JPH06316457A - Heat generating element made of ceramics - Google Patents

Heat generating element made of ceramics

Info

Publication number
JPH06316457A
JPH06316457A JP5103117A JP10311793A JPH06316457A JP H06316457 A JPH06316457 A JP H06316457A JP 5103117 A JP5103117 A JP 5103117A JP 10311793 A JP10311793 A JP 10311793A JP H06316457 A JPH06316457 A JP H06316457A
Authority
JP
Japan
Prior art keywords
heating element
ceramic
resistor
heat generating
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5103117A
Other languages
Japanese (ja)
Other versions
JP3131071B2 (en
Inventor
Masahide Akiyama
雅英 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP05103117A priority Critical patent/JP3131071B2/en
Publication of JPH06316457A publication Critical patent/JPH06316457A/en
Application granted granted Critical
Publication of JP3131071B2 publication Critical patent/JP3131071B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide an element capable of self-heat generating at a high temp. of 500-1,200 deg.C when low voltage is impressed, not causing deformation or shrinkage at the time of high temp. heating and excellent in stability. CONSTITUTION:This heat generating element made of ceramics has multiple oxide ceramics represented by a formula (La1-x-yAxBy)p(Cr1-zCz)O3+ or -delta, contg. <=5wt.%, in total, of metallic impurities and having 1-45% open porosity and <=50mum average grain diameter as a resistor. In the formula, A is at least one selected among Ca, Sr and Ba, B is at least one selected among Y, Yb, Sc, Er, Dy and Nd, C is at least one selected among Mn, Co, Fe and Ni, 0.05<=x<=0.60, 0<=y<=0.50, 0.10<=z<=1.00 and 0.90<=p<=1.05.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物系のセラミック
を抵抗体として具備したセラミック製発熱素子に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic heating element having an oxide ceramic as a resistor.

【0002】[0002]

【従来技術】従来、セラミック製発熱素子としては、絶
縁性セラミックスであるアルミナ等の表面に白金(P
t)などの抵抗体を被着形成したり、セラミック絶縁体
の表面や内部にタングステン等の抵抗体を内蔵したもの
が一般に使用されている。
2. Description of the Related Art Conventionally, as a heating element made of ceramic, platinum (P
It is generally used to deposit a resistor such as t) or to incorporate a resistor such as tungsten on the surface or inside of a ceramic insulator.

【0003】一方、チタン酸バリウム等に代表されるP
TCサーミスタと呼ばれる抵抗素子が知られている。こ
の素子は、電気抵抗が正の温度係数を有するとともにあ
る温度で電気抵抗が急激に増大する特徴を有する。通
常、チタン酸バリウムを主成分とし、これにNbやTa
等の半導体化のためのドナー成分やMn、Cu等の粒界
ポテンシャルバリア形成のためのアクセプター成分等が
微量加えられている。
On the other hand, P represented by barium titanate and the like
A resistance element called a TC thermistor is known. This element has a characteristic that the electric resistance has a positive temperature coefficient and the electric resistance rapidly increases at a certain temperature. Usually, barium titanate is the main component, and Nb or Ta
A small amount of a donor component for forming a semiconductor or the like and an acceptor component for forming a grain boundary potential barrier such as Mn or Cu are added.

【0004】前者の発熱素子は700℃程度までの比較
的高温域で、また、後者は350℃までの低い温度で使
用されており、これらの発熱素子は、通電初期には抵抗
が小さいのでわずかな時間で一定温度まで達する速応性
があること、また自己温度制御機能があることなどの利
点がある。
The former heating element is used in a relatively high temperature range up to about 700 ° C., and the latter is used at a low temperature up to 350 ° C. These heating elements have a small resistance in the initial stage of energization, so that they are small. It has the advantages that it can reach a certain temperature in a short period of time and that it has a self-temperature control function.

【0005】[0005]

【発明が解決しようとする問題点】しかしながら、上記
酸化物系の発熱素子において、抵抗体を内蔵した発熱素
子では、発熱素子に対する電圧分布が不均一なため、局
所的な発熱が生じるという欠点がある。それに対して、
サーミスタ等は均一な発熱が可能であるが、使用限界温
度が350℃程度と低く、高温での発熱に利用できない
という問題点があった。
However, in the oxide-based heating element, the heating element having a built-in resistor has a disadvantage that the voltage distribution to the heating element is non-uniform, which causes local heat generation. is there. On the other hand,
Although a thermistor or the like can generate uniform heat, it has a problem that it cannot be used for heat generation at a high temperature because its use limit temperature is as low as 350 ° C.

【0006】本発明は、上記のような従来品に比較して
使用限界温度が高く、自己発熱型の発熱領域の広い発熱
素子で且つ熱衝撃性に優れた発熱素子を提供することを
目的とする。
An object of the present invention is to provide a self-heating type heat generating element having a wide heat generating region and a heat generating element excellent in thermal shock resistance as compared with the above conventional products. To do.

【0007】[0007]

【問題点を解決するための手段】本発明者は、高温にお
ける発熱性を有する酸化物系セラミックスの抵抗体材料
について検討を重ねた結果、少なくともLaと、Crあ
るいはMnを含有するペロブスカイト型複合酸化物が高
温で発熱体としての適性な抵抗を有するとともに、しか
も高温での均一発熱性および熱衝撃性に優れた材料であ
ることを見いだし、本発明に至った。
As a result of repeated studies on the oxide ceramics resistor material which has exothermic properties at high temperatures, the present inventor has found that the perovskite complex oxide containing at least La and Cr or Mn. The inventors have found that the material has suitable resistance as a heating element at high temperature, and is also excellent in uniform heat generation and thermal shock resistance at high temperature, and completed the present invention.

【0008】即ち、本発明のセラミック製発熱素子は、
組成式が下記化1
That is, the ceramic heating element of the present invention is
Composition formula below

【0009】[0009]

【化1】 [Chemical 1]

【0010】で表され、式中、AはCa、Sr、Baの
群から選択される少なくとも1種、BはY、Yb、S
c、Er、Dy、Ndの群から選択される少なくとも1
種、CはMn、Co、Fe、Niから選択される少なく
とも1種であり、且つ0.05≦x≦0.60、0≦y
≦0.50、0.10≦z≦1.00および0.90≦
p≦1.05を満足するセラミックからなる抵抗体を具
備することを特徴とするものである。さらには、前記セ
ラミックの金属不純物の総量が5重量%以下であるこ
と、開気孔率が45%以下であることおよび平均結晶粒
径が50μm以下であることを特徴とするものである。
Wherein A is at least one member selected from the group consisting of Ca, Sr and Ba, and B is Y, Yb and S.
at least 1 selected from the group of c, Er, Dy, Nd
Species, C is at least one selected from Mn, Co, Fe and Ni, and 0.05 ≦ x ≦ 0.60, 0 ≦ y
≦ 0.50, 0.10 ≦ z ≦ 1.00 and 0.90 ≦
It is characterized by comprising a resistor made of ceramic which satisfies p ≦ 1.05. Furthermore, it is characterized in that the total amount of metal impurities in the ceramic is 5% by weight or less, the open porosity is 45% or less, and the average crystal grain size is 50 μm or less.

【0011】本発明におけるセラミック製発熱素子の抵
抗体を構成するセラミックは、それ自体0.005〜1
30Ω−cmの電気抵抗を有するものであり、ペロブス
カイト型の結晶相を主相とするものである。本発明にお
いてセラミックの組成を上記の範囲に限定したのは、x
値が0.05より小さいと、LaMnO3 系において、
800℃付近でその固溶体が相変態し、発熱素子の昇降
温を繰り返した場合、素子自体が破壊するという問題が
ある。また、x値が0.6より大きいとアルカリ土類元
素を含む化合物が析出し電気抵抗が大きくなり発熱体が
良好な抵抗体として使用できなくなるためである。
The ceramic constituting the resistor of the ceramic heating element in the present invention is 0.005-1 in itself.
It has an electric resistance of 30 Ω-cm and has a perovskite type crystal phase as a main phase. In the present invention, the composition of the ceramic is limited to the above range by x
If the value is smaller than 0.05, in the LaMnO 3 system,
When the solid solution undergoes a phase transformation around 800 ° C. and the temperature of the heating element is repeatedly raised and lowered, there is a problem that the element itself is destroyed. On the other hand, if the x value is larger than 0.6, a compound containing an alkaline earth element is deposited and the electric resistance becomes large, so that the heating element cannot be used as a good resistor.

【0012】同様にy値が0.5を越えると希土類元素
を含む化合物が析出して電気抵抗が大きくなり発熱素子
として機能しない。また、z値が0.10より小さいと
材料の焼結製が極めて悪くなり、1600℃以上の高温
でしか焼成ができないため経済的な点でこれを限定し
た。さらにp値が0.90より小さいとCr等を含む化
合物が生成して電気抵抗が増大し、逆に1.05を越え
るとLa2 3 が析出して材料が短時間で分解する。
Similarly, when the y value exceeds 0.5, a compound containing a rare earth element is deposited to increase the electric resistance, and it does not function as a heating element. Further, when the z value is smaller than 0.10. Sintering of the material is extremely poor, and firing can be performed only at a high temperature of 1600 ° C. or higher, so this is limited from an economical point of view. Further, when the p value is smaller than 0.90, a compound containing Cr or the like is generated to increase the electric resistance, and conversely, when it exceeds 1.05, La 2 O 3 is precipitated and the material decomposes in a short time.

【0013】本発明によれば、上記の理由により各x、
y、zおよびp値を限定したが、特に望ましい範囲は、
0.05≦x≦0.40、0≦y≦0.30、0.30
≦z≦0.60および0.95≦p≦1.0である。
According to the present invention, each x,
Although the y, z and p values are limited, a particularly desirable range is
0.05 ≦ x ≦ 0.40, 0 ≦ y ≦ 0.30, 0.30
≦ z ≦ 0.60 and 0.95 ≦ p ≦ 1.0.

【0014】また、発熱素子は長時間高温度に保持され
るため変形や寸法変化が起こりやすく、さらには急激に
高温度まで昇温されるためにそれ自身の熱衝撃抵抗が大
きい必要がある。
Further, since the heating element is kept at a high temperature for a long time, it is likely to be deformed or dimensionally changed, and further, it is required to have a large thermal shock resistance because it is rapidly heated to a high temperature.

【0015】特に変形や寸法変化は、材料固有の性質以
外の要件として、材料中に含有される金属不純物に大き
く影響される。この金属不純物量としては、Al、S
i、Zr等が挙げられるが、これらが総量で5重量%を
越えると、高温における耐クリープ性が悪くなり、ま
た、長時間の使用において焼結が起こり所定の形状を保
持しなくなることがわかった。このため、上記金属不純
物量としては5重量%以下、特に2重量%以下であるこ
とが望ましい。
In particular, the deformation and the dimensional change are greatly influenced by the metal impurities contained in the material as a requirement other than the property inherent to the material. The amount of metal impurities is Al, S
Examples thereof include i and Zr. However, when the total amount of these exceeds 5% by weight, the creep resistance at high temperature is deteriorated, and it is found that the sintered body does not retain a predetermined shape due to sintering during long-term use. It was Therefore, the amount of the metal impurities is preferably 5% by weight or less, particularly 2% by weight or less.

【0016】また、熱衝撃抵抗は、平均結晶粒径の熱衝
撃性と深い関係にあり、開気孔率が45%以下、特に1
〜30%、平均結晶粒径は50μm以下、特に30μm
以下であることが望ましく、上記範囲を逸脱すると所望
の耐熱衝撃性を得ることができない。
The thermal shock resistance is closely related to the thermal shock resistance of the average crystal grain size, and the open porosity is 45% or less, especially 1
-30%, average crystal grain size is 50 μm or less, especially 30 μm
The following is desirable, and if it deviates from the above range, desired thermal shock resistance cannot be obtained.

【0017】本発明の上記組成の抵抗体を具備する発熱
素子は、例えば、図1に示すように、前記組成の焼結体
からなる円筒状の抵抗体1と、抵抗体1の両端に被着形
成された一対の電極2,3により構成され、電極2,3
に40V以下の電圧を印加することにより図2に示すよ
うに約500〜1200℃の温度にまで発熱させること
ができる。
A heating element having a resistor of the above composition of the present invention is, for example, as shown in FIG. 1, a cylindrical resistor 1 made of a sintered body of the above composition, and both ends of the resistor 1 being covered. The electrodes 2 and 3 are composed of a pair of electrodes 2 and 3 that are formed by adhesion.
By applying a voltage of 40 V or less, the heat can be generated up to a temperature of about 500 to 1200 ° C. as shown in FIG.

【0018】[0018]

【作用】CaOを固溶したLaMnO3 およびLaCr
3 の格子欠陥構造を詳細に検討した結果、これらの固
溶体においては高温、大気中で電荷担体としてホールが
支配的に生成することがわかった。例えば、CaOのL
aMnO3 固溶体ではその反応は下記化2
[Function] LaMnO 3 and LaCr containing CaO as a solid solution
As a result of detailed examination of the lattice defect structure of O 3 , it was found that in these solid solutions, holes were predominantly generated as charge carriers in the atmosphere at high temperature. For example, L of CaO
With aMnO 3 solid solution, the reaction is

【0019】[0019]

【化2】 [Chemical 2]

【0020】で表される。It is represented by

【0021】また、LaCrO3 固溶体においても同様
な格子欠陥構造が生成する。しかしながら、ホール濃度
はLaMnO3 固溶体では極めて高く、またLaCrO
3 固溶体では逆にその濃度が極めて低い。このため発熱
素子として利用するためにはLaMnO3 固溶体は電気
抵抗が小さすぎ、またLaCrO3 固溶体では逆に電気
抵抗が大きすぎると判断される。このような理由からL
aMnO3 とLaCrO3 の固溶体の主としてCrとM
nの量比を特定の範囲に制御することにより所望の電気
抵抗を得ることができる。
A similar lattice defect structure is produced also in the LaCrO 3 solid solution. However, the hole concentration is extremely high in the LaMnO 3 solid solution, and the LaCrO
On the contrary, the concentration of 3 solid solution is extremely low. Therefore, it is judged that the LaMnO 3 solid solution has too small electric resistance and the LaCrO 3 solid solution has too large electric resistance for use as a heating element. For this reason L
aMnO 3 and LaCrO 3 solid solution, mainly Cr and M
A desired electric resistance can be obtained by controlling the amount ratio of n within a specific range.

【0022】しかしながら、この材料は高温で使用され
るため、耐クリープ性に優れる必要がある。また使用中
に焼結が進行して発熱素子として寸法変化が生じてはな
らない。そのため、上記の材料の添加物を検討した結
果、Laの一部を同じ原子価を有する希土類元素で置換
することにより耐クリープ性が優れ、かつ寸法変化が小
さくなることを見いだした。これは、同原子価にイオン
の固溶のため格子欠陥構造が変化することなく、イオン
半径が小さいために格子歪みが大きくなり、陽イオンの
拡散の活性化エネルギーが大きくなり、その結果陽イオ
ンの拡散速度が遅くなったためクリープが改善され、同
時に焼結性が抑制されたと考えられる。
However, since this material is used at a high temperature, it must have excellent creep resistance. In addition, sintering should not progress during use to cause a dimensional change as a heating element. Therefore, as a result of investigating the additives of the above materials, it was found that by substituting a part of La with a rare earth element having the same valence, the creep resistance was excellent and the dimensional change was small. This is because the lattice defect structure does not change due to the solid solution of ions with the same valence, the lattice distortion increases due to the small ionic radius, and the activation energy for diffusion of cations increases. It is considered that the creep rate was improved due to the slower diffusion rate and the sinterability was suppressed at the same time.

【0023】それに対して、金属不純物に関しては、そ
の量が少ないと、結晶内に固溶し、クリープや焼結性に
大きな影響は与えないが、不純物量が増加しこれが粒界
に析出すると陽イオンの粒界拡散速度を高め焼結を促進
する効果を有する。また、クリープに関しては、粒子の
粒界すべりを引き起こし耐クリープ性を悪くする。特に
Al、Si、Zr等が耐クリープ性を劣化させると同時
に焼結を促進し発熱素子としての寸法変化を助長する。
On the other hand, when the amount of metal impurities is small, it forms a solid solution in the crystal and does not significantly affect creep and sinterability, but when the amount of impurities increases and they precipitate at grain boundaries, they become positive. It has the effect of increasing the grain boundary diffusion rate of ions and promoting sintering. Regarding creep, it causes grain boundary slip of particles and deteriorates creep resistance. In particular, Al, Si, Zr, etc. deteriorate the creep resistance and, at the same time, promote the sintering and promote the dimensional change as the heating element.

【0024】さらに、上記材料のマイクロストラクチャ
ーについて検討した結果、緻密質よりポーラス体である
方が熱衝撃性に優れることを見いだした。これは、緻密
質よりポーラス品の方が熱伝導率が小さくなることに起
因していると考えられる。よって、本発明では、緻密度
の尺度として開気孔率を前記範囲に限定した。また、熱
衝撃抵抗と結晶粒径も深い関係にあり、結晶粒径が大き
くなると高温強度が小さくなるため、本発明では平均結
晶粒径を前記の範囲に限定した。
Further, as a result of examining the microstructure of the above materials, it was found that a porous body is superior in thermal shock resistance to a dense body. It is considered that this is because the thermal conductivity of the porous product is smaller than that of the dense product. Therefore, in the present invention, the open porosity is limited to the above range as a measure of compactness. In addition, since the thermal shock resistance and the crystal grain size have a deep relationship, and the high temperature strength decreases as the crystal grain size increases, the average crystal grain size is limited to the above range in the present invention.

【0025】本発明によれば、前記抵抗体はそれ自体に
通電することにより、自己発熱性を有し、しかも均一焼
結体(モノリシック体)であるため、電気特性が抵抗体
全体として均一であり局所的な発熱も当然ない。しか
も、通電により500〜1200℃の高温での発熱が可
能であり、これまで使用されていた自己発熱型の発熱素
子に比較して発熱温度を大きく向上することができ、そ
の利用分野を拡大することができる。
According to the present invention, the resistor is self-heating when it is energized and is a uniform sintered body (monolithic body), so that the electrical characteristics of the resistor as a whole are uniform. There is also no local fever. Moreover, it is possible to generate heat at a high temperature of 500 to 1200 ° C. by energization, and it is possible to greatly improve the heat generation temperature as compared with the self-heating type heat generating element that has been used so far, and expand the field of use thereof. be able to.

【0026】[0026]

【実施例】市販の純度99.9%のLa2 3 、Y2
3 、SrCO3 、CaCO3 、Mn2 3 、Cr2 3
を出発原料として用い、これを表1および表2に示す組
成で調合しZrO2 ボールにて12時間混合した後、1
200℃で3時間仮焼して固相反応を行わせた。これを
ZrO2 ボールを用いて24時間粉砕を行った後、円柱
状に成形して1450〜1500℃で5時間焼成して外
径6mm、長さ100mmの焼結体を得た。
EXAMPLES Commercially available La 2 O 3 and Y 2 O having a purity of 99.9%
3 , SrCO 3 , CaCO 3 , Mn 2 O 3 , Cr 2 O 3
Was used as a starting material, which was blended in the composition shown in Tables 1 and 2 and mixed in a ZrO 2 ball for 12 hours, and then 1
It was calcined at 200 ° C. for 3 hours to cause a solid phase reaction. This was crushed for 24 hours using ZrO 2 balls, formed into a columnar shape, and fired at 1450 to 1500 ° C. for 5 hours to obtain a sintered body having an outer diameter of 6 mm and a length of 100 mm.

【0027】これを電気中に支点間距離を80mmとな
るように設置し、1000℃で200時間焼鈍して変形
率と外径の収縮率を測定した。この際、変形率はたわみ
量を支点間距離80mmで除算したものである。
This was placed in electricity so that the distance between fulcrums was 80 mm, and annealed at 1000 ° C. for 200 hours to measure the deformation rate and the shrinkage rate of the outer diameter. At this time, the deformation rate is the amount of deflection divided by the distance between fulcrums 80 mm.

【0028】また、上記円柱状焼結体より大きさ3×3
×60mmの試料を作製し1000℃で電気抵抗を測定
した。一方、大気中同一サイズの試料に10〜30Vの
電圧を印加して大気中800℃以上まで急激に温度を上
げ、5分間保持した後、急激に冷却を行った。この温度
サイクルを100回繰り返し行い、100回未満で破損
が生じたものに×、上記熱サイクル試験後も破損しなか
ったものを○として評価した。また、ICP分析からい
ずれの試料の金属不純物の総量が0.3重量%以下であ
った。
The size of the cylindrical sintered body is 3 × 3.
A sample of × 60 mm was prepared and the electric resistance was measured at 1000 ° C. On the other hand, a voltage of 10 to 30 V was applied to a sample of the same size in the atmosphere to rapidly raise the temperature to 800 ° C. or higher in the atmosphere, hold the temperature for 5 minutes, and then rapidly cool. This temperature cycle was repeated 100 times, and when the damage occurred less than 100 times, it was evaluated as x, and when it was not damaged after the heat cycle test, it was evaluated as ◯. Further, the total amount of metal impurities in all the samples was 0.3% by weight or less according to the ICP analysis.

【0029】さらに、各試料について開気孔率をアルキ
メデス法により、平均結晶粒径をSEM写真により測定
した。また焼結体の3点曲げ強度をJISR1601に
基づき測定した。各測定の結果は表1および表2に示
す。
Further, the open porosity of each sample was measured by the Archimedes method, and the average crystal grain size was measured by an SEM photograph. Further, the three-point bending strength of the sintered body was measured based on JISR1601. The results of each measurement are shown in Table 1 and Table 2.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】表1および表2によれば、Laに対するC
aの置換量xが0.05より小さいと繰り返しの熱サイ
クルにより試料が破壊した。CaおよびSrの置換比率
が0.6を越えても、またYの置換量yが0.5を越え
ても電気抵抗が大きく発熱素子として機能しない。ま
た、不定比に関して、p値が0.90より小さいと変形
率、収縮率との大きくなる。また、p値が1.05を越
えるとLa2 3 が析出し材料が短時間で風化した。M
nの比率が0.10より小さくなると、焼結性が極めて
悪くなり、目的の形状のものが作製できなかった。
According to Tables 1 and 2, C for La
When the substitution amount x of a was less than 0.05, the sample was destroyed by repeated thermal cycles. Even if the substitution ratio of Ca and Sr exceeds 0.6, and the substitution amount y of Y exceeds 0.5, the electric resistance is large and the element does not function as a heating element. Regarding the nonstoichiometric ratio, if the p value is smaller than 0.90, the deformation rate and the shrinkage rate increase. Further, when the p value exceeded 1.05, La 2 O 3 was precipitated and the material was weathered in a short time. M
When the ratio of n was smaller than 0.10, the sinterability was extremely poor and the desired shape could not be produced.

【0033】実施例2 市販の純度99.9%のLa2 3 、Y2 3 、Yb2
3 、Sc2 3 、Er2 3 、Dy2 3 、Nd2
3 、SrCO3 、CaCO3 、BaCO3 、Mn
2 3 、Cr2 3 、CoO、FeO、NiOを出発原
料として表3および表4に示す割合で秤量混合する以外
は、実施例1と同様にして試料を作製し、得られた試料
に対して、実施例1と同様な方法で特性の評価を行っ
た。測定結果は表3および表4に示した。
Example 2 Commercially available La 2 O 3 , Y 2 O 3 and Yb 2 having a purity of 99.9%.
O 3, Sc 2 O 3, Er 2 O 3, Dy 2 O 3, Nd 2 O
3 , SrCO 3 , CaCO 3 , BaCO 3 , Mn
A sample was prepared in the same manner as in Example 1 except that 2 O 3 , Cr 2 O 3 , CoO, FeO, and NiO were used as starting materials and were weighed and mixed at the ratios shown in Table 3 and Table 4. On the other hand, the characteristics were evaluated in the same manner as in Example 1. The measurement results are shown in Tables 3 and 4.

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【表4】 [Table 4]

【0036】表3および表4によれば、Ca、Sr、B
aによりLaの置換効果、Y、Yb、Sc、Er、D
y、Ndの置換による効果とも実施例1と同様な結果が
得られた。また、Ni、Co、FeによるCrの置換も
Mnと同様な効果を示した。
According to Tables 3 and 4, Ca, Sr, B
The substitution effect of La by a, Y, Yb, Sc, Er, D
The same results as in Example 1 were obtained in terms of the effects of substitution of y and Nd. Further, substitution of Cr by Ni, Co and Fe also showed the same effect as Mn.

【0037】実施例3 実施例1において、CaCO3 、SrCO3 、Y
2 3 、Mn2 3 を用いて表5に示す割合で混合し
た。これに、不純物成分としてAl2 3 、SiO2
ZrO2 を適当に添加し、実施例1と同様にして焼結体
を得た。この焼結体に対して実施例1と同様な方法によ
り、変形率、収縮率、電気抵抗、破壊に至るまでの回数
を測定評価した。結果を表5に示した。
Example 3 In Example 1, CaCO 3 , SrCO 3 , Y
2 O 3 and Mn 2 O 3 were mixed in the proportions shown in Table 5. In addition, Al 2 O 3 , SiO 2 , and
ZrO 2 was appropriately added, and a sintered body was obtained in the same manner as in Example 1. With respect to this sintered body, the deformation rate, the shrinkage rate, the electric resistance, and the number of times until destruction were measured and evaluated by the same method as in Example 1. The results are shown in Table 5.

【0038】[0038]

【表5】 [Table 5]

【0039】表5から明らかなように金属不純物量が増
加することにより、変形率および収縮率が大きくなるこ
とが分かり、特に金属不純物量が5重量%以下で比較的
安定な挙動を示した。
As is clear from Table 5, it was found that the deformation rate and the shrinkage rate increased as the amount of metal impurities increased, and particularly when the amount of metal impurities was 5% by weight or less, the behavior was relatively stable.

【0040】実施例4 上記実施例において試料No.5、51組成の原料を12
00〜1450℃で仮焼し、ジルコニアボールで12〜
24時間粉砕し、これを1300〜1550℃で焼成し
て開気孔率、平均結晶粒径が異なる大きさ4×3×40
mmと、大きさ3×3×60mmの試料を得た。それぞ
れの試料について実施例1と同様な方法により電気抵
抗、3点曲げ強度、熱サイクル試験による破壊状況を調
べ、その結果を表6に示した。表6では、熱サイクル試
験において、300回未満で破損したものを×、300
回以上500回以下で破損したものを△、500回でも
破損しなかったものを○とした。
Example 4 In the above example, 12 samples of raw materials having composition Nos. 5 and 51 were used.
Calcination at 00 to 1450 ° C, 12 to 12 with zirconia balls
It is crushed for 24 hours and then calcinated at 1300 to 1550 ° C. to have different open porosities and average crystal grain sizes of 4 × 3 × 40.
mm, and a sample having a size of 3 × 3 × 60 mm was obtained. With respect to each sample, the electrical resistance, the three-point bending strength, and the fracture state by the thermal cycle test were examined by the same method as in Example 1, and the results are shown in Table 6. In Table 6, in the thermal cycle test, the ones that were damaged less than 300 times were evaluated as ×, 300.
A sample that was damaged after 500 times or less was rated as Δ, and a sample that was not damaged even after 500 times was rated as ◯.

【0041】[0041]

【表6】 [Table 6]

【0042】表6によれば、開気孔率が45%以下では
熱衝撃性に優れ、45%を越えると強度、熱衝撃性との
悪くなる。また平均結晶粒径が50μm を越えても強
度、耐熱衝撃性が低下した。
According to Table 6, when the open porosity is 45% or less, the thermal shock resistance is excellent, and when it exceeds 45%, the strength and the thermal shock resistance are deteriorated. Further, even if the average crystal grain size exceeds 50 μm, the strength and thermal shock resistance are deteriorated.

【0043】実施例5 上記実施例中の試料No.5,30,33,57組成の大
きさ3×3mm、長さ60mmの焼結体を作製した。開
気孔率はいずれも5〜7%、平均結晶粒径が3〜6μm
であった。この焼結体の金属不純物量はICP分析結果
から0.3重量%以下であった。この試料に間隔が50
mmとなるように白金端子を取付、印加電圧を変化させ
て試料温度を測定した。その結果を図2に示した。いず
れの試料も低電圧で800℃以上の温度まで加熱するこ
とが可能であった。また電極間の50mmの領域では温
度はほぼ均一であった。
Example 5 Sample Nos. 5, 30, 33, and 57 of the above examples were prepared into sintered bodies having a composition size of 3 × 3 mm and a length of 60 mm. The open porosity is 5 to 7%, and the average crystal grain size is 3 to 6 μm.
Met. The amount of metal impurities in this sintered body was 0.3% by weight or less based on the result of ICP analysis. This sample has 50 intervals
The platinum terminal was attached so as to have a size of mm, and the applied voltage was changed to measure the sample temperature. The results are shown in Fig. 2. It was possible to heat any of the samples to a temperature of 800 ° C. or higher at a low voltage. The temperature was almost uniform in the region of 50 mm between the electrodes.

【0044】[0044]

【発明の効果】以上詳述した通り、本発明によれば、低
電圧を通電することにより、500〜1200℃の高温
での自己発熱が可能であり、しかも高温発熱時における
変形、収縮のない安定性に優れた発熱素子を提供するこ
とができる。これにより、セラミック製発熱素子のその
利用分野を拡大することができる。
As described in detail above, according to the present invention, by applying a low voltage, self-heating at a high temperature of 500 to 1200 ° C. is possible, and there is no deformation or shrinkage at the time of high temperature heating. It is possible to provide a heating element having excellent stability. As a result, the field of application of the ceramic heating element can be expanded.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明におけるセラミック製発熱素子の一実施
例の概略図である。
FIG. 1 is a schematic view of an embodiment of a ceramic heating element according to the present invention.

【図2】本発明におけるセラミック製発熱素子の印加電
圧と発熱温度との関係を示した図である。
FIG. 2 is a diagram showing a relationship between an applied voltage and a heating temperature of a ceramic heating element according to the present invention.

【符号の説明】[Explanation of symbols]

1 抵抗体 2,3 電極 1 resistor 2, 3 electrodes

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】組成式が下記化1 【化1】 で表され、式中、AはCa、Sr、Baの群から選択さ
れる少なくとも1種、BはY、Yb、Sc、Er、D
y、Ndの群から選択される少なくとも1種、CはM
n、Co、Fe、Niから選択される少なくとも1種で
あり、且つ0.05≦x≦0.60、0≦y≦0.5
0、0.10≦z≦1.00および0.90≦p≦1.
05を満足するセラミックを抵抗体として具備すること
を特徴とするセラミック製発熱素子。
1. The composition formula is as follows: In the formula, A is at least one selected from the group consisting of Ca, Sr, and Ba, and B is Y, Yb, Sc, Er, D.
y, at least one selected from the group of Nd, C is M
At least one selected from n, Co, Fe and Ni, and 0.05 ≦ x ≦ 0.60, 0 ≦ y ≦ 0.5
0, 0.10 ≦ z ≦ 1.00 and 0.90 ≦ p ≦ 1.
A ceramic heating element comprising a ceramic satisfying 05 as a resistor.
【請求項2】前記セラミック中の金属不純物の総量が5
重量%以下である請求項1記載のセラミック製発熱素
子。
2. The total amount of metallic impurities in the ceramic is 5
The heating element made of ceramic according to claim 1, wherein the heating element is at most wt%.
【請求項3】前記セラミックの開気孔率が45%以下で
ある請求項1記載のセラミック製発熱素子。
3. The ceramic heating element according to claim 1, wherein the open porosity of the ceramic is 45% or less.
【請求項4】前記セラミックにおける平均結晶粒径が5
0μm 以下である請求項1記載のセラミック製発熱素
子。
4. The average crystal grain size in the ceramic is 5
The ceramic heating element according to claim 1, which has a thickness of 0 μm or less.
JP05103117A 1993-04-28 1993-04-28 Ceramic heating element Expired - Fee Related JP3131071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05103117A JP3131071B2 (en) 1993-04-28 1993-04-28 Ceramic heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05103117A JP3131071B2 (en) 1993-04-28 1993-04-28 Ceramic heating element

Publications (2)

Publication Number Publication Date
JPH06316457A true JPH06316457A (en) 1994-11-15
JP3131071B2 JP3131071B2 (en) 2001-01-31

Family

ID=14345651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05103117A Expired - Fee Related JP3131071B2 (en) 1993-04-28 1993-04-28 Ceramic heating element

Country Status (1)

Country Link
JP (1) JP3131071B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009019833A1 (en) * 2007-08-03 2009-02-12 Mitsubishi Materials Corporation Metal oxide sintered body for thermistor, thermistor element, thermistor temperature sensor, and method for producing metal oxide sintered body for thermistor
JP2011507295A (en) * 2007-12-21 2011-03-03 ヴィシェイ レジスターズ ベルジャム べーフェーベーアー Stable thermistor
CN102300829A (en) * 2009-01-30 2011-12-28 三菱综合材料株式会社 Sintered metal oxide for thermistor, thermistor element, thermistor temperature sensor and method for producing sintered metal oxide for thermistor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0562964U (en) * 1992-01-31 1993-08-20 株式会社ケンウッド Cable address display holder

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009019833A1 (en) * 2007-08-03 2009-02-12 Mitsubishi Materials Corporation Metal oxide sintered body for thermistor, thermistor element, thermistor temperature sensor, and method for producing metal oxide sintered body for thermistor
JP2009057273A (en) * 2007-08-03 2009-03-19 Mitsubishi Materials Corp Metal oxide sintered body for thermistor, thermistor element, thermistor temperature sensor, and method for producing metal oxide sintered body for thermistor
US8446246B2 (en) 2007-08-03 2013-05-21 Mitsubishi Materials Corporation Metal oxide sintered compact for thermistor, thermistor element, thermistor temperature sensor, and manufacturing method for metal oxide sintered compact for thermistor
CN104700969A (en) * 2007-08-03 2015-06-10 三菱综合材料株式会社 Metal oxide sintered body for thermistor and thermistor element
JP2011507295A (en) * 2007-12-21 2011-03-03 ヴィシェイ レジスターズ ベルジャム べーフェーベーアー Stable thermistor
CN102300829A (en) * 2009-01-30 2011-12-28 三菱综合材料株式会社 Sintered metal oxide for thermistor, thermistor element, thermistor temperature sensor and method for producing sintered metal oxide for thermistor
GB2479293B (en) * 2009-01-30 2014-11-05 Mitsubishi Materials Corp Sintered metal oxide for thermistor, thermistor element, thermistor temperature sensor, and method for producing sintered metal oxide for thermistor

Also Published As

Publication number Publication date
JP3131071B2 (en) 2001-01-31

Similar Documents

Publication Publication Date Title
JP2008124417A (en) Thermoelectric conversion material, and its manufacturing method
CN107056273A (en) A kind of double-deck negative tempperature coefficient thermistor and preparation method thereof
WO2008038538A1 (en) Barium titanate semiconductor porcelain composition and ptc device utilizing the same
CN104513061A (en) Semiconductor ceramic composition and ptc thermistor
CN105008305A (en) Method for manufacturing piezoelectric ceramic, piezoelectric ceramic, and piezoelectric element
JPS6121184B2 (en)
JP4527347B2 (en) Sintered body for thermistor
CN110550947A (en) yttrium and zirconium co-doped wide-temperature-zone high-temperature thermistor material and preparation method thereof
JP3131071B2 (en) Ceramic heating element
US6204748B1 (en) Yttrium chromite chromia thermistors
JP2009227477A (en) Method for producing semiconductor porcelain composition, and heater using semiconductor porcelain composition
JP2003238248A (en) Piezoelectric porcelain composition and piezoelectric device
JP3121967B2 (en) Ceramic heating element
JPH11106261A (en) Ceramic heater element
JP3145568B2 (en) Ceramic heating element
JP5995096B2 (en) Metal oxide material for thermistor, method for producing the same, and thermistor element
JP3956676B2 (en) Method for manufacturing voltage-dependent non-linear resistor porcelain
JP3598177B2 (en) Voltage non-linear resistor porcelain
Li et al. Influence of AST additives on the stability of PTCR characteristics and microstructure in ferroelectric ceramics
JPH0446918B2 (en)
JP3719135B2 (en) Method for manufacturing voltage-dependent non-linear resistor porcelain
JPH034505B2 (en)
JPH0773081B2 (en) Method for manufacturing oxide semiconductor porcelain for thermistor
JPH11310456A (en) Solid electrolyte ceramic composite material and its production
JPH0555464B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071117

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081117

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees