JPH06310177A - Degradation judging method for lead-acid battery - Google Patents

Degradation judging method for lead-acid battery

Info

Publication number
JPH06310177A
JPH06310177A JP5091736A JP9173693A JPH06310177A JP H06310177 A JPH06310177 A JP H06310177A JP 5091736 A JP5091736 A JP 5091736A JP 9173693 A JP9173693 A JP 9173693A JP H06310177 A JPH06310177 A JP H06310177A
Authority
JP
Japan
Prior art keywords
storage battery
capacity
lead
charge
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5091736A
Other languages
Japanese (ja)
Other versions
JP3340504B2 (en
Inventor
Kazuo Takano
和夫 高野
Kazuki Yoshida
一樹 吉田
Masaru Kono
勝 河野
Tsutomu Ogata
努 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP09173693A priority Critical patent/JP3340504B2/en
Publication of JPH06310177A publication Critical patent/JPH06310177A/en
Application granted granted Critical
Publication of JP3340504B2 publication Critical patent/JP3340504B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide a method for quickly and easily judging the degrading condition of a lead-acid battery. CONSTITUTION:Correlating relation between a charging ratio which is a ratio of charge capacity to discharge, capacity, and the capacity of a storage battery, is measured so as to be determined first. Next, a lead storage battery which is a subject lead storage battery for judging degradation, is discharged at a constant discharge current for the definite period of time for obtaining discharge capacity in a step (b), and the subject lead storage battery for judging degradation is charged at constant charging voltage with the maximum charging current determined for the definite period of time for obtaining charge capacity in a step (c). A charge rate which is a ratio of discharge capacity thus determined to charge capacity, is then computed in a step (d), and the storage battery capacity of the lead-acid battery for judging degradation is estimated based on the charge rate thus computed by using correlation relation set in advance in steps (e) and (f), so that its degradation condition is thereby judged. This constitution eliminates a need for discharging the battery to discharge end voltage unlike a degradation judging method based on a former capacity test, and thereby enables the degradation of the lead-acid battery to be judged simply in a short time. Moreover, manhours required by these tests for judgement, and electrical loss entailed by charge/discharge can be lessened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鉛蓄電池の充電率を測
定し、予め求めておいた充電率と蓄電池容量との相関関
係から、当該鉛蓄電池の蓄電池容量を推定して短時間に
容易に鉛蓄電池の劣化状態を判定する方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention measures the charging rate of a lead storage battery, and estimates the storage battery capacity of the lead storage battery from the correlation between the charging rate and the storage battery capacity, which has been obtained in advance. The present invention relates to a method for determining the deterioration state of a lead storage battery.

【0002】[0002]

【従来の技術】従来から、鉛蓄電池の劣化状態を判定す
る方法として、容量試験による方法がある。これは、完
全充電を行ない、規定の状態(温度、比重等)に調節し
た鉛蓄電池を一定の電流(例えば10時間率電流(以
下、0.1CAと記す))で放電し、規定の放電終止電
圧になるまでの時間を規定して蓄電池容量を算出し、こ
の蓄電池容量が別に定められた値以下になった時、劣化
したと判定する方法である。
2. Description of the Related Art Conventionally, there is a capacity test method as a method for determining the deterioration state of a lead storage battery. This is a full charge, the lead storage battery adjusted to a specified state (temperature, specific gravity, etc.) is discharged at a constant current (for example, a 10-hour rate current (hereinafter, referred to as 0.1 CA)), and the specified discharge end. This is a method of calculating the storage battery capacity by defining the time until the voltage reaches the voltage and determining that the storage battery capacity has deteriorated when the storage battery capacity becomes equal to or less than a separately determined value.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の容量試験による鉛蓄電池の劣化判定方法は、鉛蓄電
池の劣化状態を正確に知ることができるが、放電に10
時間前後、放電後の回復充電に10〜20時間要し、さ
らに準備期間を入れると、全体の試験時間は長時間を要
し、しかもこの間、鉛蓄電池本来の目的(停電対策等)
に使用できないという問題があった。
However, the above-mentioned conventional method of judging the deterioration of the lead storage battery by the capacity test can accurately know the deterioration state of the lead storage battery, but it is difficult to discharge the lead storage battery 10 times.
It takes 10 to 20 hours for recovery charge after discharge before and after discharge, and if a preparatory period is added, the entire test time will take a long time, and during this time, the original purpose of lead acid batteries (power failure countermeasures, etc.)
There was a problem that it can not be used for.

【0004】そこで、本発明は、上記の問題を解決し、
短時間で容易に鉛蓄電池の劣化状態を判定できる方法を
提供することを目的とする。
Therefore, the present invention solves the above problems,
It is an object of the present invention to provide a method capable of easily determining the deterioration state of a lead storage battery in a short time.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明では鉛蓄電池の充電率を用いて劣化状態を判
定する手段を用いる。
In order to achieve the above object, the present invention uses means for determining the deterioration state using the charge rate of a lead storage battery.

【0006】すなわち、本発明の鉛蓄電池の劣化判定方
法は、まず、劣化状態の異なる複数の鉛蓄電池を用いて
充電率と蓄電池容量との相関関係を測定により求めてお
き、次に、劣化判定対象鉛蓄電池を一定の放電電流で一
定時間放電して放電量を求め、次に、一定の充電電圧
で、最大の充電電流を定めて前記劣化判定対象鉛蓄電池
を一定時間充電して充電量を求め、次に、前記放電量に
対する前記充電量の比である充電率を算出し、次に、前
記算出した充電率より前記相関関係を用いて前記劣化判
定対象鉛蓄電池の蓄電池容量を推定し、次に、前記推定
した蓄電池容量より劣化状態を判定することを特徴とす
る。
That is, in the method for determining deterioration of a lead storage battery according to the present invention, first, a plurality of lead storage batteries having different deterioration states are used to determine the correlation between the charging rate and the storage battery capacity, and then the deterioration determination is performed. The target lead-acid battery is discharged with a constant discharge current for a certain period of time to obtain the discharge amount, and then the maximum charge current is determined with a constant charge voltage to charge the deterioration determination target lead-acid battery for a certain period of time to determine the charge amount. Obtained, then calculate the charging rate is a ratio of the charge amount to the discharge amount, then, using the correlation from the calculated charge rate to estimate the storage battery capacity of the deterioration determination target lead storage battery, Next, the deterioration state is determined from the estimated storage battery capacity.

【0007】[0007]

【作用】鉛蓄電池を使用していると、正極格子の伸びや
切損が起き、これによって活物質の脱落が生じる。さら
に正負両極の活物質は不可逆性の硫酸鉛に変化するた
め、極板の有効反応面積が減少し、容量が低下してく
る。このため、劣化した鉛蓄電池は、劣化前の状態に比
べ充電時に有効反応面積中の電流密度が増大し、分極が
大きくなるので、同一充電電圧における充電電流が小さ
くなる。
When a lead acid battery is used, the positive electrode grid is stretched and cut, which causes the active material to fall off. Furthermore, since the positive and negative active materials are changed to irreversible lead sulfate, the effective reaction area of the electrode plate is reduced, and the capacity is reduced. Therefore, in the deteriorated lead acid battery, the current density in the effective reaction area during charging is higher than that in the state before deterioration, and the polarization is increased, so that the charging current at the same charging voltage is reduced.

【0008】本発明の鉛蓄電池の劣化判定方法では、こ
のことに着目し、一定放電電流で一定時間放電した後、
最大充電電流を定めて一定時間定電圧充電し、放電量に
対する充電量の比、すなわち充電率から、予め求めてお
いた充電率と蓄電池容量の相関関係を用いて鉛蓄電池の
劣化程度を判定することにより、放電終始電圧まで放電
させる必要性をなくして劣化判定を短時間に容易に行え
るようにしている。
In the lead storage battery deterioration determination method of the present invention, attention is paid to this fact, and after discharging at a constant discharge current for a constant time,
Determine the maximum charge current and charge at a constant voltage for a certain period of time, and determine the degree of deterioration of the lead storage battery from the ratio of the amount of charge to the amount of discharge, that is, the charge rate, using the correlation between the charge rate and the storage battery capacity obtained in advance. As a result, it is possible to easily perform the deterioration determination in a short time without the necessity of discharging to the discharge end voltage.

【0009】[0009]

【実施例】以下、具体的に実施例を用いて本発明を説明
する。
EXAMPLES The present invention will be described below in greater detail by giving Examples.

【0010】まず、本発明の原理を示す。そのために、
鉛蓄電池の劣化品と良品とでは、充放電特性にどのよう
な差違があるかを試験により確かめた結果を図2に示
す。ここで、試験に用いた鉛蓄電池は、公称電圧2V、
定格容量200Ahのシール鉛蓄電池である。良品Aに
は新品を使用し、劣化品Bには実験室の恒温槽を用い
て、50℃の雰囲気中で充電電流0.02CA(10時
間率電流×1/5、本例では4A)で長時間充電を行
い、良品を過充電により劣化させたものを使用してい
る。
First, the principle of the present invention will be described. for that reason,
FIG. 2 shows the result of confirming the difference in charge and discharge characteristics between the deteriorated lead acid battery and the non-defective lead acid battery by a test. Here, the lead-acid battery used in the test has a nominal voltage of 2V,
It is a sealed lead-acid battery with a rated capacity of 200 Ah. A good product A was used as a new product, and a deteriorated product B was used as a constant temperature oven in a laboratory, and the charging current was 0.02 CA (10 hour rate current × 1/5, 4 A in this example) in an atmosphere of 50 ° C. It is charged for a long time and used as a non-defective product that has deteriorated due to overcharging.

【0011】図2は、完全充電された良品および劣化品
の鉛蓄電池各1個を用い、一定の放電電流0.1CA
(10時間率電流、20A)で10分間放電し(放電量
約3.3Ah)、その後充電電圧を2.23V、充電電
流の最大値を0.1CA(20A)に設定した最大電流
制限付定電圧充電器により10分間充電した場合の充電
電流の変化を図示したものである。図2の縦軸は充電電
流、横軸充電時間である。図2から劣化品Bは良品Aに
比較して早く充電電流が減少することがわかる。このこ
とは、放電電流の時間積分である放電量を同じにした場
合、充電電流の時間積分である充電量が、劣化品になる
と良品より少なくなることを示している。あるいは、放
電量に対する充電量の比(充電量/放電量)を充電率と
呼ぶことにすると、この充電率が劣化品の場合に良品よ
り小さくなることを示している。
FIG. 2 shows a constant discharge current of 0.1 CA using one fully charged good battery and one deteriorated lead storage battery.
(10 hour rate current, 20A) discharge for 10 minutes (discharge amount about 3.3Ah), then set charging voltage to 2.23V, maximum charging current 0.1CA (20A) maximum current limit It is the figure which shows the change of the charging current when charging for 10 minutes by the voltage charger. The vertical axis of FIG. 2 represents the charging current and the horizontal axis represents the charging time. It can be seen from FIG. 2 that the charging current of the deteriorated product B decreases faster than that of the good product A. This indicates that when the discharge amount, which is the time integral of the discharge current, is the same, the charge amount, which is the time integral of the charging current, becomes smaller in the deteriorated product than in the non-defective product. Alternatively, if the ratio of the charge amount to the discharge amount (charge amount / discharge amount) is called the charge rate, this indicates that this charge rate is smaller than that of a non-defective product in the case of a deteriorated product.

【0012】そこで、次の(1)〜(6)の手順により
充電率と蓄電池容量との関係を求める。この試験では、
良品のシール鉛蓄電池を9個用い、このうち3個を前記
と同様な方法で過充電することにより劣化状態の異なっ
た劣化品として用いている。もちろん、実際の使用によ
り種々に異なる劣化状態となった複数の鉛蓄電池を用い
ても良いことは言うまでもない。
Therefore, the relationship between the charging rate and the storage battery capacity is obtained by the following procedures (1) to (6). In this test,
Nine good sealed lead-acid batteries are used, and three of these are used as deteriorated products with different deterioration states by overcharging in the same manner as described above. Of course, it is needless to say that a plurality of lead-acid batteries that have been in different deteriorated states due to actual use may be used.

【0013】(1)9個の鉛蓄電池をそれぞれ完全充電
状態にする。ここで、完全充電状態とは、それぞれ一定
の充電電圧(例えば、2.23V)で充電し、充電電流
がほぼ一定になった状態をいう。または、完全充電状態
であることを確認する。
(1) Each of the nine lead storage batteries is brought into a fully charged state. Here, the fully charged state refers to a state in which charging is performed at a constant charging voltage (for example, 2.23 V) and the charging current is substantially constant. Or, make sure that the battery is fully charged.

【0014】(2)9個の鉛蓄電池をそれぞれ一定の放
電電流で一定時間放電し、放電量Dを求める。たとえ
ば、0.1CA(20A)で10分間放電した場合、放
電量D[Ah]は約3.3Ahとなる。
(2) The nine lead-acid batteries are each discharged with a constant discharge current for a constant time, and the discharge amount D is obtained. For example, when discharged at 0.1 CA (20 A) for 10 minutes, the discharge amount D [Ah] is about 3.3 Ah.

【0015】(3)手順(2)で放電した鉛蓄電池をそ
れぞれ一定の充電電圧のもとで充電電流の最大値を設定
した最大電流制限付定電圧充電器により一定時間充電
し、この時の充電量Cを求める。たとえば、充電電圧
2.23Vで、最大充電電流を0.1CA(20A)に
設定し、10分間充電する。この場合の各鉛蓄電池の充
電量C[Ah]は、充電電流の時間積分で求める。
(3) The lead-acid battery discharged in step (2) is charged for a certain period of time by a constant voltage charger with a maximum current limit in which the maximum value of the charging current is set under a constant charging voltage. The charge amount C is calculated. For example, the charging voltage is 2.23 V, the maximum charging current is set to 0.1 CA (20 A), and charging is performed for 10 minutes. In this case, the charge amount C [Ah] of each lead storage battery is obtained by time integration of the charge current.

【0016】(4)9個の鉛蓄電池を手順(1)と同じ
ようにそれぞれ完全充電状態にする。
(4) Nine lead-acid batteries are fully charged in the same manner as in step (1).

【0017】(5)9個の鉛蓄電池をそれぞれ容量試験
する。すなわち、放電電流を10時間率電流(0.1C
A)とし、放電終止電圧まで放電し、蓄電池容量を求め
る。例えば、0.1CA(20A)で放電終止電圧1.
80Vに達するまでの放電時間が10.5時間とする
と、蓄電池容量は210Ah(定格容量200Ahに対
して、105%)となる。
(5) Each of the nine lead acid batteries is capacity tested. That is, the discharge current is changed to a 10-hour rate current (0.1 C
A), discharge to the final discharge voltage, and obtain the storage battery capacity. For example, the discharge end voltage is 1. 0 at 0.1 CA (20 A).
If the discharge time until reaching 80 V is 10.5 hours, the storage battery capacity will be 210 Ah (105% with respect to the rated capacity of 200 Ah).

【0018】(6)9個の鉛蓄電池について手順(2)
の放電量Dに対する手順(3)の充電量Cの比から充電
率を求め、この充電率[%]と手順(5)で求めた蓄電
池容量[%]との関係をプロットする。
(6) Procedure (2) for 9 lead-acid batteries
The charging rate is determined from the ratio of the charging rate C of the procedure (3) to the discharging rate D of the above, and the relationship between this charging rate [%] and the storage battery capacity [%] determined in the procedure (5) is plotted.

【0019】このようにして求めたグラフが、図3であ
る。図中の直線は最小自乗法により求めた回帰直線であ
る。図3から鉛蓄電池が劣化し、定格容量に対する蓄電
池容量が[%]が減少するほど充電率[%]が小さくな
る傾向があることがわかり、充電率を知れば、蓄電池容
量が推定でき、従って鉛蓄電池の劣化が判定できる。
The graph thus obtained is shown in FIG. The straight line in the figure is a regression line obtained by the method of least squares. It can be seen from FIG. 3 that the charge rate [%] tends to decrease as the lead acid battery deteriorates and the [%] of the battery capacity with respect to the rated capacity decreases, and if the charge rate is known, the accumulator capacity can be estimated. Deterioration of lead acid battery can be judged.

【0020】図3を用いて鉛蓄電池を劣化判定する手順
を図1のフローチャートで示す。(a)〜(f)はその
手順である。
A procedure for determining deterioration of the lead storage battery is shown in the flow chart of FIG. 1 with reference to FIG. (A) to (f) are the procedure.

【0021】(a)まず、劣化判定対象鉛蓄電池を完全
充電する。完全充電する方法は前記した手順(1)と同
じである。あるいは、完全充電状態にあることを確認す
る。確認の方法は、劣化判定対象鉛蓄電池の使用状況や
履歴データ等を参照して判断する。
(A) First, the lead storage battery subject to deterioration determination is fully charged. The method of fully charging is the same as the above-mentioned procedure (1). Alternatively, make sure that the battery is fully charged. The confirmation method is determined by referring to the usage status and history data of the lead storage battery subject to deterioration determination.

【0022】(b)次に、前記した手順(2)と同じ方
法により、一定の放電電流Id[A]で一定時間Td
[h]放電し、放電量D[Ah]=Id×Tdを求め
る。
(B) Next, by the same method as the above-mentioned procedure (2), a constant discharge current Id [A] and a constant time Td.
[H] is discharged, and the discharge amount D [Ah] = Id × Td is obtained.

【0023】(c)続いて、前記した手順(3)と同じ
方法で、充電電圧をVc[V]、最大充電電流をIc
[A]に設定した定電圧充電器により、一定時間Tc
[h]充電し、充電電流の時間積分である充電量C[A
h]=∫0 Tccdtを求める。ここで、icは充電電流
[A]、tは時間[h]を示す。
(C) Subsequently, the charging voltage is set to Vc [V] and the maximum charging current is set to Ic by the same method as the above-mentioned procedure (3).
With the constant voltage charger set to [A], Tc
[H] Charged and charged amount C [A which is time integration of charging current
h] = ∫ 0 Tc ic dt is obtained. Here, i c is the charging current [A], and t is the time [h].

【0024】(d)次に、手順(b),(c)で求めた
放電量、充電量から充電率[%]=(C/D)×100
を算出する。
(D) Next, the charging rate [%] = (C / D) × 100 from the discharge amount and the charge amount obtained in steps (b) and (c).
To calculate.

【0025】(e)次に、この充電率より、あらかじめ
求めておいた図2の充電率対蓄電池容量の相関曲線を用
いて蓄電池容量を推定する。この充電率が、例えば、4
0%とすると、図3から蓄電池容量は87%となる。す
なわち、定格容量200Ahの鉛蓄電池の場合174A
hとなる。
(E) Next, the storage battery capacity is estimated from the charging rate using the previously obtained correlation curve of the charging rate and the storage battery capacity in FIG. This charge rate is, for example, 4
If it is 0%, the storage battery capacity will be 87% from FIG. That is, in the case of a lead storage battery with a rated capacity of 200 Ah, 174 A
h.

【0026】(f)そこで、例えば、劣化判定基準を定
格容量の90%未満と定めれば、充電率43%未満が劣
化した鉛蓄電池、43%以上が良品と判定できる。従っ
て上記の40%は劣化品と判定する。
(F) Therefore, for example, if the deterioration criterion is set to be less than 90% of the rated capacity, it is possible to determine that the lead-acid battery has deteriorated when the charging rate is less than 43% and that it is a non-defective battery when 43% or more. Therefore, the above 40% is determined to be a deteriorated product.

【0027】なお、以上の実施例では、充電率から鉛蓄
電池の劣化を判定する方法について説明したが、常に同
一量の放電量で試験すれば一定時間の充電量より劣化を
判定できることは明らかである。ただし、この場合も実
質的に充電率から劣化を判定していることには変わりは
ない。このように、本発明は、その趣旨に沿って種々に
応用され、種々の実施態様をとりうる。
In the above embodiments, the method of judging the deterioration of the lead storage battery from the charging rate was explained, but it is clear that the deterioration can be judged from the charging quantity for a certain period of time by always testing with the same discharging quantity. is there. However, in this case as well, there is no change in that the deterioration is substantially determined from the charging rate. As described above, the present invention can be applied in various ways in accordance with the spirit thereof and can take various embodiments.

【0028】[0028]

【発明の効果】本発明の鉛蓄電池の劣化判定方法は、以
上述べたように、従来の容量試験による劣化判定方法と
は異なって、放電終始電圧まで放電を行う必要がないた
め、短時間でしかも簡単に鉛蓄電池の劣化判定ができる
利点がある。また、同様に、鉛蓄電池を完全に放電させ
ずに劣化判定が可能であることから、試験に要する稼動
や充放電に伴う電気的損失も少なくて済む利点がある。
As described above, the lead storage battery deterioration determination method of the present invention does not require discharge to the discharge end voltage, unlike the conventional capacity determination deterioration determination method. Moreover, there is an advantage that the deterioration of the lead storage battery can be easily determined. In addition, similarly, since it is possible to determine deterioration without completely discharging the lead storage battery, there is an advantage that electrical loss due to operation required for the test and charge / discharge can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の鉛蓄電池の劣化判定方法の一実施例の
手順を示すフローチャート
FIG. 1 is a flowchart showing a procedure of an embodiment of a lead storage battery deterioration determination method of the present invention.

【図2】本発明の原理を示すために鉛蓄電池の良品と劣
化品の充放電特性を試験した結果を示す図
FIG. 2 is a diagram showing the results of testing the charge and discharge characteristics of a good lead battery and a deteriorated lead storage battery in order to show the principle of the present invention.

【図3】上記実施例で用いる充電率と鉛蓄電池容量との
相関関係例を示す図
FIG. 3 is a diagram showing an example of the correlation between the charging rate and the capacity of the lead storage battery used in the above embodiment.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 尾形 努 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tsutomu Ogata 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 まず、劣化状態の異なる複数の鉛蓄電池
を用いて充電率と蓄電池容量との相関関係を測定により
求めておき、 次に、劣化判定対象鉛蓄電池を一定の放電電流で一定時
間放電して放電量を求め、 次に、一定の充電電圧で、最大の充電電流を定めて前記
劣化判定対象鉛蓄電池を一定時間充電して充電量を求
め、 次に、前記放電量に対する前記充電量の比である充電率
を算出し、 次に、前記算出した充電率より前記相関関係を用いて前
記劣化判定対象鉛蓄電池の蓄電池容量を推定し、 次に、前記推定した蓄電池容量より劣化状態を判定する
ことを特徴とする鉛蓄電池の劣化判定方法。
1. First, a correlation between a charging rate and a storage battery capacity is obtained by measurement using a plurality of lead storage batteries having different deterioration states, and then the deterioration determination target lead storage battery is discharged at a constant discharge current for a predetermined time. Discharge to obtain the discharge amount, then determine the maximum charge current at a constant charge voltage and charge the deterioration determination target lead-acid battery for a certain period of time to obtain the charge amount, and then charge the discharge amount to the charge amount. Calculate a charging rate that is the ratio of the amount, then estimate the storage battery capacity of the deterioration determination target lead storage battery using the correlation from the calculated charging rate, then, the deterioration state from the estimated storage battery capacity A method for determining deterioration of a lead storage battery, characterized by determining.
JP09173693A 1993-04-20 1993-04-20 Deterioration judgment method of lead storage battery Expired - Fee Related JP3340504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09173693A JP3340504B2 (en) 1993-04-20 1993-04-20 Deterioration judgment method of lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09173693A JP3340504B2 (en) 1993-04-20 1993-04-20 Deterioration judgment method of lead storage battery

Publications (2)

Publication Number Publication Date
JPH06310177A true JPH06310177A (en) 1994-11-04
JP3340504B2 JP3340504B2 (en) 2002-11-05

Family

ID=14034811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09173693A Expired - Fee Related JP3340504B2 (en) 1993-04-20 1993-04-20 Deterioration judgment method of lead storage battery

Country Status (1)

Country Link
JP (1) JP3340504B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110568361A (en) * 2019-09-12 2019-12-13 华中科技大学 Method for predicting health state of power battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110082692B (en) * 2019-05-07 2021-07-06 哈尔滨工业大学 Method for quantitative characterization of monomer inconsistency in low-earth-orbit satellite battery pack and extraction of battery pack degradation characteristics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110568361A (en) * 2019-09-12 2019-12-13 华中科技大学 Method for predicting health state of power battery
CN110568361B (en) * 2019-09-12 2020-09-08 华中科技大学 Method for predicting health state of power battery

Also Published As

Publication number Publication date
JP3340504B2 (en) 2002-11-05

Similar Documents

Publication Publication Date Title
CN109980309B (en) Overload-prevention power battery charging and discharging supervision control method
JP4759795B2 (en) Rechargeable battery remaining capacity detection method
US10126367B2 (en) Detection method of LI plating, method and apparatus for charging secondary battery and secondary battery system using the same
US6300763B1 (en) Method of calculating dynamic state-of-charge within a battery
JP2016186487A (en) Secondary battery state-of-charge measurement apparatus and secondary battery state-of-charge measurement method
JP6430054B1 (en) Storage battery capacity grasping method and capacity monitoring device
CN109856548B (en) Power battery capacity estimation method
CN111175653A (en) Method for identifying and prejudging capacity 'water-jumping' fault of ternary battery
US8823326B2 (en) Method for determining the state of charge of a battery in charging or discharging phase
WO2012132160A1 (en) Device for measuring degradation, rechargeable battery pack, method for measuring degradation, and program
CN113064086B (en) Lithium ion battery self-discharge rate testing method, device and system
JP3641367B2 (en) Alkaline battery capacity remaining amount estimation method and capacity estimation device
JP3687636B2 (en) Secondary battery degradation detection method and charger equipped with degradation detection function
CN113777501A (en) SOH estimation method of battery module
TW202004210A (en) Secondary battery diagnosing device and diagnosing method
US11251472B2 (en) System and method for operating batteries based on electrode crystal structure change
CN113075558B (en) Battery SOC estimation method, device and system
JP3460567B2 (en) Secondary battery deterioration detection method and charger equipped with deterioration detection function
JP2979938B2 (en) Lead-acid battery life judgment method
US11415637B2 (en) System and method for estimating battery state of health
JPH09115554A (en) Residual service life estimating method of negative electrode absorbing type sealed lead-acid battery
KR102255914B1 (en) Method and Apparatus for State-of-Charge Prediction of Lithium Ion Battery for Precision Enhancement at Low Temperature
JPH06310177A (en) Degradation judging method for lead-acid battery
CN115097308A (en) Method and device for analyzing SOH state of battery cell, electronic equipment and storage medium
JP2003068368A (en) Method to estimate capacity of nickel-hydrogen cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees