0032】本発明の方法では、溶射ノズル20と砥石
基体23の砥粒層形成面との距離を調整することによ
り、気孔率の高い砥石から気孔の殆ど無い砥石まで容易
に製作可能である。そこで溶射の際には、溶射ノズル2
0と砥石基体23の砥粒層形成面との距離を、砥粒層2
4の気孔率が5〜30vol%になる値に設定すること
が好ましい。気孔率がこの範囲内であると、切粉排出性
や自生発刃作用の良好なメタルボンド砥石が得られる。
一方、気孔率が5vol%以下では気孔形成の効果が小
さく、30vol%以上では砥粒層の強度不足が生じ
る。なお、砥粒層形成後に砥石を熱処理し、砥粒層と砥
石基体の密着性を向上させることも可能である。
According to the method of the present invention, by adjusting the distance between the spray nozzle 20 and the surface of the grindstone base 23 on which the abrasive grain layer is formed, it is possible to easily manufacture a grindstone having a high porosity to a grindstone having almost no pores. Therefore, when spraying, the spray nozzle 2
0 and the distance between the abrasive grain layer forming surface of the grindstone substrate 23 and the abrasive grain layer 2
The porosity of No. 4 is preferably set to a value of 5 to 30 vol%. When the porosity is within this range, a metal bond grindstone having a good chip discharge property and a self-developing blade action can be obtained.
On the other hand, when the porosity is 5 vol% or less, the effect of forming pores is small, and when it is 30 vol% or more, the strength of the abrasive grain layer is insufficient. It is also possible to heat the grindstone after forming the abrasive grain layer to improve the adhesion between the abrasive grain layer and the grindstone base.

【0033】上記のようなメタルボンド砥石の製造方法
によれば、以下のような優れた効果が得られる。
According to the method for manufacturing a metal bond grindstone as described above, the following excellent effects can be obtained.

【0034】 結合材となる金属被覆層を予め砥粒の
外周に被覆したうえで、この金属被覆砥粒のみを溶射す
るので、形成された砥粒層の内部では個々の砥粒の周囲
に等量の結合材が配置される。したがって、砥粒同士の
間隔が砥粒層の全域に亙ってほぼ等しく、砥粒の分布密
度が均一になるから、従来の溶射による砥石製造方法に
比して、研削面の全域に亙って切れ味が一定になり、良
好な被削材面粗さが得られるとともに、研削むらや砥石
の異常振動が生じにくく、安定した研削性能が得られ
る。また、金属結合材による砥粒保持力が均一になるた
め、砥粒の無駄な脱落を防いで、砥石寿命の延長が図れ
る。しかも上記の各効果は、砥粒の集中度を高めた場合
に一層顕著になる。
Since a metal coating layer serving as a binder is coated on the outer periphery of the abrasive grains in advance and only the metal coated abrasive grains are sprayed, the inside of the formed abrasive grain layer is surrounded by the individual abrasive grains. A quantity of binder is placed. Therefore, the intervals between the abrasive grains are almost the same over the entire area of the abrasive grain layer, and the distribution density of the abrasive particles is uniform, so that compared with the conventional method of manufacturing a grindstone by thermal spraying, the entire area of the ground surface is As a result, the sharpness becomes constant, good surface roughness of the work material can be obtained, unevenness in grinding and abnormal vibration of the grindstone hardly occur, and stable grinding performance can be obtained. Further, since the holding force of the abrasive grains by the metal binding material becomes uniform, it is possible to prevent unnecessary dropping of the abrasive grains and prolong the life of the grindstone. Moreover, the above respective effects become more remarkable when the concentration of the abrasive grains is increased.

【0035】 単一粒子による溶射であるため、溶射
むらが生じにくく、砥粒層に凹凸や厚み不均一が生じに
くく、得られる砥粒層の形状精度が高い。 金属被覆層に遮られてプラズマ等の熱源が砥粒に直
接接しないので、溶射熱による砥粒の劣化や炭化が防止
できる。 溶射法を用いるので、一般的なプレス成形等では対
応できないあらゆる形状の砥石基体に砥粒層を形成でき
る。しかも成形,焼結の工程を省くことができるから、
生産効率が向上できる。
Since the thermal spraying is performed using a single particle, uneven spraying is less likely to occur, unevenness and uneven thickness are less likely to occur in the abrasive grain layer, and the resulting abrasive grain layer has high shape accuracy. Since the heat source such as plasma does not come into direct contact with the abrasive grains by being shielded by the metal coating layer, deterioration or carbonization of the abrasive grains due to thermal spraying heat can be prevented. Since the thermal spraying method is used, the abrasive grain layer can be formed on the grindstone substrate of any shape that cannot be handled by general press molding or the like. Moreover, since the molding and sintering steps can be omitted,
The production efficiency can be improved.

【0036】 溶射ノズル20と砥石基体23の砥粒
層形成面との距離を調整することにより、任意の気孔率
を有する多孔質砥粒層が容易に形成でき、切り粉の排出
性、研削液の通水性、自生発刃作用等が向上できる。
By adjusting the distance between the thermal spraying nozzle 20 and the surface of the grindstone base 23 on which the abrasive grain layer is formed, a porous abrasive grain layer having an arbitrary porosity can be easily formed, and the discharge property of cutting chips and the grinding liquid can be improved. Water permeability, self-developing blade action, etc. can be improved.

【0037】なお、本発明の製造方法では、樹脂を用い
て砥粒層の硬さを低減したり、砥粒層の気孔率を高める
ことも可能である。その第1の方法としては、金属被覆
砥粒14の溶射ノズルとは別に設けた溶射ノズルによ
り、体積比が金属被覆砥粒14の1〜5vol%となる
ように、金属被覆砥粒と同時に樹脂を砥粒層形成面に溶
射する。すると、樹脂が溶射と同時に発泡しながら金属
被覆砥粒14の間にとりこまれるから、得られた砥石を
熱処理し、樹脂を揮発させることにより、砥粒層中に多
数の気孔を形成することができる。
In the manufacturing method of the present invention, it is possible to reduce the hardness of the abrasive grain layer and increase the porosity of the abrasive grain layer by using a resin. The first method is to use a spray nozzle provided separately from the spray nozzle for the metal-coated abrasive particles 14 so that the volume ratio is 1 to 5 vol% of the metal-coated abrasive particles 14 and the resin is applied simultaneously with the metal-coated abrasive particles. Is sprayed onto the surface of the abrasive grain layer. Then, the resin is trapped between the metal-coated abrasive grains 14 while foaming at the same time as the thermal spraying. Therefore, by heating the obtained grindstone and volatilizing the resin, a large number of pores can be formed in the abrasive grain layer. it can.

【0038】上記樹脂としては、フェノール,アクリル
等が例示できるが、これらに限定されることはなく、他
にも種々の樹脂が使用可能である。溶射する樹脂量が上
記範囲未満であると、気孔率を増大する効果が得られな
い。また、樹脂量が上記範囲より多いと、得られる砥粒
層の強度が著しく減少する。樹脂としてテフロンを使用
する場合、溶射後の熱処理を行わずにそのまま砥粒層に
残留させると、テフロンの潤滑効果により研削抵抗が低
減できる。
Examples of the resin include phenol and acryl, but the resin is not limited to these and various other resins can be used. If the amount of resin sprayed is less than the above range, the effect of increasing the porosity cannot be obtained. Further, when the amount of resin is more than the above range, the strength of the obtained abrasive grain layer is remarkably reduced. When Teflon is used as the resin, if it is left as it is in the abrasive grain layer without being subjected to heat treatment after thermal spraying, the grinding resistance can be reduced by the lubricating effect of Teflon.

【0039】なお、圧着被覆層を形成する際に、金属粉
末に各種フィラーを添加しておいてもよい。その場合に
は、成形後の砥石にフィラー種に応じた機能を付与する
ことが可能である。例えば、フィラーとしてカーボン粉
を金属粉末に混合し、圧着被覆層の一部または全てを形
成すれば、得られた砥石を研削に使用した際に、研削面
に徐々にカーボン粉が供給され、潤滑性や砥粒の自生発
刃作用を高めることができる。また、圧着被覆層の一部
または全てにSiCやAl23等の硬質粒子を添加して
おけば、結合相の耐摩耗性が向上し、砥石寿命が増大す
る。
When the pressure-bonding coating layer is formed, various fillers may be added to the metal powder. In that case, it is possible to impart a function according to the filler type to the formed grindstone. For example, when carbon powder is mixed with metal powder as a filler and a part or all of the pressure-bonding coating layer is formed, when the obtained grindstone is used for grinding, the carbon powder is gradually supplied to the ground surface and lubricated. It is possible to enhance the property and the self-developing action of the abrasive grains. If hard particles such as SiC or Al 2 O 3 are added to a part or all of the pressure-bonding coating layer, the wear resistance of the binder phase is improved and the life of the grindstone is increased.

【0040】本発明の方法では特に、砥粒層の内部にお
いて個々の砥粒の周囲にフィラーを均一に配置すること
ができるから、成形後の砥石にそれに基づく機能を効果
的に付与することが可能である。
In the method of the present invention, in particular, since the filler can be uniformly arranged around each abrasive grain inside the abrasive grain layer, it is possible to effectively impart the function based on it to the grindstone after molding. It is possible.

【0041】[0041]

【実施例】次に、実施例を挙げて本発明の効果を実証す
る。 (実施例1)粒径20〜30μmのダイヤモンド砥粒3
0gに銅無電解めっきを行い、30gの無電解銅めっき
被覆を形成した。次に、上記銅めっき砥粒をCu粉(粒
径1〜5μm)150gおよびSn粉(粒径1〜5μ
m)120gと混合し、図1の装置を用いて摩擦圧接
し、250gのコーティング砥粒(粒径50〜60μ
m)を得た。
EXAMPLES Next, the effects of the present invention will be demonstrated with reference to examples. (Example 1) Diamond abrasive grains 3 having a particle size of 20 to 30 μm
Copper electroless plating was performed on 0 g to form 30 g of electroless copper plating coating. Next, 150 g of Cu powder (particle size 1 to 5 μm) and Sn powder (particle size 1 to 5 μm) were used as the copper plating abrasive particles.
m) mixed with 120 g and friction-welded using the apparatus of FIG. 1 to give 250 g of coating abrasive grains (particle size 50-60 μm).
m) was obtained.

【0042】S45C製のホイール型台金(外径150
mm×厚さ6mm)の外周面に80メッシュのSiO2
を吹き付けてサンドブラスト処理を施し、前記外周面を
粗面化した。面粗さ計で計測した結果、最大面粗さは1
0μmであった。
S45C wheel type base metal (outer diameter 150
mm mesh x thickness 6 mm) 80 mesh SiO 2 on the outer peripheral surface
Was sprayed and subjected to sandblasting to roughen the outer peripheral surface. As a result of measuring with a surface roughness meter, the maximum surface roughness is 1
It was 0 μm.

【0043】前記台金の外周面に前記金属被覆砥粒をプ
ラズマ溶射した。溶射条件は以下の通りである。 使用した溶射装置:「METCOプラズマ溶射機」ME
TCO社製 プラズマ電流電圧:600A×70V キャリアガス:アルゴン ノズルから砥粒層形成面までの溶射距離:75mm 金属被覆砥粒の溶射量:26g/min 溶射厚さ:120μm 得られた実施例1の砥石の砥粒層切断面の拡大写真を図
4に示す。写真中の大きい黒色部はダイヤモンド砥粒で
あり、微細な黒色部は気孔である。写真下部は砥石基体
である。
The metal-coated abrasive grains were plasma-sprayed on the outer peripheral surface of the base metal. The thermal spraying conditions are as follows. Thermal spraying equipment used: "METCO plasma spraying machine" ME
TCO plasma current voltage: 600 A × 70 V Carrier gas: Argon Spraying distance from nozzle to abrasive grain layer forming surface: 75 mm Spraying amount of metal coated abrasive grains: 26 g / min Spraying thickness: 120 μm An enlarged photograph of the cut surface of the abrasive grain layer of the grindstone is shown in FIG. Large black portions in the photograph are diamond abrasive grains, and fine black portions are pores. The lower part of the photograph is the grindstone base.

【0044】(比較例1)前記実施例1と同じダイヤモ
ンド砥粒30gに同じ銅無電解めっきを行い、30gの
無電解銅めっき被覆を形成した。次に、上記銅めっき砥
粒をCu粉(粒径1〜5μm)150gおよびSn粉
(粒径1〜5μm)120gと均一に混合し、そのまま
溶射材料とした。台金は前記と同じものを使用し、同じ
サンドブラスト処理を施した。前記台金の外周面に前記
被覆材料をプラズマ溶射した。溶射条件は、前記実施例
と同じである。
Comparative Example 1 30 g of the same diamond abrasive grains as in Example 1 was subjected to the same copper electroless plating to form 30 g of electroless copper plating. Next, the copper-plated abrasive grains were uniformly mixed with 150 g of Cu powder (particle size 1 to 5 μm) and 120 g of Sn powder (particle size 1 to 5 μm) to prepare a thermal spray material as it was. The same metal as above was used as the base metal, and the same sandblasting treatment was applied. The coating material was plasma sprayed on the outer peripheral surface of the base metal. The thermal spraying conditions are the same as in the above embodiment.

【0045】(研削試験)実施例1および比較例1の砥
石を用いて、周速1500m/min,切込み深さ0.
1mm,送り速度100cm/minの条件でガラスを
研削した。その結果、実施例1の砥石は比較例1の砥石
の10倍以上の研削比を示し、寿命が遥かに長いことが
判明した。なお、研削比とは(被削材の除去重量/砥石
重量の減少量)のことである。
(Grinding test) Using the grindstones of Example 1 and Comparative Example 1, a peripheral speed of 1500 m / min and a cutting depth of 0.
The glass was ground under the conditions of 1 mm and a feed rate of 100 cm / min. As a result, it was found that the grindstone of Example 1 exhibited a grinding ratio 10 times or more that of the grindstone of Comparative Example 1, and had a much longer life. The grinding ratio is (removed weight of work material / reduced amount of grindstone weight).

【0046】(実施例2)前記実施例1と同じ金属被覆
砥粒を以下の溶射条件で試験片にプラズマ溶射した。溶
射は計4回行った。 溶射装置:「METCOプラズマ溶射機」METCO社
製 プラズマ電流電圧:600A×70V キャリアガス:アルゴン ノズルから砥粒層形成面までの溶射距離:75mm 金属被覆砥粒の溶射量:26g/min 溶射ピッチ:4mm 溶射厚さ 1パス目直後:130μm 2パス目直後:180μ
m 3パス目直後:220μm 4パス目直後:240μm 試験片材質:S45C 試験片寸法:50mm×20mm×厚さ10mm(粗面
化はなし)
(Example 2) The same metal-coated abrasive grains as in Example 1 were plasma sprayed on a test piece under the following spraying conditions. The thermal spraying was performed four times in total. Thermal spraying device: "METCO plasma thermal spraying machine" manufactured by METCO Plasma current voltage: 600 A x 70 V Carrier gas: Argon Thermal spraying distance from nozzle to abrasive grain layer forming surface: 75 mm Thermal spraying amount of metal coated abrasive grains: 26 g / min Thermal spraying pitch: 4 mm Sprayed thickness Immediately after the first pass: 130 μm Immediately after the second pass: 180 μ
m Immediately after the 3rd pass: 220 μm Immediately after the 4th pass: 240 μm Specimen material: S45C Specimen size: 50 mm × 20 mm × thickness 10 mm (no roughening)

【0047】(実施例3〜5)実施例2と同じ金属被覆
砥粒、溶射条件および試験片を使用し、溶射距離のみを
変更して多孔質砥粒層を形成した。そして、得られた砥
粒層の気孔率を画像解析装置により算出した。結果を表
1に示す。
(Examples 3 to 5) The same metal-coated abrasive grains, thermal spraying conditions and test pieces as in Example 2 were used, and only the spraying distance was changed to form a porous abrasive grain layer. Then, the porosity of the obtained abrasive grain layer was calculated by an image analyzer. The results are shown in Table 1.

【0048】[0048]

【表1】 [Table 1]

【0049】(比較例2)一方、比較例1と同じ溶射材
料、溶射条件および試験片を使用し、溶射距離のみを変
更して多孔質砥粒層を形成した。そして、得られた砥粒
層の気孔率を画像解析装置により算出した。結果を表2
に示す。
Comparative Example 2 On the other hand, the same thermal spray material, thermal spray conditions and test pieces as in Comparative Example 1 were used, and only the spray distance was changed to form a porous abrasive grain layer. Then, the porosity of the obtained abrasive grain layer was calculated by an image analyzer. The results are shown in Table 2.
Shown in.

【0050】[0050]

【表2】 [Table 2]

【0051】また、実施例3〜5および比較例2,3の
砥石について、砥粒層の表面最大粗さ(Rmax)を計
測した。その結果を表3に示す。
Further, the maximum surface roughness (Rmax) of the abrasive grain layer was measured for the grindstones of Examples 3 to 5 and Comparative Examples 2 and 3. The results are shown in Table 3.

【0052】[0052]

【表3】 [Table 3]

【0053】表3から明らかなように、実施例3〜5の
砥石では、気孔率が高いにも拘らず砥粒層の表面組織が
均質で、凹凸が少ないことがわかる。また、比較例の砥
石では、金属結合相によりしっかり包まれていない砥粒
が多数見られたが、実施例の砥石では、砥粒は金属結合
相によりしっかり把持されていた。
As is clear from Table 3, in the grindstones of Examples 3 to 5, the surface structure of the abrasive grain layer was uniform and the unevenness was small despite the high porosity. Further, in the grindstone of the comparative example, many abrasive grains which were not firmly wrapped by the metal binding phase were found, but in the grindstone of the example, the abrasive grains were firmly held by the metal binding phase.

【0054】[0054]

【発明の効果】本発明に係るメタルボンド砥石の製造方
法によれば、以下のような優れた効果が得られる。 結合材となる金属被覆層を予め砥粒の外周に被覆し
たうえで、この金属被覆砥粒のみを溶射するので、形成
された砥粒層の内部では個々の砥粒の周囲に等量の結合
材が配置される。したがって、砥粒同士の間隔が砥粒層
の全域に亙ってほぼ等しく、砥粒の分布密度が均一にな
るから、従来の溶射による砥石製造方法に比して研削面
の全域に亙って切れ味が一定になり、良好な被削材面粗
さが得られるとともに、研削むらや砥石の異常振動が生
じにくく、安定した研削性能が得られる。また、金属結
合材による砥粒保持力が均一になるため、砥粒の無駄な
脱落を防いで、砥石寿命の延長が図れる。しかも上記の
各効果は、砥粒の集中度を高めた場合に一層顕著にな
る。
According to the method for producing a metal bond grindstone of the present invention, the following excellent effects can be obtained. After coating the outer periphery of the abrasive grain with a metal coating layer as a binder in advance, only this metal-coated abrasive grain is sprayed, so that inside the formed abrasive grain layer, an equal amount of bonding is performed around each abrasive grain. The material is placed. Therefore, the intervals between the abrasive grains are almost equal over the entire area of the abrasive grain layer, and the distribution density of the abrasive particles is uniform, so that the distance between the abrasive particles is more uniform over the entire area of the grinding surface than the conventional method of manufacturing a grindstone by thermal spraying. The sharpness becomes constant, good surface roughness of the work material can be obtained, and uneven grinding and abnormal vibration of the grindstone hardly occur, and stable grinding performance can be obtained. Further, since the holding force of the abrasive grains by the metal binding material becomes uniform, it is possible to prevent unnecessary dropping of the abrasive grains and prolong the life of the grindstone. Moreover, the above respective effects become more remarkable when the concentration of the abrasive grains is increased.

【0055】 溶射むらが生じにくいため、砥粒層に
凹凸や厚み不均一が生じにくく、砥粒層の形状精度が高
い。 金属被覆層に遮られてプラズマ等の熱源が砥粒に直
接接しないので、溶射熱による砥粒の劣化や炭化が防止
できる。 溶射法を用いるので、一般的なプレス成形等では対
応できないあらゆる形状の砥石基体に砥粒層を形成でき
る。しかも成形,焼結の工程を省くことができるから、
生産効率が向上できる。
Since unevenness of thermal spraying is unlikely to occur, unevenness or uneven thickness is unlikely to occur in the abrasive grain layer, and the shape accuracy of the abrasive grain layer is high. Since the heat source such as plasma does not come into direct contact with the abrasive grains by being shielded by the metal coating layer, deterioration or carbonization of the abrasive grains due to thermal spraying heat can be prevented. Since the thermal spraying method is used, the abrasive grain layer can be formed on the grindstone substrate of any shape that cannot be handled by general press molding or the like. Moreover, since the molding and sintering steps can be omitted,
The production efficiency can be improved.

【0056】 溶射ノズルと砥石基体の砥粒層形成面
との距離を調整することにより、任意の気孔率を有する
多孔質砥粒層が容易に形成でき、切り粉の排出性、研削
液の通水性、自生発刃作用等が向上できる。
By adjusting the distance between the thermal spraying nozzle and the surface of the grindstone substrate on which the abrasive grain layer is formed, a porous abrasive grain layer having an arbitrary porosity can be easily formed, the discharge property of cutting chips, and the passage of the grinding fluid. Aqueous and self-sharpening action can be improved.

【0057】 発泡性樹脂を金属被覆層中に添加また
はその外周に被覆した場合には、砥粒層内部で発泡性樹
脂が発泡するため、溶射ノズルと砥粒層形成面との距離
に関わりなく、樹脂量を調整することにより気孔率を制
御することが可能になる。 溶射に先立ち、砥石基体の砥粒層形成面を粗面とし
た場合には、金属被覆砥粒の付着率を高めて、生産効率
が向上できる。
When the foamable resin is added to the metal coating layer or is coated on the outer periphery of the metal coating layer, the foamable resin foams inside the abrasive grain layer, regardless of the distance between the thermal spray nozzle and the abrasive grain layer forming surface. The porosity can be controlled by adjusting the resin amount. If the surface of the grindstone substrate on which the abrasive grain layer is formed is rough prior to thermal spraying, the adhesion rate of the metal-coated abrasive grains can be increased, and the production efficiency can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るメタルボンド砥石の製造方法の一
例における圧着被覆層の形成方法を示す縦断面図であ
る。
FIG. 1 is a vertical cross-sectional view showing a method for forming a pressure-bonding coating layer in an example of a method for manufacturing a metal bond grindstone according to the present invention.

【図2】同例に使用される金属被覆砥粒を示す断面拡大
図である。
FIG. 2 is an enlarged cross-sectional view showing metal-coated abrasive grains used in the same example.

【図3】同例に使用される溶射装置を示す説明図であ
る。
FIG. 3 is an explanatory view showing a thermal spraying device used in the same example.

【図4】本発明の実施例で得られた砥石の砥粒層断面の
拡大写真である。図中の大きい黒色部が砥粒で、微細な
黒色部は気孔である。
FIG. 4 is an enlarged photograph of an abrasive grain layer cross section of a grindstone obtained in an example of the present invention. Large black portions in the figure are abrasive grains, and fine black portions are pores.

【符号の説明】[Explanation of symbols]

1 回転ドラム 4 掻き取りアーム 5 加圧板 10 砥粒 11 無電解めっき層 12 電解めっき層 13 圧着被覆層 14 金属被覆砥粒 20 溶射ノズル 21 陽極 23 砥石基体 24 砥粒層 D 溶射ノズルと砥粒層形成面の距離 DESCRIPTION OF SYMBOLS 1 rotating drum 4 scraping arm 5 pressing plate 10 abrasive grains 11 electroless plating layer 12 electrolytic plating layer 13 pressure-bonding coating layer 14 metal-coated abrasive grains 20 thermal spray nozzle 21 anode 23 grindstone base 24 abrasive grain layer D thermal spray nozzle and abrasive grain layer Forming surface distance

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年4月12日[Submission date] April 12, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図4[Name of item to be corrected] Figure 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図4】 本発明の実施例で得られた砥石の砥粒層断面
金属組織写真である。図中の大きい黒色部が砥粒で、
微細な黒色部は気孔である。
FIG. 4 is a metallographic photograph of a cross section of an abrasive grain layer of a grindstone obtained in an example of the present invention. The large black part in the figure is the abrasive grain,
The fine black areas are pores.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】砥粒の外周に金属被覆層を形成して前記砥
粒の平均粒径の1.2〜4倍の平均粒径を有する金属被
覆砥粒を得た後、これら金属被覆砥粒を加熱し、前記金
属被覆層の少なくとも一部を溶融させた状態で砥石基体
の砥粒層形成面に溶射し、砥粒層を形成することを特徴
とするメタルボンド砥石の製造方法。
1. A metal coating layer is formed on the outer periphery of an abrasive grain to obtain a metal coated abrasive grain having an average particle diameter of 1.2 to 4 times the average particle diameter of the abrasive grain. A method for producing a metal bond grindstone, characterized in that the particles are heated and at least a part of the metal coating layer is melted and sprayed onto the surface of the grindstone base where the grindstone layer is formed to form the grindstone layer.
【請求項2】前記溶射に際し、前記金属被覆砥粒を溶射
する溶射ノズルと前記砥石基体の前記砥粒層形成面との
距離を、前記砥粒層の気孔率が5〜30vol%になる
値に設定することを特徴とする請求項1記載のメタルボ
ンド砥石の製造方法。
2. The distance between the spray nozzle for spraying the metal-coated abrasive grains and the surface of the grindstone substrate on which the abrasive grain layer is formed during the thermal spraying is a value such that the porosity of the abrasive grain layer is 5 to 30 vol%. The method for manufacturing a metal bond grindstone according to claim 1, wherein
【請求項3】前記砥粒の外周に前記金属被覆層を形成す
る工程は、砥粒の表面に無電解めっき法を用いてNi,
Cu,Co,Agから選択される1種または2種以上の
金属からなる無電解めっき層を形成する無電解めっき工
程であることを特徴とする請求項1または2記載のメタ
ルボンド砥石の製造方法。
3. The step of forming the metal coating layer on the outer periphery of the abrasive grains comprises applying Ni,
The method for producing a metal bond grindstone according to claim 1 or 2, which is an electroless plating step of forming an electroless plating layer made of one or more metals selected from Cu, Co, and Ag. .
【請求項4】前記砥粒の外周に前記金属被覆層を形成す
る工程は、下記(a)および(b)の工程を具備するこ
とを特徴とする請求項1または2記載のメタルボンド砥
石の製造方法。 (a) 砥粒の表面に無電解めっき法を用いてNi,C
u,Co,Agから選択される1種または2種以上の金
属からなる無電解めっき層を形成する無電解めっき工
程、 (b) 前記無電解めっきした砥粒の外周に、電解めっ
き法を用いてFe,Ni,Co,Cu,Ag,Cr,S
n,Pb,Znから選択される1種または2種以上の金
属からなる電解めっき層を形成する電解めっき工程。
4. The metal bond grindstone according to claim 1, wherein the step of forming the metal coating layer on the outer periphery of the abrasive grains includes the following steps (a) and (b). Production method. (A) Ni, C on the surface of the abrasive grains by electroless plating
an electroless plating step of forming an electroless plating layer made of one or more metals selected from u, Co and Ag, (b) using an electroplating method on the outer periphery of the electroless plated abrasive grains. Fe, Ni, Co, Cu, Ag, Cr, S
An electroplating step of forming an electroplated layer made of one or more metals selected from n, Pb, and Zn.
【請求項5】前記砥粒の外周に前記金属被覆層を形成す
る工程は、下記(a)および(b)の工程を具備するこ
とを特徴とする請求項1または2記載のメタルボンド砥
石の製造方法。 (a) 砥粒の表面に無電解めっき法を用いてNi,C
u,Co,Agから選択される1種または2種以上の金
属からなる無電解めっき層を形成する無電解めっき工
程、 (b) 無電解めっきした砥粒を、これらより平均粒径
が小さいAg,Sn,Cu,Ni,Co,Fe,Al,
Ti,Cr,In,Pb,Znから選択される1種また
は2種以上の金属からなる金属粉末と混合して加圧転動
運動を加え、機械的な摩擦圧接作用により前記無電解め
っき層上に金属粉末を圧着させて圧着被覆層を形成する
圧着被覆工程。
5. The metal-bonded grindstone according to claim 1, wherein the step of forming the metal coating layer on the outer periphery of the abrasive grains includes the following steps (a) and (b). Production method. (A) Ni, C on the surface of the abrasive grains by electroless plating
an electroless plating step of forming an electroless plating layer composed of one or more metals selected from u, Co and Ag, (b) an electroless plated abrasive grain having an average particle size smaller than Ag , Sn, Cu, Ni, Co, Fe, Al,
On the electroless plated layer by mechanical friction welding, by mixing with metal powder consisting of one or more metals selected from Ti, Cr, In, Pb and Zn, and applying a rolling motion under pressure. A pressure-bonding coating step of forming a pressure-bonding coating layer by pressure-bonding metal powder to the.
【請求項6】前記砥粒の外周に前記金属被覆層を形成す
る工程は、下記(a)〜(c)の工程を具備することを
特徴とする請求項1または2記載のメタルボンド砥石の
製造方法。 (a) 砥粒の表面に無電解めっき法を用いてNi,C
u,Co,Agから選択される1種または2種以上の金
属からなる無電解めっき層を形成する無電解めっき工
程、 (b) 前記無電解めっきした砥粒の外周に、電解めっ
き法を用いてFe,Ni,Co,Cu,Ag,Cr,S
n,Pb,Znから選択される1種または2種以上の金
属からなる電解めっき層を形成する電解めっき工程、 (c) 電解めっきした砥粒を、これらより平均粒径が
小さいAg,Sn,Cu,Ni,Co,Fe,Al,T
i,Cr,In,Pb,Znから選択される1種または
2種以上の金属からなる金属粉末と混合して加圧転動運
動を加え、機械的な摩擦圧接作用により前記電解めっき
層上に金属粉末を圧着させて圧着被覆層を形成する圧着
被覆工程。
6. The metal-bonded grindstone according to claim 1, wherein the step of forming the metal coating layer on the outer periphery of the abrasive grains includes the following steps (a) to (c). Production method. (A) Ni, C on the surface of the abrasive grains by electroless plating
an electroless plating step of forming an electroless plating layer made of one or more metals selected from u, Co and Ag, (b) using an electroplating method on the outer periphery of the electroless plated abrasive grains. Fe, Ni, Co, Cu, Ag, Cr, S
an electroplating step of forming an electroplated layer made of one or more metals selected from n, Pb and Zn, (c) electrolytically-plated abrasive grains having an average particle size smaller than Ag, Sn, Cu, Ni, Co, Fe, Al, T
It is mixed with a metal powder composed of one or more metals selected from i, Cr, In, Pb and Zn, and a rolling motion is applied to the powder by mechanical friction welding to form a layer on the electrolytic plating layer. A pressure-bonding coating step of pressure-bonding metal powder to form a pressure-bonding coating layer.
【請求項7】前記金属被覆層の少なくとも一部には、フ
ィラーを分散させることを特徴とする請求項1,2,
3,4,5または6記載のメタルボンド砥石の製造方
法。
7. The filler is dispersed in at least a part of the metal coating layer.
The method for producing a metal bond grindstone according to 3, 4, 5 or 6.
【請求項8】前記溶射に先立ち、前記砥石基体の前記砥
粒層形成面を、Rmaxが前記砥粒平均粒径の0.05
〜2倍である粗面としておくことを特徴とする請求項
1,2,3,4,5,6または7記載のメタルボンド砥
石の製造方法。
8. Prior to the thermal spraying, Rmax is 0.05 of the average grain size of the abrasive grains on the surface of the abrasive grain base on which the abrasive grain layer is formed.
The method for producing a metal bond grindstone according to claim 1, 2, 3, 4, 5, 6 or 7, characterized in that the roughened surface is doubled.
【請求項9】前記溶射に先立ち、前記砥石基体の前記砥
粒層形成面を凹凸加工することにより、その凹凸の高さ
の差が前記砥粒平均粒径の0.2〜2倍、かつその凹凸
の周期が前記砥粒平均粒径の1〜10倍となるようにす
ることを特徴とする1,2,3,4,5,6,7または
8記載のメタルボンド砥石の製造方法。
9. Prior to the thermal spraying, the surface of the grindstone base on which the abrasive grain layer is formed is processed to have an uneven shape, so that the difference in height of the unevenness is 0.2 to 2 times the average particle size of the abrasive grains, and The method for producing a metal bond grindstone according to 1, 2, 3, 4, 5, 6, 7 or 8, wherein the period of the irregularities is set to 1 to 10 times the average grain size of the abrasive grains.
JP13388593A 1993-05-12 1993-05-12 Manufacture of metal bonded grinding wheel Withdrawn JPH06320428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13388593A JPH06320428A (en) 1993-05-12 1993-05-12 Manufacture of metal bonded grinding wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13388593A JPH06320428A (en) 1993-05-12 1993-05-12 Manufacture of metal bonded grinding wheel

Publications (1)

Publication Number Publication Date
JPH06320428A true JPH06320428A (en) 1994-11-22

Family

ID=15115372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13388593A Withdrawn JPH06320428A (en) 1993-05-12 1993-05-12 Manufacture of metal bonded grinding wheel

Country Status (1)

Country Link
JP (1) JPH06320428A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006021304A (en) * 2004-07-09 2006-01-26 Asahi Diamond Industrial Co Ltd Manufacturing method of electro-deposition abrasive tool and the electro-deposition abrasive tool
JP2009214186A (en) * 2008-03-07 2009-09-24 Tsune Seiki Co Ltd Forced cooling system of electrodeposition tool
CN113927495A (en) * 2021-10-20 2022-01-14 山东大学 Preparation process of self-sharpening metal binding agent diamond abrasive layer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006021304A (en) * 2004-07-09 2006-01-26 Asahi Diamond Industrial Co Ltd Manufacturing method of electro-deposition abrasive tool and the electro-deposition abrasive tool
JP4533025B2 (en) * 2004-07-09 2010-08-25 旭ダイヤモンド工業株式会社 Electrodeposition abrasive tool manufacturing method and electrodeposition abrasive tool
JP2009214186A (en) * 2008-03-07 2009-09-24 Tsune Seiki Co Ltd Forced cooling system of electrodeposition tool
CN113927495A (en) * 2021-10-20 2022-01-14 山东大学 Preparation process of self-sharpening metal binding agent diamond abrasive layer
CN113927495B (en) * 2021-10-20 2023-02-28 山东大学 Preparation process of self-sharpening metal binding agent diamond abrasive layer

Similar Documents

Publication Publication Date Title
EP2497602A1 (en) Super-abrasive grain fixed type wire saw, and method of manufacturing super-abrasive grain fixed type wire saw
EP1378323B1 (en) Bond for abrasive tool
EP0950470A2 (en) Abrasive tool and the method of producing the same
EP0130542A1 (en) Grinding wheel and manufacturing method thereof
AU2020100570A4 (en) Nickel-based seamless multi-core braze coating material
GB2507168A (en) Brazing a diamond body to a carrier body
CN109277957B (en) Cutter head with uniformly distributed diamonds and preparation process thereof
JPH06320428A (en) Manufacture of metal bonded grinding wheel
JP5734730B2 (en) Polishing cloth dresser
CN112512749B (en) Abrasive article and method of forming the same
JP5957317B2 (en) Dresser for polishing cloth and method for producing the same
JPS6334069A (en) Grindstone
CN210011174U (en) Dip welding diamond wire
JP3052603B2 (en) Porous metal bond whetstone
CN113927495A (en) Preparation process of self-sharpening metal binding agent diamond abrasive layer
CN109203264B (en) Dip-soldering diamond wire and manufacturing method thereof
JP3035644B2 (en) Metal-coated abrasive, method for producing the same, and method for producing metal-bonded grindstone
JPS6257871A (en) Manufacture for metal bond grinding wheel
JPS59208064A (en) Powder for flame spraying
JPH071339A (en) Porous metal-bonded grinding wheel and manufacture thereof
JPH11291169A (en) Diamond dresser by scattering dimples on surface and manufacture therefor
JP3151705B2 (en) Structure of porous diamond cutting blade and method of manufacturing the same
JPH0775972A (en) Manufacture of porous metal-bonded grinding wheel
KR20190074295A (en) Metal hybrid grinding wheel with coated filler particles
JPH07246562A (en) Metal bonded grinding wheel and its manufacture

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000801