JPH06317418A - Ultrasonic measuring instrument - Google Patents

Ultrasonic measuring instrument

Info

Publication number
JPH06317418A
JPH06317418A JP5108198A JP10819893A JPH06317418A JP H06317418 A JPH06317418 A JP H06317418A JP 5108198 A JP5108198 A JP 5108198A JP 10819893 A JP10819893 A JP 10819893A JP H06317418 A JPH06317418 A JP H06317418A
Authority
JP
Japan
Prior art keywords
signal
echo
thickness
propagation time
surface echo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5108198A
Other languages
Japanese (ja)
Inventor
Noritaka Morita
徳孝 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5108198A priority Critical patent/JPH06317418A/en
Publication of JPH06317418A publication Critical patent/JPH06317418A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Abstract

PURPOSE:To reduce the measurement error of thickness propagating time even when front and rear surface echoes vary. CONSTITUTION:When front and rear surface echoes largely vary due to the influence of the surface properties of an object to be inspected 2 or the influence of the profiling mechanism between a probe holding mechanism 4 and the surface of the object 2, the thickness propagating time signal 36 measured by means of a thickness propagating time measuring section 14 becomes an abnormal measured value and a thickness comparing section 15 compares the signal 36 with a thickness propagating time range signal 37 and generates an abnormal trigger signal 38. In addition, a thickness data effective signal generating section 16 generates a thickness data effective signal 39. A thickness data averaging and measuring section 17 calculates a thickness data averaging signal 41 by averaging thickness propagating time signals 36 from which the abnormal measured value is removed based on the signals 36, 39, and 40 and outputs the calculates signal 41. Therefore, the measurement error of thickness propagating time can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は例えば鉄鋼製造ライン
において搬送されてくる鋼管のような被検査材の厚さを
超音波を利用して計測する水浸方式または水柱方式によ
る超音波計測装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water immersion type or water column type ultrasonic measuring device for measuring the thickness of a material to be inspected such as a steel pipe conveyed in a steel manufacturing line by using ultrasonic waves. It is a thing.

【0002】[0002]

【従来の技術】図6は、従来のこの種の超音波を利用し
た超音波計測装置を示す図である。図6において、1は
超音波計測装置、2は被検査材、3は超音波探触子、4
は上記超音波探触子3を保持する保持機構、5は接触媒
質、6は上記超音波探触子3に対する送信パルスを発生
するための送信部、7は上記送信部6で生じた送信信号
及び被検査材2から反射した受信信号の送受信信号、8
は上記送受信信号7を受信する受信部、30は上記受信
部8にて受信された受信信号、9は上記受信信号30の
表面反射エコーへのゲートパルスを発生させる表面ゲー
ト発生部、31は上記表面ゲート発生部で発生された表
面ゲート信号、10は上記受信信号30の裏面反射エコ
ーへのゲートパルスを発生させる裏面ゲート発生部、3
2は上記裏面ゲート発生部で発生された裏面ゲート信
号、11は上記受信信号30と上記表面ゲート信号31
により表面エコーの伝播時間を測定する表面エコー伝播
時間測定部、12は上記受信信号30と上記裏面ゲート
信号32とにより裏面エコーの伝播時間を測定する裏面
エコー伝播時間測定部、33は上記表面エコー伝播時間
測定部11で測定された表面エコー伝播時間信号、34
は上記裏面エコー伝播時間測定部12で測定された裏面
エコー伝播時間信号、13は上記超音波計測装置1の各
部に対する同期信号を発生する同期部、35は上記同期
部13にて発生された同期信号である。
2. Description of the Related Art FIG. 6 is a diagram showing a conventional ultrasonic measuring device utilizing this kind of ultrasonic wave. In FIG. 6, 1 is an ultrasonic measuring device, 2 is a material to be inspected, 3 is an ultrasonic probe, 4
Is a holding mechanism for holding the ultrasonic probe 3, 5 is a contact medium, 6 is a transmitter for generating a transmission pulse for the ultrasonic probe 3, and 7 is a transmission signal generated by the transmitter 6. And a transmission / reception signal of a reception signal reflected from the inspection object 2, 8
Is a receiving unit that receives the transmission / reception signal 7, 30 is a received signal received by the receiving unit 8, 9 is a surface gate generation unit that generates a gate pulse to the surface reflection echo of the received signal 30, and 31 is the above The front surface gate signal generated by the front surface gate generator 10 is a rear surface gate generator 3 for generating a gate pulse to the rear surface reflection echo of the received signal 30.
2 is the back gate signal generated by the back gate generator, 11 is the received signal 30 and the front gate signal 31.
A surface echo propagation time measuring unit that measures the propagation time of the surface echo by means of 12; a back surface echo propagation time measuring unit that measures the propagation time of the back surface echo by means of the received signal 30 and the back surface gate signal 32; A surface echo propagation time signal measured by the propagation time measuring unit 11, 34
Is a back surface echo propagation time signal measured by the back surface echo propagation time measuring unit 12, 13 is a synchronizing unit that generates a synchronization signal for each unit of the ultrasonic measurement apparatus 1, and 35 is a synchronization unit that is generated by the synchronizing unit 13. It is a signal.

【0003】図7は、従来のこの種の超音波を利用した
超音波計測装置の主要箇所のタイミングを示す図であ
る。図7において、35は同期信号、7は送受信信号、
Tは送信パルス、Sは被検査材2の表面から反射された
表面エコー、Bは被検査材2の裏面から反射された裏面
エコー、31は表面ゲート発生部9により発生された表
面ゲート信号、32は裏面ゲート発生部10により発生
された裏面ゲート信号、33は表面エコー伝播時間測定
部11にて測定された表面エコー伝播時間信号、34は
裏面エコー伝播時間測定部12にて測定された裏面エコ
ー伝播時間信号、τは表面ゲート信号31の立ち上がり
から裏面ゲート信号32の立ち上がりまでの時間であ
る。
FIG. 7 is a diagram showing the timing of the main parts of a conventional ultrasonic measuring device using this type of ultrasonic wave. In FIG. 7, 35 is a synchronization signal, 7 is a transmission / reception signal,
T is a transmission pulse, S is a surface echo reflected from the surface of the material to be inspected 2, B is a back surface echo reflected from the back surface of the material to be inspected 2, 31 is a surface gate signal generated by the surface gate generator 9, Reference numeral 32 is a back surface gate signal generated by the back surface gate generator 10, 33 is a front surface echo propagation time signal measured by the front surface echo propagation time measuring section 11, and 34 is a back surface measured by the back surface echo propagation time measuring section 12. The echo propagation time signal, τ, is the time from the rising of the front surface gate signal 31 to the rising of the back surface gate signal 32.

【0004】次に動作について説明する。従来の超音波
計測装置においては、送信部6により発生された電気信
号である送信パルスTが超音波探触子3により超音波信
号に変換され、接触媒質5を伝播し、被検査材2の表面
にて反射された表面エコーS及び被検査材2の裏面にて
反射された裏面エコーBの超音波信号が反射され、超音
波探触子3により超音波エコー信号を電気信号に変換さ
れ送受信信号7となり受信部8に受信される。受信部8
にて受信された送受信信号7は受信部8により増幅され
た受信信号30となり、受信信号30は表面ゲート発生
部9にて発生された表面ゲート信号31と表面エコー伝
播時間測定部11により表面エコー伝播時間信号33と
なり、また、裏面ゲート発生部10にて発生された裏面
ゲート信号32と裏面エコー伝播時間測定部12により
裏面エコー伝播時間信号34として出力され、表面ゲー
ト信号31の立ち上がりから裏面ゲート信号32の立ち
上がりまでの時間であるτと表面エコー伝播時間信号3
3と裏面エコー伝播時間信号34により被検査材2の厚
さ伝播時間を測定することができる。この場合、表面エ
コーS及び裏面エコーBが被検査材2の表面性状の影響
や探触子保持機構4と被検査材2の表面とのならい機能
の影響により大きく変動し、厚さ伝播時間の測定誤差が
大きくなっていた。
Next, the operation will be described. In the conventional ultrasonic measuring device, the transmission pulse T, which is an electric signal generated by the transmitting unit 6, is converted into an ultrasonic signal by the ultrasonic probe 3, propagates through the contact medium 5, and the inspection object 2 The ultrasonic signals of the surface echo S reflected on the surface and the back surface echo B reflected on the back surface of the inspection object 2 are reflected, and the ultrasonic probe 3 converts the ultrasonic echo signal into an electric signal and transmits / receives it. The signal 7 is received by the receiving unit 8. Receiver 8
The transmission / reception signal 7 received at becomes a reception signal 30 amplified by the receiving unit 8, and the reception signal 30 is the surface gate signal 31 generated at the surface gate generating unit 9 and the surface echo by the surface echo propagation time measuring unit 11. It becomes the propagation time signal 33, and is outputted as the back surface echo propagation time signal 34 by the back surface gate signal 32 generated by the back surface gate generating section 10 and the back surface echo propagation time measuring section 12, and from the rising of the front surface gate signal 31 to the back surface gate signal 31. Τ which is the time until the rise of the signal 32 and the surface echo propagation time signal 3
3 and the back surface echo propagation time signal 34, the thickness propagation time of the inspected material 2 can be measured. In this case, the front surface echo S and the back surface echo B fluctuate greatly due to the influence of the surface properties of the inspection target material 2 and the function of tracing between the probe holding mechanism 4 and the surface of the inspection target material 2, and the thickness propagation time The measurement error was large.

【0005】また、表面エコー伝播時間信号33と裏面
エコー伝播時間信号34と表面ゲート信号31の立ち上
がりから裏面ゲート信号32の立ち上がりまでの時間で
あるτとにより厚さ伝播時間を計測するため処理時間が
長く必要となっていた。
Further, the processing time for measuring the thickness propagation time is calculated by the surface echo propagation time signal 33, the back surface echo propagation time signal 34, and τ which is the time from the rising of the front surface gate signal 31 to the rising of the back surface gate signal 32. Has been needed for a long time.

【0006】[0006]

【発明が解決しようとする課題】従来の超音波計測装置
は以上のように構成されているので、被検査材の表面性
状の影響や探触子保持機構と被検査材の表面とのならい
機能の影響により表面エコー及び裏面エコーが大きく変
動した場合、測定誤差が大きいという問題点がある。
Since the conventional ultrasonic measuring device is constructed as described above, the influence of the surface texture of the material to be inspected and the function of tracing the probe holding mechanism and the surface of the material to be inspected. When the front surface echo and the back surface echo largely change due to the influence of 1, the measurement error is large.

【0007】また、表面エコー伝播時間信号と裏面エコ
ー伝播時間信号と表面ゲート信号の立ち上がりから裏面
ゲート信号の立ち上がりまでの時間とにより厚さ伝播時
間を計測するため処理時間が長いという問題点がある。
There is also a problem that the processing time is long because the thickness propagation time is measured by the surface echo propagation time signal, the back surface echo propagation time signal, and the time from the rise of the front surface gate signal to the rise of the back surface gate signal. .

【0008】この発明は、上記のような問題点を解消す
るためになされたもので、表面エコーの変動及び裏面エ
コーの変動があっても厚さ伝播時間の測定誤差を小さく
することを目的とする。
The present invention has been made in order to solve the above problems, and an object thereof is to reduce the measurement error of the thickness propagation time even if there are fluctuations in the front surface echo and the back surface echo. To do.

【0009】さらに、厚さ伝播時間の測定のための処理
時間を短縮することを目的とする。
Another object is to reduce the processing time for measuring the thickness propagation time.

【0010】[0010]

【課題を解決するための手段】この発明に係わる超音波
計測装置は上記従来装置の構成に対し、表面エコー伝播
時間測定部により測定された表面エコー伝播時間信号と
裏面エコー伝播時間測定部により測定された裏面エコー
伝播時間信号とにより、厚さ伝播時間を測定する厚さ伝
播時間測定部と、あらかじめ定められた伝播時間範囲と
厚さ伝播時間とを比較し厚さ伝播時間範囲外のとき異常
トリガ信号を発生させる厚さ比較部と、厚さ比較部から
の異常トリガ信号によりデータ有効信号を発生する厚さ
データ有効信号発生部と、厚さデータ有効信号の発生時
のみの厚さ伝播時間信号を有効とし外部からの平均トリ
ガ信号により平均する厚さデータ平均測定部とを付加し
たものである。
The ultrasonic measuring apparatus according to the present invention is different from the above-mentioned conventional apparatus in that the surface echo propagation time signal measured by the surface echo propagation time measuring section and the back surface echo propagation time measuring section are measured. Abnormality when outside the thickness propagation time range by comparing the thickness propagation time range with the thickness propagation time measurement unit that measures the thickness propagation time based on the back surface echo propagation time signal The thickness comparison part that generates the trigger signal, the thickness data valid signal generation part that generates the data valid signal by the abnormal trigger signal from the thickness comparison part, and the thickness propagation time only when the thickness data valid signal is generated A thickness data averaging unit for validating the signal and averaging it by an average trigger signal from the outside is added.

【0011】さらに、表面ゲート信号内に存在する受信
部からの受信信号の表面エコー高さを測定する表面エコ
ー高さ測定部と、表面エコー高さ測定部で測定された表
面エコー高さをあらかじめ定めた判定値と比較し、判定
値以下の表面エコー高さのとき表面エコー高さ異常トリ
ガ信号を発生させる表面エコー高さ比較部と、表面エコ
ー高さ比較部からの表面エコー高さ異常トリガ信号によ
り表面エコーデータマスク信号を発生する表面エコーデ
ータマスク発生部と、表面エコーデータマスク信号の非
発生時のみの厚さ伝播時間信号を有効とし外部からの平
均トリガ信号により平均する厚さデータ平均測定部とを
付加したものである。
Further, the surface echo height measuring unit for measuring the surface echo height of the received signal from the receiving unit existing in the surface gate signal and the surface echo height measured by the surface echo height measuring unit are previously set. Surface echo height comparison unit that generates a surface echo height abnormality trigger signal when the surface echo height is less than or equal to the determined determination value, and a surface echo height abnormality trigger from the surface echo height comparison unit A surface echo data mask generator that generates a surface echo data mask signal by a signal, and a thickness data average that validates the thickness propagation time signal only when the surface echo data mask signal is not generated and averages by an external average trigger signal The measurement part is added.

【0012】さらに、裏面ゲート信号内に存在する受信
部からの受信信号の裏面エコー高さを測定する裏面エコ
ー高さ測定部と、裏面エコー高さ測定部で測定された裏
面エコー高さをあらかじめ定めた判定値とを比較し、判
定値以下のエコー高さのとき裏面エコー高さ異常トリガ
信号を発生させる裏面エコー高さ比較部と、裏面エコー
高さ比較部からの裏面エコー高さ異常トリガ信号により
裏面エコーデータマスク信号を発生する裏面エコーデー
タマスク発生部と、裏面エコーデータマスク信号の非発
生時のみの厚さ伝播時間信号を有力とし外部からの平均
トリガ信号により平均する厚さデータ平均測定部とを付
加したものである。
Further, the backside echo height measuring section for measuring the backside echo height of the received signal from the receiving section present in the backside gate signal and the backside echo height measured by the backside echo height measuring section are previously set. The backside echo height comparison unit that compares the specified judgment value and generates a backside echo height abnormality trigger signal when the echo height is less than the judgment value and the backside echo height abnormality trigger from the backside echo height comparison unit A back surface echo data mask generator that generates a back surface echo data mask signal based on the signal, and a thickness data average that uses the thickness propagation time signal only when the back surface echo data mask signal is not generated and is averaged by an external average trigger signal The measurement part is added.

【0013】[0013]

【作用】この発明においては、表面エコー及び裏面エコ
ーの変動があっても厚さ伝播時間の測定誤差を小さくす
ることができる。
According to the present invention, the measurement error of the thickness propagation time can be reduced even if there are variations in the front surface echo and the back surface echo.

【0014】また、厚さ伝播時間測定のための処理時間
を短縮することができる。
Further, the processing time for measuring the thickness propagation time can be shortened.

【0015】[0015]

【実施例】【Example】

実施例1.図1はこの発明の一実施例である超音波計測
装置を示す図である。図1において、1は超音波計測装
置、2は被検査材、3は超音波探触子、4は超音波探触
子3を保持する保持機構、5は接触媒質、6は超音波探
触子3に対する送信パルスを発生するための送信部、7
は送信部6で生じた送信信号及び被検査材2からの送受
信信号、8は送受信信号7を受信する受信部、30は受
信部8にて受信された受信信号、9は受信信号30の表
面反射エコーへのゲートパルスを発生させる表面ゲート
発生部、31は表面ゲート発生部で発生された表面ゲー
ト信号、10は受信信号30の裏面反射エコーへのゲー
トパルスを発生させる裏面ゲート発生部、32は裏面ゲ
ート発生部10で発生された裏面ゲート信号、11は受
信信号30と表面ゲート信号31とにより表面エコーの
伝播時間を測定する表面エコー伝播時間測定部、12は
受信信号30と裏面ゲート信号32とにより裏面エコー
の伝播時間を測定する裏面エコー伝播時間測定部、33
は表面エコー伝播時間測定部11で測定された表面エコ
ー伝播時間信号、34は裏面エコー伝播時間測定部12
で測定された裏面エコー伝播時間信号、14は表面エコ
ー伝播時間信号33と裏面エコー伝播時間信号34とに
より厚さ測定を行う厚さ伝播時間測定部、36は厚さ伝
播時間測定部により測定された厚さ伝播時間信号、37
はあらかじめ定められた厚さ伝播時間範囲信号、15は
厚さ伝播時間信号36と厚さ伝播時間範囲信号37とを
比較し厚さ伝播時間信号36が厚さ伝播時間範囲信号3
7の範囲外のとき異常トリガ信号を発生する厚さ比較
部、38は厚さ比較部15より発生される異常トリガ信
号、16は異常トリガ信号38によりデータ有効信号を
発生する厚さデータ有効信号発生部、39はデータ有効
信号発生部より発生されるデータ有効信号、40は厚さ
平均を行う区間である外部からの平均トリガ信号、17
は厚さ伝播時間信号36とデータ有効信号39と平均ト
リガ信号40により厚さデータの平均を行う厚さデータ
平均測定部、41は厚さデータ平均測定部17より出力
される厚さデータ平均信号、13は超音波計測装置1の
各部に対する同期信号を発生する同期部、35は同期部
13にて発生された同期信号である。
Example 1. FIG. 1 is a diagram showing an ultrasonic measurement device according to an embodiment of the present invention. In FIG. 1, 1 is an ultrasonic measuring device, 2 is a material to be inspected, 3 is an ultrasonic probe, 4 is a holding mechanism for holding the ultrasonic probe 3, 5 is a contact medium, and 6 is an ultrasonic probe. A transmitter for generating a transmission pulse for the child 3, 7
Is a transmission signal generated by the transmission unit 6 and a transmission / reception signal from the inspected material 2, 8 is a reception unit that receives the transmission / reception signal 7, 30 is a reception signal received by the reception unit 8, and 9 is the surface of the reception signal 30. A front surface gate generation unit for generating a gate pulse to the reflection echo, 31 is a front surface gate signal generated by the front surface gate generation unit, 10 is a rear surface gate generation unit for generating a gate pulse of the reception signal 30 to the rear surface reflection echo, 32 Is a back surface gate signal generated by the back surface gate generation unit 10, 11 is a front surface echo propagation time measurement unit that measures the propagation time of the front surface echo by the reception signal 30 and the front surface gate signal 31, and 12 is the reception signal 30 and the back surface gate signal A backside echo propagation time measuring unit for measuring a backside echo propagation time by 32, 33
Is a surface echo propagation time signal measured by the surface echo propagation time measuring section 11, and 34 is a back surface echo propagation time measuring section 12
The back surface echo propagation time signal measured in step 14, 14 is a thickness propagation time measurement part that measures the thickness by the front surface echo propagation time signal 33 and the back surface echo propagation time signal 34, and 36 is a thickness propagation time measurement part. Thickness transit time signal, 37
Is a predetermined thickness propagation time range signal, 15 is a comparison between the thickness propagation time signal 36 and the thickness propagation time range signal 37, and the thickness propagation time signal 36 indicates the thickness propagation time range signal 3
A thickness comparing section that generates an abnormal trigger signal when the value is out of the range of 7, a 38 is an abnormal trigger signal generated by the thickness comparing section 15, and a 16 is a thickness data valid signal that generates a data valid signal by the abnormal trigger signal 38. Generator 39 is a data valid signal generated by the data valid signal generator 40 is an average trigger signal from the outside which is a section for averaging the thickness 17
Is a thickness data average measuring unit for averaging the thickness data by the thickness transit time signal 36, the data valid signal 39 and the average trigger signal 40, and 41 is the thickness data average signal output from the thickness data average measuring unit 17. Reference numerals 13 and 13 denote a synchronization unit that generates a synchronization signal for each unit of the ultrasonic measurement device 1, and a reference numeral 35 denotes a synchronization signal generated by the synchronization unit 13.

【0016】図2及び図3は、この発明の超音波計測装
置の主要箇所のタイミングを示す図である。図2におい
て、35は同期信号、7は送受信信号、Tは送信パル
ス、Sは被検査材2の表面から反射された表面エコー、
Bは被検査材2の裏面から反射された裏面エコー、31
は表面ゲート発生部9により発生された表面ゲート信
号、32は裏面ゲート発生部10により発生された裏面
ゲート信号、33は表面エコー伝播時間測定部11にて
測定された表面エコー伝播時間信号、34は裏面エコー
伝播時間測定部12にて測定された裏面エコー伝播時間
信号、36は厚さ伝播時間測定部14により測定された
厚さ伝播時間信号である。図3において、40は平均ト
リガ信号、35は同期信号、36は厚さ伝播時間信号で
36aから36hまではそれぞれの同期信号35により
測定された厚さ伝播時間信号、37は厚さ伝播時間範囲
信号、38は異常トリガ信号、39は厚さデータ有効信
号である。
2 and 3 are diagrams showing the timing of the main points of the ultrasonic measuring device of the present invention. In FIG. 2, 35 is a synchronization signal, 7 is a transmission / reception signal, T is a transmission pulse, S is a surface echo reflected from the surface of the material 2 to be inspected,
B is a back surface echo reflected from the back surface of the inspection object 2, 31
Is a front surface gate signal generated by the front surface gate generating unit 9, 32 is a rear surface gate signal generated by the rear surface gate generating unit 10, 33 is a front surface echo propagation time signal measured by the front surface echo propagation time measuring unit 11, and 34 Is a back surface echo propagation time signal measured by the back surface echo propagation time measuring section 12, and 36 is a thickness propagation time signal measured by the thickness propagation time measuring section 14. In FIG. 3, 40 is an average trigger signal, 35 is a synchronization signal, 36 is a thickness propagation time signal, and 36a to 36h are thickness propagation time signals measured by the respective synchronization signals 35, and 37 is a thickness propagation time range. A signal, 38 is an abnormal trigger signal, and 39 is a thickness data valid signal.

【0017】前記のように構成された超音波計測装置に
おいては、被検査材2の表面性状の影響や探触子保持機
構4と被検査材2の表面とのならい機構の影響により表
面エコーSおよび裏面エコーBが大きく変動した場合、
厚さ伝播時間測定部14で測定された厚さ伝播時間信号
36が厚さ伝播時間信号36b及び厚さ伝播時間信号3
6gのとおり異常測定値となり、厚さ比較部15により
厚さ伝播時間範囲信号37と比較され異常トリガ信号3
8を発生し、厚さデータ有効信号発生部16により厚さ
データ有効信号39を発生し、厚さ伝播時間信号36と
厚さデータ有効信号39と平均トリガ信号40とにより
厚さデータ平均測定部17において異常測定値である厚
さ伝播時間信号36b及び厚さ伝播時間信号36gとを
除いた厚さ伝播時間信号36a、36c、36d、36
e、36f、36hを有効とし平均し厚さデータ平均信
号41を出力し、厚さ伝播時間の測定誤差を小さくす
る。
In the ultrasonic measuring apparatus constructed as described above, the surface echo S is caused by the influence of the surface texture of the inspection object 2 and the influence of the tracing mechanism between the probe holding mechanism 4 and the surface of the inspection object 2. And when the back echo B changes greatly,
The thickness propagation time signal 36 measured by the thickness propagation time measuring unit 14 is the thickness propagation time signal 36b and the thickness propagation time signal 3
An abnormal measured value is obtained as 6 g, and the thickness comparing unit 15 compares the measured value with the thickness propagation time range signal 37, and the abnormal trigger signal 3
8 is generated, the thickness data valid signal generator 16 generates a thickness data valid signal 39, and the thickness propagation time signal 36, the thickness data valid signal 39, and the average trigger signal 40 generate the thickness data average measuring unit. In FIG. 17, the thickness propagation time signals 36a, 36c, 36d, 36 excluding the thickness propagation time signal 36b and the thickness propagation time signal 36g, which are abnormal measurement values, are excluded.
e, 36f, and 36h are validated and averaged, and the thickness data average signal 41 is output to reduce the measurement error of the thickness propagation time.

【0018】また、超音波計測装置1から厚さデータ平
均信号41が直接出力されるため、厚さ伝播時間測定の
ための処理時間が短縮される。
Further, since the thickness data average signal 41 is directly output from the ultrasonic measuring device 1, the processing time for measuring the thickness propagation time is shortened.

【0019】実施例2.図4は、この発明の実施例2で
ある超音波計測装置を示す図である。図4において1〜
14、17、30〜36、40〜41は図1の装置と全
く同様で、18は受信信号30と表面ゲート信号31に
より表面エコー高さを測定する表面エコー高さ測定部、
42は表面エコー高さ測定部18から出力される表面エ
コー高さ信号、43はあらかじめ定められた表面エコー
高さ判定信号、19は表面エコー高さ信号42と表面エ
コー高さ判定信号43とを比較し表面エコー高さ信号4
2が表面エコー高さ判定信号43以下のとき表面エコー
高さ異常トリガ信号を発生する表面エコー高さ比較部、
44は表面エコー高さ比較部19より発生される表面エ
コー高さ異常トリガ信号、20は表面エコー高さ異常ト
リガ信号44により表面エコーデータマスク信号を発生
する表面エコーデータマスク発生部、45は表面エコー
データマスク発生部20により発生される表面エコーデ
ータマスク信号、17は厚さ伝播時間信号36と表面エ
コーデータマスク信号45と平均トリガ信号40により
表面エコーデータマスク信号45の非発生時のみの厚さ
伝播時間信号36を有効とし平均トリガ信号40により
平均する厚さデータ平均測定部、41は厚さデータ平均
測定部17より出力される厚さデータ平均信号である。
Example 2. FIG. 4 is a diagram showing an ultrasonic measurement device that is Embodiment 2 of the present invention. 1 to 1 in FIG.
Reference numerals 14, 17, 30 to 36, 40 to 41 are exactly the same as those of the apparatus of FIG. 1, and 18 is a surface echo height measuring section for measuring the surface echo height by the received signal 30 and the surface gate signal 31.
42 is a surface echo height signal output from the surface echo height measuring unit 18, 43 is a predetermined surface echo height determination signal, and 19 is a surface echo height signal 42 and a surface echo height determination signal 43. Surface echo height signal 4 for comparison
A surface echo height comparison unit that generates a surface echo height abnormality trigger signal when 2 is less than or equal to the surface echo height determination signal 43,
Reference numeral 44 is a surface echo height abnormality trigger signal generated by the surface echo height comparing section 19, 20 is a surface echo data mask generating section for generating a surface echo data mask signal by the surface echo height abnormality trigger signal 44, and 45 is a surface The surface echo data mask signal generated by the echo data mask generation unit 20, 17 is the thickness only when the surface echo data mask signal 45 is not generated by the thickness propagation time signal 36, the surface echo data mask signal 45, and the average trigger signal 40. A thickness data averaging unit for validating the propagation time signal 36 and averaging by the average trigger signal 40, and 41 is a thickness data averaging signal output from the thickness data averaging unit 17.

【0020】前記のように構成された超音波計測装置に
おいては、被検査材2の表面性状の影響や探触子保持機
構4と被検査2の表面とのならい機構の影響により表面
エコーSが大きく変動した場合、表面エコー高さ測定部
18で測定された表面エコー高さ信号42が大きく変動
し、あらかじめ表面エコーSが安定している状態の表面
エコー高さを基にあらかじめ定められた表面エコー高さ
判定信号43以下の表面エコー高さ信号42となり、表
面エコー高さ比較部19で比較判定され表面エコー高さ
異常信号44を発生し、表面エコーデータマスク発生部
20により表面エコーデータマスク信号45が発生し、
厚さ伝播時間信号36と表面エコーデータマスク信号4
5と平均トリガ信号40とにより厚さデータ平均測定部
17において表面エコーデータマスク信号45が発生し
ていない場合のみの厚さ伝播時間信号36により厚さデ
ータ平均信号41を出力し、厚さ伝播時間の測定誤差を
小さくする。
In the ultrasonic measuring apparatus configured as described above, the surface echo S is generated due to the influence of the surface texture of the material 2 to be inspected and the influence of the tracing mechanism between the probe holding mechanism 4 and the surface of the inspection object 2. If the surface echo height signal 42 measured by the surface echo height measuring unit 18 largely fluctuates when the surface echo height is greatly changed, the surface predetermined in advance based on the surface echo height in a state where the surface echo S is stable in advance. The surface echo height signal 42 is equal to or lower than the echo height determination signal 43, and the surface echo height comparison unit 19 compares and determines the surface echo height abnormal signal 44, and the surface echo data mask generation unit 20 generates the surface echo data mask. Signal 45 is generated,
Thickness transit time signal 36 and surface echo data mask signal 4
5 and the average trigger signal 40, the thickness data average measuring unit 17 outputs the thickness data average signal 41 by the thickness propagation time signal 36 only when the surface echo data mask signal 45 is not generated, and the thickness propagation is performed. Reduce the time measurement error.

【0021】実施例3.図5は、この発明の実施例3で
ある超音波計測装置を示す図である。図5において1〜
14、17、30〜36、40〜41は図1の装置と全
く同様で、21は受信信号30と裏面ゲート信号32に
よる裏面エコー高さを測定する裏面エコー高さ測定部、
46は裏面エコー高さ測定部21から出力される裏面エ
コー高さ信号、47はあらかじめ定められた裏面エコー
高さ判定信号、22は裏面エコー高さ信号46と裏面エ
コー高さ判定信号47とを比較し、裏面エコー高さ信号
46が裏面エコー高さ判定信号47以下のとき裏面エコ
ー高さ異常トリガ信号を発生する裏面エコー高さ比較
部、48は裏面エコー高さ比較部22より発生される裏
面エコー高さ異常トリガ信号、23は裏面エコー高さ異
常トリガ信号48により裏面エコーデータマスク信号を
発生する裏面エコーデータマスク発生部、49は裏面エ
コーデータマスク発生部23により発生される裏面エコ
ーデータマスク信号、17は厚さ伝播時間信号36と裏
面エコーデータマスク信号49と平均トリガ信号40に
より裏面エコーデータマスク信号49の非発生時のみの
厚さ伝播時間信号36を有効とし平均トリガ信号40に
より平均する厚さデータ平均測定部、41は厚さデータ
平均測定部17より出力される厚さデータ平均信号であ
る。
Example 3. FIG. 5 is a diagram showing an ultrasonic measurement device according to a third embodiment of the present invention. 1 to 1 in FIG.
Reference numerals 14, 17, 30 to 36, and 40 to 41 are exactly the same as those of the apparatus shown in FIG. 1, and 21 is a back surface echo height measuring unit for measuring the back surface echo height by the reception signal 30 and the back surface gate signal 32.
Reference numeral 46 is a back surface echo height signal output from the back surface echo height measuring section 21, 47 is a predetermined back surface echo height determination signal, and 22 is a back surface echo height signal 46 and a back surface echo height determination signal 47. By comparison, when the back echo height signal 46 is less than or equal to the back echo height determination signal 47, a back echo height comparison unit that generates a back echo height abnormality trigger signal, and 48 is generated by the back echo height comparison unit 22. Backside echo height abnormality trigger signal, 23 is a backside echo data mask generating section for generating a backside echo data mask signal by the backside echo height abnormality trigger signal 48, and 49 is backside echo data generated by the backside echo data mask generating section 23. A mask signal, 17 is a back surface echo data by a thickness propagation time signal 36, a back surface echo data mask signal 49 and an average trigger signal 40. A thickness data average measuring unit that validates the thickness propagation time signal 36 only when the mask signal 49 is not generated and averages by the average trigger signal 40, 41 is a thickness data average signal output from the thickness data average measuring unit 17. Is.

【0022】前記のように構成された超音波計測装置に
おいては、被検材2の表面性状の影響や探触子保持機構
4と被検査材2の表面とのならい機構の影響及び被検査
材2の内部亀裂等の欠陥の影響により裏面エコーBが大
きく変動した場合、裏面エコー高さ測定部21で測定さ
れた裏面エコー高さ信号46が大きく変動し、あらかじ
め裏面エコーBが安定している状態の裏面エコー高さを
基にあらかじめ定められた裏面エコー高さ判定信号47
以下の裏面エコー高さ信号46となり、裏面エコー高さ
比較部22で比較判定された裏面エコー高さ異常トリガ
信号48を発生し、裏面エコーデータマスク発生部23
により裏面エコーデータマスク信号49が発生し、厚さ
伝播時間信号36と裏面エコーデータマスク信号49と
平均トリガ信号40とにより厚さデータ平均測定部17
において裏面エコーデータマスク信号49が発生してい
ない場合のみの厚さ伝播時間信号36により厚さデータ
平均信号41を出力し、厚さ伝播時間の測定誤差を小さ
くする。
In the ultrasonic measuring apparatus configured as described above, the influence of the surface properties of the material 2 to be inspected, the influence of the mechanism for tracing the probe holding mechanism 4 and the surface of the material 2 to be inspected, and the material to be inspected When the back surface echo B largely changes due to the influence of defects such as the internal crack 2 in FIG. 2, the back surface echo height signal 46 measured by the back surface echo height measuring unit 21 largely changes, and the back surface echo B is stable in advance. The backside echo height determination signal 47 that is predetermined based on the backside echo height of the state
The back echo height signal 46 below is generated, and the back echo height abnormality trigger signal 48, which is compared and determined by the back echo height comparison unit 22, is generated, and the back echo data mask generation unit 23 is generated.
Generates a back surface echo data mask signal 49, and the thickness data averaging unit 17 uses the thickness propagation time signal 36, the back surface echo data mask signal 49, and the average trigger signal 40.
In the case where the back surface echo data mask signal 49 is not generated, the thickness propagation time signal 36 outputs the thickness data average signal 41 to reduce the measurement error of the thickness propagation time.

【0023】[0023]

【発明の効果】この発明は以上説明したように構成され
ているので、以下に記載されるような効果を奏する。
Since the present invention is constructed as described above, it has the following effects.

【0024】表面エコーと裏面エコーにより厚さ伝播時
間測定を行い、さらに、あらかじめ定められた厚さ伝播
時間範囲との比較判定をすることにより、厚さ伝播時間
の測定誤差を小さくできる。
By measuring the thickness propagation time by the front surface echo and the back surface echo, and further comparing and determining with the predetermined thickness propagation time range, the measurement error of the thickness propagation time can be reduced.

【0025】また、表面エコーと裏面エコーにより厚さ
伝播時間測定を行い、さらに、表面エコー高さをあらか
じめ定められた表面エコー高さ判定値と比較判定をする
ことにより、厚さ伝播時間の測定誤差を小さくできる。
Further, the thickness propagation time is measured by measuring the thickness propagation time by the front surface echo and the back surface echo, and by comparing the surface echo height with a predetermined surface echo height judgment value. The error can be reduced.

【0026】また、表面エコーと裏面エコーにより厚さ
伝播時間測定を行い、さらに、裏面エコー高さをあらか
じめ定められた裏面エコー高さ判定値と比較判定をする
ことにより、厚さ伝播時間の測定誤差を小さくできる。
Further, the thickness propagation time is measured by the front surface echo and the back surface echo, and the back surface echo height is compared with a predetermined back surface echo height determination value to determine the thickness propagation time. The error can be reduced.

【0027】また、表面エコーと裏面エコーにより厚さ
伝播時間測定を行うことにより厚さ伝播時間測定のため
の処理時間が短縮できる。
Further, the processing time for measuring the thickness propagation time can be shortened by measuring the thickness propagation time by the front surface echo and the back surface echo.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1を示す超音波計測装置の構
成図である。
FIG. 1 is a configuration diagram of an ultrasonic measurement device showing a first embodiment of the present invention.

【図2】この発明の実施例1を示す超音波計測装置の主
要タイミングを示す図である。
FIG. 2 is a diagram showing main timings of the ultrasonic measurement device according to the first embodiment of the present invention.

【図3】この発明の実施例1を示す超音波計測装置の主
要タイミングを示す図である。
FIG. 3 is a diagram showing main timings of the ultrasonic measurement device according to the first embodiment of the present invention.

【図4】この発明の実施例2を示す超音波計測装置の構
成図である。
FIG. 4 is a configuration diagram of an ultrasonic measurement device showing a second embodiment of the present invention.

【図5】この発明の実施例3を示す超音波計測装置の構
成図である。
FIG. 5 is a configuration diagram of an ultrasonic measurement device showing a third embodiment of the present invention.

【図6】従来の超音波計測装置の構成図である。FIG. 6 is a configuration diagram of a conventional ultrasonic measurement device.

【図7】従来の超音波計測装置の主要タイミングを示す
図である。
FIG. 7 is a diagram showing main timings of a conventional ultrasonic measurement device.

【符号の説明】[Explanation of symbols]

1 超音波計測装置 2 超音波探触子 6 送信部 8 受信部 9 表面ゲート発生部 10 裏面ゲート発生部 11 表面エコー伝播時間測定部 12 裏面エコー伝播時間測定部 13 同期部 14 厚さ伝播時間測定部 15 厚さ比較部 16 厚さデータ有効信号発生部 17 厚さデータ平均測定部 18 表面エコー高さ測定部 19 表面エコー高さ比較部 20 表面エコーデータマスク発生部 21 裏面エコー高さ測定部 22 裏面エコー高さ比較部 23 裏面エコーデータマスク発生部 DESCRIPTION OF SYMBOLS 1 Ultrasonic measuring device 2 Ultrasonic probe 6 Transmitting section 8 Receiving section 9 Surface gate generating section 10 Backside gate generating section 11 Surface echo propagation time measuring section 12 Backside echo propagation time measuring section 13 Synchronizing section 14 Thickness propagation time measurement Part 15 Thickness comparison unit 16 Thickness data valid signal generation unit 17 Thickness data average measurement unit 18 Surface echo height measurement unit 19 Surface echo height comparison unit 20 Surface echo data mask generation unit 21 Back surface echo height measurement unit 22 Backside echo height comparison section 23 Backside echo data mask generation section

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水浸方式または水柱方式による超音波計
測装置において、送信信号を発生する送信部と、上記送
信部から生じる送信信号を超音波信号に変換して被検査
材に超音波を入射させるとともに、上記被検査材から反
射した超音波エコー信号を電気信号に変換する超音波探
触子と、上記超音波探触子で電気信号に変換された超音
波エコー信号を入力する受信部と、上記受信部からの出
力で被検査材表面からの表面エコー信号に設定するゲー
トを発生する表面ゲート発生部と、上記受信部からの出
力で被検査材裏面からの裏面エコー信号に設定するゲー
トを発生する裏面ゲート発生部と、上記表面ゲートの開
始点から上記表面エコーまでの伝播時間を測定する表面
エコー伝播時間測定部と、上記裏面ゲートの開始点から
上記裏面エコーまでの伝播時間を測定する裏面エコー伝
播時間測定部と、上記表面エコー伝播時間測定部と上記
裏面エコー伝播時間測定部の測定値により上記表面エコ
ーから上記裏面エコーまでの伝播時間を測定する厚さ伝
播時間測定部と、上記厚さ伝播時間測定部で測定した厚
さ伝播時間をあらかじめ定めた厚さ伝播時間範囲信号と
比較し、厚さ伝播時間範囲外のとき異常トリガ信号を発
生させる厚さ比較部と、上記厚さ比較部からの異常トリ
ガ信号によりデータ有効信号を発生する厚さデータ有効
信号発生部と、上記送信部、上記受信部、上記表面ゲー
ト発生部、上記裏面ゲート発生部、上記表面伝播時間測
定部、上記裏面伝播時間測定部、上記厚さ伝播時間測定
部、上記厚さ比較部、上記厚さデータ有効信号発生部に
それぞれトリガ信号を発生させる同期部と、上記厚さデ
ータ有効信号の発生時のみの上記厚さ伝播時間測定部の
出力を有効とし外部からの平均トリガ信号により平均す
る厚さデータ平均測定部とを備えたことを特徴とする超
音波計測装置。
1. An ultrasonic measuring device using a water immersion method or a water column method, wherein a transmission section for generating a transmission signal and a transmission signal generated from the transmission section are converted into an ultrasonic signal and the ultrasonic wave is incident on a material to be inspected. Along with, an ultrasonic probe that converts the ultrasonic echo signal reflected from the material to be inspected into an electric signal, and a receiving unit that inputs the ultrasonic echo signal converted into an electric signal by the ultrasonic probe A surface gate generation unit that generates a gate for setting a surface echo signal from the surface of the material to be inspected by the output from the receiving unit, and a gate that sets a back surface echo signal from the back surface of the material to be inspected by the output from the receiving unit From the start point of the front surface gate to the front surface echo propagation time measurement section that measures the propagation time from the start point of the front surface gate to the front surface echo The back surface echo propagation time measuring section for measuring the propagation time of the, the thickness propagation for measuring the propagation time from the front surface echo to the back surface echo by the measurement values of the front surface echo propagation time measuring section and the back surface echo propagation time measuring section A thickness comparison that compares the thickness propagation time measured by the time measurement unit and the thickness propagation time measurement unit with a predetermined thickness propagation time range signal, and generates an abnormal trigger signal when the thickness propagation time range is out of the range. Section, a thickness data valid signal generating section for generating a data valid signal by an abnormal trigger signal from the thickness comparing section, the transmitting section, the receiving section, the front surface gate generating section, the back surface gate generating section, the Synchronization for generating a trigger signal in the front surface transit time measuring unit, the back surface transit time measuring unit, the thickness transit time measuring unit, the thickness comparing unit, and the thickness data valid signal generating unit, respectively. And a thickness data average measuring unit for averaging the output of the thickness transit time measuring unit only when the thickness data valid signal is generated and averaging by an average trigger signal from the outside. Sound wave measuring device.
【請求項2】 水浸方式または水柱方式による超音波計
測装置において、送信信号を発生する送信部と、上記送
信部から生じる送信信号を超音波信号に変換して被検査
材に超音波を入射させるとともに、上記被検査材から反
射した超音波エコー信号を電気信号に変換する超音波探
触子と、上記超音波探触子で電気信号に変換された超音
波エコー信号を入力する受信部と、上記受信部からの出
力で被検査材表面からの表面エコー信号に設定するゲー
トを発生する表面ゲート発生部と、上記受信部からの出
力で被検査材裏面からの裏面エコー信号に設定するゲー
トを発生する裏面ゲート発生部と、上記表面ゲートの開
始点から上記表面エコーまでの伝播時間を測定する表面
エコー伝播時間測定部と、上記裏面ゲートの開始点から
上記裏面エコーまでの伝播時間を測定する裏面エコー伝
播時間測定部と、上記表面エコー伝播時間測定部と上記
裏面エコー伝播時間測定部の測定値により上記表面エコ
ーから上記裏面エコーまでの伝播時間を測定する厚さ伝
播時間測定部と、上記表面ゲート内に存在する上記受信
部からの出力で被検査材表面からの表面エコー信号のエ
コー高さを測定する表面エコー高さ測定部と、上記表面
エコー高さ測定部で測定された表面エコー高さをあらか
じめ定めた判定値と比較し、判定値以下の表面エコー高
さのとき表面エコー高さ異常トリガ信号を発生させる表
面エコー高さ比較部と、上記表面エコー高さ比較部から
の表面エコー高さ異常トリガ信号により表面エコーデー
タマスク信号を発生する表面エコーデータマスク発生部
と、上記表面エコーデータマスク信号の非発生時のみの
上記厚さ伝播時間測定部の出力を有効とし外部からの平
均トリガ信号により平均する厚さデータ平均測定部とを
備えたことを特徴とする超音波計測装置。
2. An ultrasonic measuring device using a water immersion method or a water column method, wherein a transmitting section for generating a transmitting signal and a transmitting signal generated from the transmitting section are converted into an ultrasonic signal and the ultrasonic wave is incident on a material to be inspected. Along with, an ultrasonic probe that converts the ultrasonic echo signal reflected from the material to be inspected into an electric signal, and a receiving unit that inputs the ultrasonic echo signal converted into an electric signal by the ultrasonic probe A surface gate generation unit that generates a gate for setting a surface echo signal from the surface of the material to be inspected by the output from the receiving unit, and a gate that sets a back surface echo signal from the back surface of the material to be inspected by the output from the receiving unit From the start point of the front surface gate to the front surface echo propagation time measurement section that measures the propagation time from the start point of the front surface gate to the front surface echo The back surface echo propagation time measuring section for measuring the propagation time of the, the thickness propagation for measuring the propagation time from the front surface echo to the back surface echo by the measurement values of the front surface echo propagation time measuring section and the back surface echo propagation time measuring section A time measuring unit, a surface echo height measuring unit for measuring the echo height of a surface echo signal from the surface of the material to be inspected by the output from the receiving unit existing in the surface gate, and the surface echo height measuring unit. Compare the surface echo height measured in step 3 with a predetermined judgment value, and if the surface echo height is less than the judgment value, generate a surface echo height abnormality trigger signal. A surface echo data mask generation unit for generating a surface echo data mask signal in response to a surface echo height abnormality trigger signal from the comparison unit, and the surface echo data mask signal Enable output of the thickness of the propagation time measuring unit of the non-generation time of only ultrasonic measuring apparatus characterized by comprising a thickness data measured average unit that averages the average trigger signal from the outside.
【請求項3】 水浸方式または水柱方式による超音波計
測装置において、送信信号を発生する送信部と、上記送
信部から生じる送信信号を超音波信号に変換して被検査
材に超音波を入射させるとともに、上記被検査材から反
射した超音波エコー信号を電気信号に変換する超音波探
触子と、上記超音波探触子で電気信号に変換された超音
波エコー信号を入力する受信部と、上記受信部からの出
力で被検査材表面からの表面エコー信号に設定するゲー
トを発生する表面ゲート発生部と、上記受信部からの出
力で被検査材裏面からの裏面エコー信号に設定するゲー
トを発生する裏面ゲート発生部と、上記表面ゲートの開
始点から上記表面エコーまでの伝播時間を測定する表面
エコー伝播時間測定部と、上記裏面ゲートの開始点から
上記裏面エコーまでの伝播時間を測定する裏面エコー伝
播時間測定部と、上記表面エコー伝播時間測定部と上記
裏面エコー伝播時間測定部の測定値により上記表面エコ
ーから上記裏面エコーまでの伝播時間を測定する厚さ伝
播時間測定部と、上記裏面ゲート内に存在する上記受信
部からの出力で被検査材裏面からの裏面エコー信号のエ
コー高さを測定する裏面エコー高さ測定部と、上記裏面
エコー高さ測定部で測定された裏面エコー高さをあらか
じめ定めた判定値と比較し、判定値以下の裏面エコー高
さのとき裏面エコー高さ異常トリガ信号を発生させる裏
面エコー高さ比較部と、上記裏面エコー高さ比較部から
の裏面エコー高さ異常トリガ信号により裏面エコーデー
タマスク信号を発生する裏面エコーデータマスク発生部
と、上記裏面エコーデータマスク信号の非発生時のみの
上記厚さ伝播時間測定部の出力を有効とし外部からの平
均トリガ信号により平均する厚さデータ平均測定部とを
備えたことを特徴とする超音波計測装置。
3. An ultrasonic measuring device using a water immersion method or a water column method, wherein a transmission section for generating a transmission signal and a transmission signal generated from the transmission section are converted into an ultrasonic signal and the ultrasonic wave is incident on a material to be inspected. Along with, an ultrasonic probe that converts the ultrasonic echo signal reflected from the material to be inspected into an electric signal, and a receiving unit that inputs the ultrasonic echo signal converted into an electric signal by the ultrasonic probe A surface gate generation unit that generates a gate for setting a surface echo signal from the surface of the material to be inspected by the output from the receiving unit, and a gate that sets a back surface echo signal from the back surface of the material to be inspected by the output from the receiving unit From the start point of the front surface gate to the front surface echo propagation time measurement section that measures the propagation time from the start point of the front surface gate to the front surface echo The back surface echo propagation time measuring section for measuring the propagation time of the, the thickness propagation for measuring the propagation time from the front surface echo to the back surface echo by the measurement values of the front surface echo propagation time measuring section and the back surface echo propagation time measuring section A time measuring unit, a back surface echo height measuring unit that measures the echo height of a back surface echo signal from the back surface of the material to be inspected by the output from the receiving unit existing in the back surface gate, and the back surface echo height measuring unit. Compare the back echo height measured in step 3 with a predetermined judgment value, and if the back echo height is less than the judgment value, generate a back echo height abnormal trigger signal. The back surface echo data mask generation unit for generating a back surface echo data mask signal by the back surface echo height abnormality trigger signal from the comparison unit and the back surface echo data mask signal Enable output of the thickness of the propagation time measuring unit of the non-generation time of only ultrasonic measuring apparatus characterized by comprising a thickness data measured average unit that averages the average trigger signal from the outside.
JP5108198A 1993-05-10 1993-05-10 Ultrasonic measuring instrument Pending JPH06317418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5108198A JPH06317418A (en) 1993-05-10 1993-05-10 Ultrasonic measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5108198A JPH06317418A (en) 1993-05-10 1993-05-10 Ultrasonic measuring instrument

Publications (1)

Publication Number Publication Date
JPH06317418A true JPH06317418A (en) 1994-11-15

Family

ID=14478508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5108198A Pending JPH06317418A (en) 1993-05-10 1993-05-10 Ultrasonic measuring instrument

Country Status (1)

Country Link
JP (1) JPH06317418A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156648A (en) * 2007-12-26 2009-07-16 Jfe Steel Corp Measuring gap adjusting method and apparatus in ultrasonic flaw detection
WO2013114639A1 (en) * 2012-01-31 2013-08-08 Jfeスチール株式会社 Ultrasonic flaw-detection method, ultrasonic flaw-detection device, and method for producing pipe material
CN114674257A (en) * 2022-03-31 2022-06-28 中国空气动力研究与发展中心计算空气动力研究所 High-precision thickness measuring method and device based on ultrasonic transverse wave detection

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156648A (en) * 2007-12-26 2009-07-16 Jfe Steel Corp Measuring gap adjusting method and apparatus in ultrasonic flaw detection
WO2013114639A1 (en) * 2012-01-31 2013-08-08 Jfeスチール株式会社 Ultrasonic flaw-detection method, ultrasonic flaw-detection device, and method for producing pipe material
US9341599B2 (en) 2012-01-31 2016-05-17 Jfe Steel Corporation Ultrasonic flaw detection method, ultrasonic flaw detection apparatus, and pipe manufacturing method
CN114674257A (en) * 2022-03-31 2022-06-28 中国空气动力研究与发展中心计算空气动力研究所 High-precision thickness measuring method and device based on ultrasonic transverse wave detection

Similar Documents

Publication Publication Date Title
JPH06148003A (en) Ultrasonic temperature measuring equipment
US4570486A (en) Ultrasonic thickness gauge circuit with transit path correction
EP0716301B1 (en) High resolution measurement of a thickness using ultrasound
JPS592859B2 (en) Clock circuit for pulse reflection ultrasonic flaw detection
JPH06317418A (en) Ultrasonic measuring instrument
KR20200066297A (en) 1st half time meter, gas concentration measuring device, 1st half time measuring program and 1st half time measuring method
JPH08271322A (en) Ultrasonic liquid level measuring method
JP2943567B2 (en) Pipe shape inspection device
JPH05180810A (en) Ultrasonic transmitter-receiver for liquid concentration meter
JPH03180794A (en) Method and instrument for ultrasonic distance measurement
JP3068674B2 (en) Ultrasonic transducer
KR102619159B1 (en) Ultrasonic transmitter, half-time measurement device, gas concentration measurement device, half-way time measurement program and half-way time measurement method
JP3036172B2 (en) Liquid level detector in pressure vessel
JP2009174968A (en) Obstacle detection apparatus
JP4512247B2 (en) Ultrasonic level gauge
JPH0666620A (en) Ultrasonic level indicator
JP2856042B2 (en) Radar equipment for vehicles
JPH053527B2 (en)
SU1188640A1 (en) Arrangement for measuring coefficient of acoustic oscillation damping
JPH05172793A (en) Sound characteristic value measuring device
JP2824844B2 (en) Time measurement circuit of ultrasonic measuring device
JPH06258302A (en) Ultrasonic flaw-detection apparatus
RU2292529C2 (en) Ultrasonic level meter
JPH0288914A (en) Method and device for measuring thickness with ultrasonic wave
JPH0523127U (en) Ultrasonic flaw detector