JPH06315201A - Driver for electric automobile - Google Patents

Driver for electric automobile

Info

Publication number
JPH06315201A
JPH06315201A JP5100888A JP10088893A JPH06315201A JP H06315201 A JPH06315201 A JP H06315201A JP 5100888 A JP5100888 A JP 5100888A JP 10088893 A JP10088893 A JP 10088893A JP H06315201 A JPH06315201 A JP H06315201A
Authority
JP
Japan
Prior art keywords
power supply
inverter
drive circuit
voltage
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5100888A
Other languages
Japanese (ja)
Inventor
Ryoji Mizutani
良治 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP5100888A priority Critical patent/JPH06315201A/en
Publication of JPH06315201A publication Critical patent/JPH06315201A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0092Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption with use of redundant elements for safety purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To prevent unstabile control of a switching element even upon reduction of power supply voltage for a predrive circuit. CONSTITUTION:Transistors Tr1-Tr6 constituting an inverter 32 are turned OFF forcibly though a predrive circuit 38. When the power supply for the predrive circuit 38 though a DC/DC converter 46 is interrupted, a DC voltage appearing at an inverter 32 is passed through a DC/DC converter and fed, as a power supply voltage, to the predrive circuit 52. Consequently, even if the power supply for the predrive circuit 38 through the DC/DC converter 46 is interrupted, unstable control of the transistors Tr1-Tr6 is prevented thus preventing runaway due to noise. A contactor SW4 may be provided on the output side of the inverter 32.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、永久磁石モータを備え
る電気自動車の駆動装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drive system for an electric vehicle equipped with a permanent magnet motor.

【0002】[0002]

【従来の技術】電気自動車は、モータを駆動源とする車
両である。モータとして交流モータを使用する場合、車
載のバッテリから供給される直流電力を交流電力に変換
した上でモータに供給する必要がある。そのための回路
として、IGBT(InsulatedGate Bipolar Transite
r)などのスイッチング素子を備えたインバータが使用
される。
2. Description of the Related Art An electric vehicle is a vehicle having a motor as a drive source. When an AC motor is used as the motor, it is necessary to convert the DC power supplied from the vehicle-mounted battery into AC power and then supply the AC power to the motor. As a circuit for that, IGBT (Insulated Gate Bipolar Transite
Inverters equipped with switching elements such as r) are used.

【0003】図3には、一従来例に係り本願出願人が先
に提案した駆動装置の構成が示されている。この図に示
される駆動装置は、特開平3−222602号公報に開
示されている。
FIG. 3 shows the configuration of a drive device previously proposed by the applicant of the present application in connection with a conventional example. The drive device shown in this figure is disclosed in Japanese Patent Laid-Open No. 3-222602.

【0004】この従来例において電気自動車の走行用モ
ータとして使用しているモータ10は、三相交流誘導モ
ータである。モータ10の駆動電力は、インバータ12
を介して主バッテリ14から供給される。すなわち、車
載の主バッテリ14は、ヒューズ16、リレーボックス
18等を介してインバータ12に接続されており、イン
バータ12は主バッテリ14から供給される直流電力を
制御用CPU20及びプリドライブ回路22の制御の下
に、交流電力に変換してモータ10に供給する。
The motor 10 used as a running motor for an electric vehicle in this conventional example is a three-phase AC induction motor. The drive power of the motor 10 is the inverter 12
Is supplied from the main battery 14 via the. That is, the on-vehicle main battery 14 is connected to the inverter 12 via the fuse 16, the relay box 18, etc., and the inverter 12 controls the DC power supplied from the main battery 14 by the control CPU 20 and the pre-drive circuit 22. Underneath, it is converted into AC power and supplied to the motor 10.

【0005】インバータ12の動作を制御するに当っ
て、制御用CPU20は、車両操縦者のアクセル操作、
ブレーキ操作等を示す車両信号を入力し、これに基づき
トルク指令を演算し、演算したトルク指令に基づきパル
ス幅変調(PWM)信号を各スイッチング素子毎に生成
する。プリドライブ回路22は、制御用CPU20から
供給されるPWM信号に応じ、インバータ12を構成す
る上下各スイッチング素子に信号を分配し、そのスイッ
チング動作を制御する。プリドライブ回路22は、通
常、インバータ12を構成する各スイッチング素子間の
信号分配を電気的に絶縁できるよう構成される。このよ
うにして、モータ10から出力されるトルクが車両信号
に応じた値のトルクとなるよう制御される。
In controlling the operation of the inverter 12, the control CPU 20 controls the accelerator operation by the vehicle operator.
A vehicle signal indicating a brake operation or the like is input, a torque command is calculated based on the signal, and a pulse width modulation (PWM) signal is generated for each switching element based on the calculated torque command. The pre-drive circuit 22 distributes a signal to each of the upper and lower switching elements forming the inverter 12 according to the PWM signal supplied from the control CPU 20, and controls the switching operation. The pre-drive circuit 22 is usually configured to electrically insulate the signal distribution between the switching elements forming the inverter 12. In this way, the torque output from the motor 10 is controlled to have a value corresponding to the vehicle signal.

【0006】また、リレーボックス18は、主バッテリ
14をインバータ12の入力側に直結するか、それとも
抵抗を介して接続するかを切り替えるための回路であ
り、制御用CPU20によって制御される。すなわち、
インバータ12の入力側に設けられたコンデンサCが未
充電の状態で主バッテリ14とインバータ12の間を直
結するとコンデンサCの充電により突入電流が発生して
しまうため、コンデンサCの充電期間は主バッテリ14
とインバータ12の間を抵抗を介して接続するように
し、ある程度充電が進行した時点で主バッテリ14とイ
ンバータ12の間を接続するようにしている。
The relay box 18 is a circuit for switching whether the main battery 14 is directly connected to the input side of the inverter 12 or connected via a resistor, and is controlled by the control CPU 20. That is,
If the capacitor C provided on the input side of the inverter 12 is not charged yet and the main battery 14 and the inverter 12 are directly connected to each other, an inrush current is generated due to the charging of the capacitor C. 14
The inverter 12 and the inverter 12 are connected via a resistor, and the main battery 14 and the inverter 12 are connected when charging progresses to some extent.

【0007】以上の構成において、制御用CPU20及
びプリドライブ回路22の電源電圧は、補機バッテリ2
4から供給される。また、この補機バッテリ24は、主
バッテリ14の出力により充電される。通常、主バッテ
リ14の出力電圧に比べ補機バッテリ24の出力電圧は
著しく低いため、主バッテリ14の出力電圧を補機バッ
テリ24の充電に適した電圧に変換すべく、DC/DC
コンバータ26が用いられる。すなわち、主バッテリ1
4の出力電圧はDC/DCコンバータ26により補機電
圧に変換され、この補機電圧により補機バッテリ24が
充電されるとともに、制御用CPU20及びプリドライ
ブ回路22が動作可能となる。
In the above configuration, the power supply voltage of the control CPU 20 and the predrive circuit 22 is set to the auxiliary battery 2
Supplied from No. 4. The auxiliary battery 24 is charged by the output of the main battery 14. Normally, the output voltage of the auxiliary battery 24 is significantly lower than the output voltage of the main battery 14, so that the DC / DC voltage is changed so as to convert the output voltage of the main battery 14 into a voltage suitable for charging the auxiliary battery 24.
The converter 26 is used. That is, the main battery 1
The output voltage of No. 4 is converted into an auxiliary machine voltage by the DC / DC converter 26, the auxiliary machine battery 24 is charged by this auxiliary machine voltage, and the control CPU 20 and the predrive circuit 22 become operable.

【0008】[0008]

【発明が解決しようとする課題】ところで、電気自動車
の走行用モータとしては、誘導モータの他に、永久磁石
モータ(同期モータ)を用いることができる。永久磁石
モータは、界磁起磁力を発生させる手段として永久磁石
を備えているため、単位体積当りの界磁起磁力が誘導モ
ータに比べ大きい。従って、走行用モータとして永久磁
石を用いることにより、誘導モータを使用した場合に比
べ電気自動車の駆動装置を小型化できる。しかし、前述
の誘導モータを単純に永久磁石モータに置き換えた場
合、プリドライブ回路の電源電圧の低下に伴い、インバ
ータを構成するスイッチング素子の誤動作が生じる可能
性がある。
By the way, in addition to an induction motor, a permanent magnet motor (synchronous motor) can be used as a running motor for an electric vehicle. Since the permanent magnet motor is equipped with a permanent magnet as a means for generating a field magnetomotive force, the field magnetomotive force per unit volume is larger than that of the induction motor. Therefore, by using the permanent magnet as the traveling motor, the drive device of the electric vehicle can be downsized as compared with the case where the induction motor is used. However, if the induction motor is simply replaced with a permanent magnet motor, the switching element forming the inverter may malfunction due to the decrease in the power supply voltage of the pre-drive circuit.

【0009】すなわち、インバータを構成するスイッチ
ング素子としては、IGBT、ジャイアントトランジス
タ、MOS−FET、SIT等、各種のトランジスタを
用いることができる。しかし、これらのトランジスタ
は、一般に、オフさせるためにはその制御端子(ゲー
ト、ベース等)に逆バイアスを加える必要がある。イン
バータの駆動を停止する場合、当該インバータを構成す
る各スイッチング素子を強制的にオフさせる必要があ
り、プリドライブ回路はそのために各スイッチング素子
の制御端子に逆バイアスを加える。
That is, various transistors such as IGBTs, giant transistors, MOS-FETs, SITs, etc. can be used as the switching elements constituting the inverter. However, these transistors generally require a reverse bias applied to their control terminals (gate, base, etc.) in order to be turned off. When the driving of the inverter is stopped, it is necessary to forcibly turn off each switching element forming the inverter, and therefore the pre-drive circuit applies a reverse bias to the control terminal of each switching element.

【0010】この状態で、プリドライブ回路の電源電圧
が低下すると、プリドライブ回路は、各スイッチング素
子をオフ状態に保持することができなくなる。すなわ
ち、各スイッチング素子の制御端子の電圧が不安定にな
る。各スイッチング素子の制御端子の電圧が不安定とな
っている状態で、周辺回路のノイズ等によって当該制御
端子に係る配線に電圧が誘起されると、プリドライブ回
路の出力に関係なく、スイッチング素子がオン/オフし
てしまう。この状態で、インバータの入力側に電圧が現
れていれば、スイッチング素子に過大な電流が流れる。
In this state, if the power supply voltage of the predrive circuit drops, the predrive circuit cannot hold each switching element in the off state. That is, the voltage of the control terminal of each switching element becomes unstable. When the voltage of the control terminal of each switching element is unstable, and the voltage is induced in the wiring related to the control terminal due to the noise of the peripheral circuit, etc., the switching element is activated regardless of the output of the pre-drive circuit. Turns on / off. In this state, if a voltage appears on the input side of the inverter, an excessive current flows through the switching element.

【0011】インバータの入力側に電圧が現れる状況と
しては、例えば、車両が長い降坂路を走行している場合
がある。このとき走行用モータたる永久磁石モータは励
磁電流を流さなくても発電状態となる。インバータを構
成するスイッチング素子には、通常、ダイオードが逆並
列接続されているため、インバータは全波整流回路とし
て機能し、この結果、インバータをドライブしなくて
も、,インバータの入力側に電圧が発生する。また、主
バッテリとインバータの間のコンタクタ等がオフした状
態でも同様に、インバータの入力側に電圧が現れる。
As a situation where a voltage appears on the input side of the inverter, for example, the vehicle is traveling on a long downhill road. At this time, the permanent magnet motor, which is a running motor, is in a power generating state without passing an exciting current. Since diodes are normally connected in antiparallel to the switching elements that form the inverter, the inverter functions as a full-wave rectifier circuit, and as a result, voltage is applied to the input side of the inverter without driving the inverter. Occur. Further, even when the contactor or the like between the main battery and the inverter is turned off, the voltage similarly appears on the input side of the inverter.

【0012】本発明は、このような問題点を解決するこ
とを課題としてなされたものであり、プリドライブ回路
への動作電圧供給が断たれている状態でインバータの入
力端に比較的高い電圧が現れた場合にも、インバータを
構成するスイッチング素子の誤動作やこれに起因した焼
損等の不具合が生じないようにすることを目的とする。
The present invention has been made to solve the above problems, and a relatively high voltage is applied to the input terminal of the inverter when the operating voltage supply to the pre-drive circuit is cut off. Even when it appears, it is an object of the present invention to prevent malfunction of a switching element that constitutes an inverter and troubles such as burning due to the malfunction.

【0013】[0013]

【課題を解決するための手段】このような目的を達成す
るために、本発明に係る電気自動車の駆動装置は、補機
電源からプリドライブ回路への直接的又は間接的な電源
供給が断たれた場合に、インバータの入力端に現れてい
る直流電圧の値をプリドライブ回路に適する値に変換
し、プリドライブ回路に供給する補助補機電源を備える
ことを特徴とする。
In order to achieve such an object, in the drive device for an electric vehicle according to the present invention, the direct or indirect power supply from the auxiliary power supply to the pre-drive circuit is cut off. In this case, an auxiliary auxiliary power supply is provided for converting the value of the DC voltage appearing at the input terminal of the inverter into a value suitable for the predrive circuit and supplying the value to the predrive circuit.

【0014】また、本発明に係る電気自動車の駆動装置
は、補助補機電源が、補機電源から制御用CPU等の制
御手段への電源供給が断たれた場合に、インバータの入
力端に現れている直流電圧の値を制御手段にも適する値
に変換し、制御手段に供給することを特徴とする。
Further, the drive device for an electric vehicle according to the present invention appears at the input end of the inverter when the auxiliary auxiliary power supply is cut off from the auxiliary power supply to the control means such as the control CPU. It is characterized in that the value of the direct current voltage is converted into a value suitable for the control means and is supplied to the control means.

【0015】さらに、本発明に係る電気自動車の駆動装
置は、プリドライブ回路への電力供給が断たれた場合
に、インバータと永久磁石モータの間の接続を開放する
手段を備えることを特徴とする。
Further, the drive device for an electric vehicle according to the present invention is characterized by including means for opening the connection between the inverter and the permanent magnet motor when the power supply to the pre-drive circuit is cut off. .

【0016】[0016]

【作用】本発明に係る電気自動車の駆動装置において
は、補機電源からプリドライブ回路への電源供給が断た
れた場合に補助補機電源によりプリドライブ回路に電源
が供給される。これは、インバータの入力端に現れてい
る直流電圧をDC/DC変換して得られる電圧である。
従って、本発明においては、補機電源からプリドライブ
回路への電源供給が断たれた場合にも、補助補機電源か
ら供給される電源によりプリドライブ回路が動作するた
め、スイッチング素子の制御状態が不安定となることが
防止される。この結果、スイッチング素子の誤動作が防
止される。
In the drive system for an electric vehicle according to the present invention, when the power supply from the auxiliary power supply to the predrive circuit is cut off, the auxiliary drive power supply supplies power to the predrive circuit. This is a voltage obtained by DC / DC converting the DC voltage appearing at the input end of the inverter.
Therefore, according to the present invention, even when the power supply from the auxiliary power supply to the pre-drive circuit is cut off, the pre-drive circuit is operated by the power supplied from the auxiliary power supply, so that the control state of the switching element is Instability is prevented. As a result, malfunction of the switching element is prevented.

【0017】さらに、本発明に係る電気自動車の駆動装
置においては、補助補機電源が、プリドライブ回路のみ
ならず制御手段へも電源を供給する。すなわち、補機電
源から制御手段への電源供給が断たれた場合にも、イン
バータの入力端に直流電圧が現れていれば、この電圧の
DC/DC変換により制御手段に電源を与えることがで
きる。
Further, in the drive system for an electric vehicle according to the present invention, the auxiliary auxiliary power supply supplies power not only to the pre-drive circuit but also to the control means. That is, even if the power supply from the auxiliary power supply to the control means is cut off, if the DC voltage appears at the input terminal of the inverter, the control means can be supplied with power by DC / DC conversion of this voltage. .

【0018】そして、本発明に係る電気自動車の駆動装
置においては、プリドライブ回路への電力供給が断たれ
た場合に、インバータと永久磁石モータの間の接続が開
放される。従って、永久磁石モータの発電動作による直
流電圧はインバータの入力端に現れない。
In the drive system for an electric vehicle according to the present invention, the connection between the inverter and the permanent magnet motor is opened when the power supply to the pre-drive circuit is cut off. Therefore, the DC voltage due to the power generation operation of the permanent magnet motor does not appear at the input terminal of the inverter.

【0019】[0019]

【実施例】以下、本発明の好適な実施例について図面に
基づき説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings.

【0020】図1には、本発明の一実施例に係る電気自
動車の駆動装置の構成が示されている。この図に示され
る装置は、走行用モータとして三相永久磁石モータ30
を備えている。
FIG. 1 shows the configuration of a drive system for an electric vehicle according to an embodiment of the present invention. The device shown in this figure has a three-phase permanent magnet motor 30 as a traveling motor.
Is equipped with.

【0021】モータ30は、インバータ32を介して主
バッテリ34から供給される電力により駆動される。す
なわち、スイッチSW1及びコンタクタSW2がオンし
ている状態では、主バッテリ34から出力される直流電
圧はインバータ32に入力され、インバータ32により
この直流電圧が永久磁石モータ30を駆動するための交
流電流に変換される。インバータ32は、モータ30の
U,V,W各相毎に一対ずつ、トランジスタTr1〜T
r6を備えている。この図においては、トランジスタT
r1〜Tr6としてIGBTが用いられている。トラン
ジスタTr1〜Tr6のコレクタエミッタ間にはダイオ
ードD1〜D6が逆並列接続されている。インバータ3
2は、さらに、主バッテリ34から供給される直流電圧
を平滑するためのコンデンサCや、回生電圧を放電する
ための回生放電回路36を備えている。回生放電回路3
6は、プリドライブ回路38を介して制御用CPU40
により制御される。
The motor 30 is driven by the electric power supplied from the main battery 34 via the inverter 32. That is, when the switch SW1 and the contactor SW2 are on, the DC voltage output from the main battery 34 is input to the inverter 32, and the inverter 32 converts the DC voltage into an AC current for driving the permanent magnet motor 30. To be converted. The inverter 32 includes a pair of transistors Tr1 to T for each of the U, V, and W phases of the motor 30.
r6 is provided. In this figure, the transistor T
IGBTs are used as r1 to Tr6. Diodes D1 to D6 are connected in antiparallel between the collectors and emitters of the transistors Tr1 to Tr6. Inverter 3
2 further includes a capacitor C for smoothing the DC voltage supplied from the main battery 34, and a regenerative discharge circuit 36 for discharging the regenerative voltage. Regenerative discharge circuit 3
6 is a control CPU 40 via the pre-drive circuit 38.
Controlled by.

【0022】トランジスタTr1〜Tr6は、制御用C
PU40及びプリドライブ回路38によって制御・駆動
される。すなわち、制御用CPU40は、車両信号を入
力し、各相に係るPWM信号を生成する。プリドライブ
回路38は、制御用CPU40から与えられるPWM信
号を各相の上側のトランジスタTr1,Tr3及びTr
5と下側のトランジスタTr2,Tr4及びTr6に分
配する。従って、永久磁石モータ30の出力トルクは、
制御用CPUに与えられる車両信号の値に応じて制御さ
れることとなり、またこの制御は、プリドライブ回路3
8による各トランジスタTr1〜Tr6の駆動として実
現される。なお、プリドライブ回路38は、各トランジ
スタTr1〜Tr6への信号分配を電気的に絶縁するよ
う構成される。
The transistors Tr1 to Tr6 are control C
It is controlled and driven by the PU 40 and the pre-drive circuit 38. That is, the control CPU 40 inputs the vehicle signal and generates the PWM signal for each phase. The pre-drive circuit 38 applies the PWM signal given from the control CPU 40 to the upper transistors Tr1, Tr3 and Tr of each phase.
5 and lower transistors Tr2, Tr4 and Tr6. Therefore, the output torque of the permanent magnet motor 30 is
The pre-drive circuit 3 is controlled in accordance with the value of the vehicle signal given to the control CPU.
It is realized as driving of each of the transistors Tr1 to Tr6 by means of 8. The pre-drive circuit 38 is configured to electrically insulate the signal distribution to each of the transistors Tr1 to Tr6.

【0023】制御用CPU40及びプリドライブ回路3
8は、それぞれ、補機バッテリ42からDC/DCコン
バータ44又は46を介して供給される直流電圧を電源
として動作する。また、補機バッテリ42は、スイッチ
SW3がオンしている状態では、DC/DCコンバータ
48の出力により充電される。
Control CPU 40 and pre-drive circuit 3
Each of 8 operates with a DC voltage supplied from auxiliary battery 42 via DC / DC converter 44 or 46 as a power source. Further, the auxiliary battery 42 is charged by the output of the DC / DC converter 48 when the switch SW3 is on.

【0024】すなわち、コンタクタSW2がオフしてい
る状態でスイッチSW1がオンされると、DC/DCコ
ンバータ48には主バッテリ34の出力電圧が供給され
る。DC/DCコンバータ48は、この電圧を補機バッ
テリ42の充電に適した電圧に変換して出力する。スイ
ッチSW3が閉じていれば、補機バッテリ42は、DC
/DCコンバータ48の出力により充電される。DC/
DCコンバータ48の出力及び補機バッテリ42の出力
は、DC/DCコンバータ44又は46を介してそれぞ
れ制御用CPU40又はブリドライブ回路38に電源と
して供給される。なお、DC/DCコンバータ44及び
46の入力側にはヒューズ50が設けられており、これ
によりDC/DCコンバータ44及び46への過電流供
給が防止される。なお、この図においてはDC/DCコ
ンバータ46は1個しか描かれていないが、各トランジ
スタTr1〜Tr6間の信号分配の電気的絶縁のため、
各トランジスタTr1〜Tr6に対応して6個設ける必
要がある。
That is, when the switch SW1 is turned on while the contactor SW2 is off, the output voltage of the main battery 34 is supplied to the DC / DC converter 48. The DC / DC converter 48 converts this voltage into a voltage suitable for charging the auxiliary battery 42 and outputs it. When the switch SW3 is closed, the auxiliary battery 42 is DC
It is charged by the output of the / DC converter 48. DC /
The output of the DC converter 48 and the output of the auxiliary battery 42 are supplied to the control CPU 40 or the bridrive circuit 38 as a power source via the DC / DC converter 44 or 46, respectively. A fuse 50 is provided on the input side of the DC / DC converters 44 and 46 to prevent overcurrent supply to the DC / DC converters 44 and 46. Although only one DC / DC converter 46 is shown in this figure, because of the electrical isolation of the signal distribution among the transistors Tr1 to Tr6,
It is necessary to provide six transistors corresponding to each of the transistors Tr1 to Tr6.

【0025】プリドライブ回路38は、また、トランジ
スタTr1〜Tr6を強制的にオフさせる機能を有して
いる。例えば制御用CPU40が誤動作しその結果PW
M信号がプリドライブ回路38に誤入力された場合や、
図示しない電流センサによって検出される永久磁石モー
タ30の電流が過電流となった場合には、プリドライブ
回路38は、トランジスタTr1〜Tr6の制御端子に
逆バイアスを加え、これにより当該トランジスタTr1
〜Tr6を強制的にオフさせる。このような制御を行う
ことにより、各トランジスタTr1〜Tr6を、誤動作
による破壊から保護できる。
The pre-drive circuit 38 also has a function of forcibly turning off the transistors Tr1 to Tr6. For example, the control CPU 40 malfunctions, resulting in PW
If the M signal is erroneously input to the pre-drive circuit 38,
When the current of the permanent magnet motor 30 detected by a current sensor (not shown) becomes an overcurrent, the pre-drive circuit 38 applies a reverse bias to the control terminals of the transistors Tr1 to Tr6, and thereby the transistor Tr1.
~ Forcibly turn off Tr6. By performing such control, each of the transistors Tr1 to Tr6 can be protected from being broken due to a malfunction.

【0026】具体的には、トランジスタTr1〜Tr6
の制御状態が不安定となると、当該トランジスタTr1
〜Tr6は、周辺回路からのノイズにより制御端子に係
る配線に誘起される電圧でオン/オフしてしまう。この
ときインバータ32の入力側に電圧が発生していると、
トランジスタTr1〜Tr6に過電流が流れてしまう。
インバータ32の入力側に電圧が現れる状態とは、例え
ばスイッチSW1及びコンタクタSW2がオンしており
従って主バッテリ34の電圧が現れている場合や、長い
降坂路等を車両が走行していて永久磁石モータ30が発
電状態にある場合等が考えられる。従って、永久磁石モ
ータ30を駆動しない場合には、プリドライブ回路38
はトランジスタTr1〜Tr6を強制的にオフさせる。
これにより、当該トランジスタTr1〜Tr6が保護さ
れる。
Specifically, the transistors Tr1 to Tr6 are
When the control state of the transistor Tr1 becomes unstable, the transistor Tr1
~ Tr6 is turned on / off by the voltage induced in the wiring related to the control terminal due to the noise from the peripheral circuit. At this time, if a voltage is generated on the input side of the inverter 32,
Overcurrent flows through the transistors Tr1 to Tr6.
The state in which a voltage appears on the input side of the inverter 32 means, for example, when the switch SW1 and the contactor SW2 are turned on and therefore the voltage of the main battery 34 appears, or when the vehicle is traveling on a long downhill road or the like and the permanent magnet is present. It is possible that the motor 30 is in a power generation state. Therefore, when the permanent magnet motor 30 is not driven, the predrive circuit 38
Forcibly turns off the transistors Tr1 to Tr6.
As a result, the transistors Tr1 to Tr6 are protected.

【0027】このような機能は、例えば、プリドライブ
回路38を負論理の制御用CPU40出力で動作するよ
う構成した上で、プリドライブ回路38の入力をプルア
ップすることで実現できる。
Such a function can be realized, for example, by configuring the predrive circuit 38 to operate with the output of the negative logic control CPU 40 and then pulling up the input of the predrive circuit 38.

【0028】この実施例においては、かかる保護機能
が、DC/DCコンバータ46を介したプリドライブ回
路38への電源供給が断たれた場合にも確保される。こ
の機能は、主に、DC/DCコンバータ52によって実
現される。
In this embodiment, such a protection function is ensured even when the power supply to the predrive circuit 38 via the DC / DC converter 46 is cut off. This function is mainly realized by the DC / DC converter 52.

【0029】まず、この実施例の各部材が正常に機能し
ている場合には、プリドライブ回路38は、DC/DC
コンバータ46を介し、DC/DCコンバータ48の出
力又は補機バッテリ42の出力の供給を受ける。プリド
ライブ回路38は、この電圧を電源として動作する。こ
の状態では、トランジスタTr1〜Tr6の制御により
永久磁石モータ30を駆動する動作や、トランジスタT
r1〜Tr6を強制的にオフさせる制御が可能である。
First, when each member of this embodiment is functioning normally, the pre-drive circuit 38 is set to DC / DC.
The converter 46 receives the output of the DC / DC converter 48 or the output of the auxiliary battery 42. The predrive circuit 38 operates using this voltage as a power supply. In this state, the operation of driving the permanent magnet motor 30 by controlling the transistors Tr1 to Tr6 and the operation of the transistor T
It is possible to perform control to forcibly turn off r1 to Tr6.

【0030】ここに、DC/DCコンバータ46の故障
や、ヒューズ50の溶断等が生じた場合、DC/DCコ
ンバータ46を介した電源供給が断たれるため、プリド
ライブ回路38の出力、ひいてはトランジスタTr1〜
Tr6の制御状態が不安定となる可能性が生じる。この
場合、DC/DCコンバータ52が、インバータ32の
入力側に現れている電圧をDC/DC変換し、抵抗Rを
介してプリドライブ回路38に電源として供給する。従
って、DC/DCコンバータ46からの電源供給が断た
れた場合でも、DC/DCコンバータ52からの電源供
給が行われるため、プリドライブ回路38によって駆動
されるトランジスタTr1〜Tr6の制御状態が不安定
となることを防止できる。この結果、当該トランジスタ
Tr1〜Tr6の暴走による破壊が防止される。なお、
抵抗Rは、DC/DCコンバータ46及び52の出力電
圧差を吸収するための抵抗である。これはスイッチに置
換しても構わない。
If the DC / DC converter 46 fails or the fuse 50 is blown, the power supply through the DC / DC converter 46 is cut off, so that the output of the pre-drive circuit 38, and hence the transistor. Tr1
The control state of Tr6 may become unstable. In this case, the DC / DC converter 52 performs DC / DC conversion on the voltage appearing at the input side of the inverter 32, and supplies it to the predrive circuit 38 via the resistor R as a power source. Therefore, even if the power supply from the DC / DC converter 46 is cut off, the power supply from the DC / DC converter 52 is performed, so that the control states of the transistors Tr1 to Tr6 driven by the pre-drive circuit 38 are unstable. Can be prevented. As a result, destruction of the transistors Tr1 to Tr6 due to runaway is prevented. In addition,
The resistor R is a resistor for absorbing the output voltage difference between the DC / DC converters 46 and 52. This may be replaced with a switch.

【0031】また、DC/DCコンバータ52からの電
源供給は、低損失で実行できる。すなわちDC/DC変
換が1段であるため、変換効率が良い。また、オフ保持
時はいずれのトランジスタTr1〜Tr6への電圧も等
しいため、DC/DCコンバータ52は1個で足りる。
The power supply from the DC / DC converter 52 can be executed with low loss. That is, since the DC / DC conversion has one stage, the conversion efficiency is good. In addition, since the voltages to all the transistors Tr1 to Tr6 are equal when the switch is held off, only one DC / DC converter 52 is required.

【0032】図2には、本発明の第2実施例に係る電気
自動車の駆動装置の構成が示されている。この図に示さ
れる装置は、第2実施例の装置にさらにコンタクタSW
4を付加した構成である。コンタクタSW4は、インバ
ータ32の出力とモータ30の間に配設されており、モ
ータ30とインバータ32の間のU,V,W各相配線を
開閉する。このコンタクタSW4は、プリドライブ回路
38への供給が断たれた場合等にオフされる。従って、
この実施例によれば、モータ30の発電に起因したトラ
ンジスタTr1〜Tr6の破壊がより好適に防止され
る。
FIG. 2 shows the configuration of a drive system for an electric vehicle according to a second embodiment of the present invention. The device shown in this figure has a contactor SW in addition to the device of the second embodiment.
4 is added. The contactor SW4 is disposed between the output of the inverter 32 and the motor 30 and opens and closes U, V, W phase wiring between the motor 30 and the inverter 32. The contactor SW4 is turned off when the supply to the pre-drive circuit 38 is cut off. Therefore,
According to this embodiment, the breakdown of the transistors Tr1 to Tr6 caused by the power generation of the motor 30 can be prevented more suitably.

【0033】なお、以上の説明においては、DC/DC
コンバータ52の出力をプリドライブ回路38のみに供
給していた。しかし、制御用CPU40についても、D
C/DCコンバータ52からの動作電圧供給が可能なよ
うにしてもかまわない。この場合、DC/DCコンバー
タ52からプリドライブ回路38への動作電圧供給に係
る配線と、制御用CPU40への動作電圧供給に係る配
線とは、絶縁分離するのが好ましい。
In the above description, DC / DC
The output of the converter 52 was supplied only to the predrive circuit 38. However, for the control CPU 40 as well, D
The operating voltage may be supplied from the C / DC converter 52. In this case, it is preferable that the wiring for supplying the operating voltage from the DC / DC converter 52 to the pre-drive circuit 38 and the wiring for supplying the operating voltage to the control CPU 40 be isolated.

【0034】また、以上の説明では、トランジスタTr
1〜Tr6としてIGBTを仮定していた。しかし、本
発明はIGBTに限定されるものではない。すなわち、
インバータを構成するスイッチング素子として、IGB
T以外のスイッチング素子を用いてもかまわない。但
し、オンさせる際に所定のバイアス電圧を制御端子に印
加する必要があるスイッチング素子でなければならな
い。
Further, in the above description, the transistor Tr
IGBTs were assumed as 1 to Tr6. However, the present invention is not limited to IGBTs. That is,
IGB is used as a switching element that constitutes an inverter.
A switching element other than T may be used. However, it must be a switching element that needs to apply a predetermined bias voltage to the control terminal when turned on.

【0035】[0035]

【発明の効果】以上説明したように、本発明によれば、
補機電源からプリドライブ回路への動作電圧供給が断た
れている場合に、インバータの入力端に現れている直流
電圧をDC/DC変換してプリドライブ回路に電源を供
給するようにしたため、インバータを構成するスイッチ
ング素子の制御状態の不安定化が防止され、これにより
当該スイッチング素子の誤動作を防止できる。
As described above, according to the present invention,
When the operating voltage supply from the auxiliary power supply to the predrive circuit is cut off, the DC voltage appearing at the input terminal of the inverter is DC / DC converted to supply power to the predrive circuit. The destabilization of the control state of the switching element that constitutes the device is prevented, and thus the malfunction of the switching element can be prevented.

【0036】また、本発明によれば、補機電源から制御
手段への補機電源供給が断たれている場合にインバータ
の入力端に現れている直流電圧をDC/DC変換して電
源供給するようにしたため、制御手段が制御動作に迅速
に復帰できる。
Further, according to the present invention, the DC voltage appearing at the input terminal of the inverter is DC / DC converted and the power is supplied when the auxiliary power supply from the auxiliary power supply to the control means is cut off. Therefore, the control means can quickly return to the control operation.

【0037】そして、本発明によれば、プリドライブ回
路への電力供給が断たれた場合にインバータと永久磁石
モータの間の接続を開放するようにしたため、永久磁石
モータの発電による電圧がインバータ側に現れることが
なく、スイッチング素子の誤動作に起因した破壊を好適
に防止できる。
Further, according to the present invention, the connection between the inverter and the permanent magnet motor is opened when the power supply to the pre-drive circuit is cut off. Therefore, it is possible to preferably prevent the damage due to the malfunction of the switching element.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る電気自動車の駆動装
置の構成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of a drive device for an electric vehicle according to a first embodiment of the present invention.

【図2】本発明の第2実施例に係る電気自動車の駆動装
置の構成を示すブロック図である。
FIG. 2 is a block diagram showing a configuration of a drive device for an electric vehicle according to a second embodiment of the present invention.

【図3】一従来例に係る電気自動車の駆動装置の構成を
示すブロック図である。
FIG. 3 is a block diagram showing a configuration of a drive device for an electric vehicle according to a conventional example.

【符号の説明】[Explanation of symbols]

30 永久磁石モータ 32 インバータ 34 主バッテリ 38 プリドライブ回路 40 制御用CPU 42 補機バッテリ 44,46,48,52 DC/DCコンバータ Tr1〜Tr6 トランジスタ SW4 コンタクタ 30 Permanent magnet motor 32 Inverter 34 Main battery 38 Pre-drive circuit 40 Control CPU 42 Auxiliary battery 44, 46, 48, 52 DC / DC converter Tr1-Tr6 Transistor SW4 contactor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 所定個数のスイッチング素子を有し入力
端が主電源に接続されたインバータと、インバータから
の交流電力により駆動され電気自動車の駆動力を発生さ
せる永久磁石モータと、補機電源から直接又は間接に電
源の供給を受けつつスイッチング素子を駆動するプリド
ライブ回路と、プリドライブ回路に制御信号を供給する
制御手段と、を備え、プリドライブ回路が、永久磁石モ
ータを駆動する際には、主電源からの直流電力が交流電
力に変換され永久磁石モータに供給されるようスイッチ
ング素子をスイッチング動作させ、永久磁石モータへの
電力供給を断つ際又は回生を行う際には、スイッチング
素子の制御端子に所定電圧を印加して当該スイッチング
素子のオフ状態を保持し、制御手段からの制御信号が断
たれた場合にも当該スイッチング素子のオフ状態を保持
する電気自動車の駆動装置において、 補機電源からプリドライブ回路への電源供給が断たれた
場合に、インバータの入力端に現れている直流電圧の値
をプリドライブ回路に適する値に変換し、上記プリドラ
イブ回路に供給する補助補機電源を備えることを特徴と
する電気自動車の駆動回路。
1. An inverter having a predetermined number of switching elements and an input end connected to a main power source, a permanent magnet motor driven by AC power from the inverter to generate a driving force of an electric vehicle, and an auxiliary power source. A pre-drive circuit that drives a switching element while directly or indirectly receiving power is provided, and a control unit that supplies a control signal to the pre-drive circuit. When the pre-drive circuit drives a permanent magnet motor, , When switching the switching element so that the DC power from the main power source is converted to AC power and supplied to the permanent magnet motor, the switching element is controlled when the power supply to the permanent magnet motor is cut off or regenerated. A predetermined voltage is applied to the terminal to maintain the OFF state of the switching element, and even if the control signal from the control means is cut off, In a drive device for an electric vehicle that maintains the switching element in the off state, when the power supply from the auxiliary power supply to the predrive circuit is cut off, the value of the DC voltage appearing at the input terminal of the inverter is set in the predrive circuit. A drive circuit for an electric vehicle, comprising: an auxiliary auxiliary power supply that converts the power into a suitable value and supplies it to the pre-drive circuit.
【請求項2】 請求項1記載の電気自動車の駆動装置に
おいて、 制御手段が、補機電源から直接又は間接に電源の供給を
受けつつプリドライブ回路に制御信号を供給し、 補助補機電源が、補機電源から制御手段への電源供給が
断たれた場合に、インバータの入力端に現れている直流
電圧の値を制御手段にも適する値に変換し、制御手段に
供給することを特徴とする電気自動車の駆動装置。
2. The drive device for an electric vehicle according to claim 1, wherein the control means supplies a control signal to the pre-drive circuit while directly or indirectly receiving power from the auxiliary power supply, and the auxiliary auxiliary power supply is When the power supply from the auxiliary power supply to the control means is cut off, the value of the DC voltage appearing at the input terminal of the inverter is converted into a value suitable for the control means and is supplied to the control means. Drive system for electric vehicles.
【請求項3】 請求項1記載の電気自動車の駆動装置に
おいて、 プリドライブ回路への電力供給が断たれた場合に、イン
バータと永久磁石モータの間の接続を開放する手段を備
えることを特徴とする電気自動車の駆動装置。
3. The drive device for an electric vehicle according to claim 1, further comprising means for opening the connection between the inverter and the permanent magnet motor when the power supply to the pre-drive circuit is cut off. Drive system for electric vehicles.
JP5100888A 1993-04-27 1993-04-27 Driver for electric automobile Pending JPH06315201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5100888A JPH06315201A (en) 1993-04-27 1993-04-27 Driver for electric automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5100888A JPH06315201A (en) 1993-04-27 1993-04-27 Driver for electric automobile

Publications (1)

Publication Number Publication Date
JPH06315201A true JPH06315201A (en) 1994-11-08

Family

ID=14285873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5100888A Pending JPH06315201A (en) 1993-04-27 1993-04-27 Driver for electric automobile

Country Status (1)

Country Link
JP (1) JPH06315201A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5877601A (en) * 1996-04-26 1999-03-02 Hitachi, Ltd. Control system for electric vehicle and control method therefor in which an inverter relay is controlled at the time of its re-closing after being disconnected
US5914582A (en) * 1997-01-27 1999-06-22 Hitachi, Ltd. Permanent magnet synchronous motor controller and electric vehicle controller
US6236172B1 (en) 1996-05-29 2001-05-22 Hitachi, Ltd. Driving system for electric vehicle
JP2005124261A (en) * 2003-10-14 2005-05-12 Hitachi Ltd Power converter
JP2007226996A (en) * 2006-02-21 2007-09-06 Toyota Motor Corp Battery pack structure
JP2010124535A (en) * 2008-11-17 2010-06-03 Toyota Motor Corp Electrical power system for vehicle, and the vehicle
CN104057829A (en) * 2013-03-21 2014-09-24 丰田自动车株式会社 Electric vehicle
WO2020110225A1 (en) * 2018-11-28 2020-06-04 東芝三菱電機産業システム株式会社 Power conversion device
US11264924B2 (en) 2018-03-30 2022-03-01 Mitsubishi Electric Corporation Motor driving apparatus and refrigeration cycle equipment

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5877601A (en) * 1996-04-26 1999-03-02 Hitachi, Ltd. Control system for electric vehicle and control method therefor in which an inverter relay is controlled at the time of its re-closing after being disconnected
US6236172B1 (en) 1996-05-29 2001-05-22 Hitachi, Ltd. Driving system for electric vehicle
US5914582A (en) * 1997-01-27 1999-06-22 Hitachi, Ltd. Permanent magnet synchronous motor controller and electric vehicle controller
JP4532875B2 (en) * 2003-10-14 2010-08-25 日立オートモティブシステムズ株式会社 Power converter
JP2005124261A (en) * 2003-10-14 2005-05-12 Hitachi Ltd Power converter
JP2007226996A (en) * 2006-02-21 2007-09-06 Toyota Motor Corp Battery pack structure
JP2010124535A (en) * 2008-11-17 2010-06-03 Toyota Motor Corp Electrical power system for vehicle, and the vehicle
CN104057829A (en) * 2013-03-21 2014-09-24 丰田自动车株式会社 Electric vehicle
US11264924B2 (en) 2018-03-30 2022-03-01 Mitsubishi Electric Corporation Motor driving apparatus and refrigeration cycle equipment
WO2020110225A1 (en) * 2018-11-28 2020-06-04 東芝三菱電機産業システム株式会社 Power conversion device
CN112042100A (en) * 2018-11-28 2020-12-04 东芝三菱电机产业***株式会社 Power conversion device
JPWO2020110225A1 (en) * 2018-11-28 2021-02-15 東芝三菱電機産業システム株式会社 Power converter
US11368105B2 (en) 2018-11-28 2022-06-21 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion device

Similar Documents

Publication Publication Date Title
JP4023171B2 (en) LOAD DRIVE DEVICE, CHARGE CONTROL METHOD FOR POWER STORAGE DEVICE IN LOAD DRIVE DEVICE, AND COMPUTER-READABLE RECORDING MEDIUM CONTAINING PROGRAM FOR CAUSING COMPUTER TO EXECUTE CHARGE CONTROL
JP3582523B2 (en) Electric load device, abnormality processing method, and computer-readable recording medium recording a program for causing a computer to execute electric load abnormality processing
US6239566B1 (en) Drive system for a permanently excited electric motor having at least one phase winding
JP3746334B2 (en) Permanent magnet type synchronous motor drive control apparatus and method
EP1306262B1 (en) Load driver and computer-readable recording medium to execute the control
JP6554151B2 (en) Vehicle power system
JP2005020952A (en) Vehicle control device
JP3277825B2 (en) Charging device
JP4048787B2 (en) Load drive device
JP6944546B2 (en) Power converter
JP3542198B2 (en) Control device for electric vehicle
JP2009044914A (en) Power supply control unit and motor driver equipped with the same
JPH06315201A (en) Driver for electric automobile
JP3551586B2 (en) Capacitor discharge circuit
KR20160134206A (en) Active capacitor discharge system of electric power system for eco-friendly vehicle
JPH06225402A (en) Controller for electric motor vehicle
JPH08242505A (en) Spare control device for electric vehicle
JP3830176B2 (en) Electric vehicle control equipment
JP4413565B2 (en) Power supply system
JPH11155204A (en) Controller for electric rolling stock
KR100384171B1 (en) Device and method for driving a motor of electric vehicle in a state of emergency
JPH10224903A (en) Electric car controller
JP2021035090A (en) Inverter control device
JP3482965B2 (en) Drive control device for permanent magnet type synchronous motor
JPH06245564A (en) Motor controller