JPH063088A - Controlling device for refrigerant heater - Google Patents

Controlling device for refrigerant heater

Info

Publication number
JPH063088A
JPH063088A JP15640392A JP15640392A JPH063088A JP H063088 A JPH063088 A JP H063088A JP 15640392 A JP15640392 A JP 15640392A JP 15640392 A JP15640392 A JP 15640392A JP H063088 A JPH063088 A JP H063088A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
heat
heat exchange
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15640392A
Other languages
Japanese (ja)
Inventor
Katsuzo Konakawa
勝蔵 粉川
Katsuhiko Yamamoto
克彦 山本
Satoshi Imabayashi
敏 今林
Masahiro Ohama
昌宏 尾浜
Ryuta Kondo
龍太 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15640392A priority Critical patent/JPH063088A/en
Publication of JPH063088A publication Critical patent/JPH063088A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0025Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To protect a device and normalize the action of a system by a method wherein, when refrigerant becomes insufficient in a refrigerant heating section and hence the refrigerant is overheated, such state is immediately detected in a cooling/heating device wherein refrigerant is heated by high temperature gas such as combustion gas. CONSTITUTION:When temperature output of an overheat temperature detecting means 25 is equal to or higher than a certain value, a controller 29 outputs an overheat signal. And the controller 29 computes the time it takes for the temperature output of the means 25 to become a predetermined value larger than said value after the temperature output of a refrigerant temperature detecting means 28 has reached a specified value, and the controller 29 outputs an overheat signal even if the computed time is lower than the predetermined value. Consequently, the controller 29 outputs an overheat signal to stop the operation of a burner 8 without response delay, so that protection of device and action of system can be normalized and thermal decomposition and deterioration of refrigerant is avoided, and hence a system of high reliability can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燃焼ガス等の高温ガスに
より水、フロン等の冷媒を加熱し冷暖房装置に利用する
冷媒加熱器の制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a controller for a refrigerant heater which heats a refrigerant such as water or chlorofluorocarbon by a high temperature gas such as a combustion gas and uses the refrigerant in a cooling and heating apparatus.

【0002】[0002]

【従来の技術】従来の被加熱側流体に冷媒を用いて、燃
焼ガスにより加熱して液状冷媒を蒸発気化させて潜熱に
より熱を運び暖房を行うものに図3に示すような冷媒加
熱暖房機がある。これは燃焼ガスと冷媒との熱交換を行
う熱交換器1と放熱器2を循環用の密閉管路3で連結す
ると共に、密閉管路3中に設けた冷媒搬送機4により冷
媒を強制循環するように構成されている。図4は、熱交
換器1の従来例を示したもので(特開昭59−1071
67号公報)、水平方向に延びる円筒状の筒体の内周面
に長手方向に沿い多数のフィン5を設け、外周面の軸方
向にはパイプ保持部6及び冷媒が内部を流れるパイプ7
を設け、そして、バーナ8からの燃焼ガスを筒体内面に
沿い水平横方向に流して、冷媒搬送機4により送られ、
パイプ7内を流れる冷媒を加熱するものである。9は温
度検知器であり、前記パイプ保持部6の間の表面に取り
付け、冷媒が異常に温度上昇した場合、温度検知器9が
一定温度以上を検知すると加熱を停止するように制御し
ている。
2. Description of the Related Art A conventional refrigerant heating / heating machine as shown in FIG. 3 uses a refrigerant as a fluid to be heated and is heated by a combustion gas to evaporate a liquid refrigerant to carry heat by latent heat for heating. There is. This connects the heat exchanger 1 for exchanging heat between the combustion gas and the refrigerant with the radiator 2 by the closed pipe 3 for circulation, and forcibly circulates the refrigerant by the refrigerant carrier 4 provided in the closed pipe 3. Is configured to. FIG. 4 shows a conventional example of the heat exchanger 1 (Japanese Patent Laid-Open No. 59-1071).
67), a large number of fins 5 are provided on the inner peripheral surface of a cylindrical body extending in the horizontal direction along the longitudinal direction, and a pipe holding portion 6 and a pipe 7 through which a refrigerant flows in the axial direction of the outer peripheral surface.
Is provided, and the combustion gas from the burner 8 flows horizontally along the inner surface of the cylinder, and is sent by the refrigerant carrier 4.
The refrigerant flowing in the pipe 7 is heated. Reference numeral 9 denotes a temperature detector, which is attached to the surface between the pipe holding portions 6 and controls to stop heating when the temperature detector 9 detects a temperature higher than a certain temperature when the temperature of the refrigerant abnormally rises. .

【0003】[0003]

【発明が解決しようとする課題】しかし、この暖房シス
テムでは冷媒搬送に外部動力としての冷媒搬送機4が必
要であり、そこで暖房運転時のランニングコストを低減
することが望まれている。
However, this heating system requires the refrigerant carrier 4 as an external power source for carrying the refrigerant, and therefore it is desired to reduce the running cost during the heating operation.

【0004】暖房運転時のランニングコスト低減には冷
媒搬送用の外部動力を無くして無動力で熱搬送すること
が有効である。無動力熱搬送により冷媒加熱暖房を行う
場合、液状冷媒が加熱されて発生する気体冷媒の浮力に
よる自然循環力が重要となる。
In order to reduce the running cost during the heating operation, it is effective to remove the external power for carrying the refrigerant and carry the heat without power. When performing refrigerant heating and heating by non-powered heat transfer, the natural circulation force due to the buoyancy of the gaseous refrigerant generated by heating the liquid refrigerant is important.

【0005】しかしながら上記従来の構成で、冷媒加熱
の熱交換器1は、冷媒が水平方向に延びるパイプ7内を
流れるため、加熱されて気液二層混合状態の冷媒の気体
成分がスムーズに出口に向かって流れないため冷媒の淀
みを生じ、局部的な異常過熱を発生する。また筒体内の
燃焼室と熱交換部が一体であるため熱交換量が燃焼状態
により不均一となり、局部過熱を生じ冷媒の熱分解ある
いは機器の異常温度上昇など、機器の信頼性能上、課題
があった。そして、冷媒が異常温度上昇する時、冷媒が
潜熱変化した後顕熱変化するため、この時、冷媒は急激
に温度上昇し、温度検知器の熱容量による応答遅れが生
じた。そのため、冷媒が高温に過熱され熱分解を発生
し、性能劣化や腐食等機器の信頼性で問題があった。
However, in the above-described conventional structure, in the heat exchanger 1 for heating the refrigerant, since the refrigerant flows in the pipe 7 extending in the horizontal direction, the gas component of the refrigerant which is heated and is in the gas-liquid two-layer mixed state smoothly exits. Since it does not flow toward the cylinder, stagnation of the refrigerant occurs, causing local abnormal overheating. Also, since the combustion chamber and heat exchange section in the cylinder are integrated, the amount of heat exchange becomes uneven depending on the combustion state, causing local overheating, thermal decomposition of the refrigerant, abnormal temperature rise of the equipment, etc. there were. Then, when the refrigerant temperature rises abnormally, the refrigerant changes latent heat and then sensible heat. Therefore, at this time, the temperature of the refrigerant sharply rises and a response delay occurs due to the heat capacity of the temperature detector. Therefore, the refrigerant is overheated to a high temperature to cause thermal decomposition, and there is a problem in device reliability such as performance deterioration and corrosion.

【0006】本発明は上記課題を解決するため、バーナ
等で加熱する冷媒加熱器の自然循環サイクルの自然循環
力を増進させ、冷媒をスムーズに循環させて無動力熱搬
送を確実におこなわせ、高温燃焼ガスを燃焼室から均一
に熱交換部に導き冷媒の均一温度の維持により冷媒の熱
分解を生じなく信頼性の高いシステムとし、さらに冷媒
加熱器に冷媒が不足した場合等、冷媒が過熱された時、
直ちにこれを検知し機器の保護とシステムの動作を正常
化する。
In order to solve the above problems, the present invention enhances the natural circulation force of the natural circulation cycle of a refrigerant heater heated by a burner or the like to smoothly circulate the refrigerant to ensure non-powered heat transfer. The high-temperature combustion gas is guided uniformly from the combustion chamber to the heat exchange section to maintain a uniform temperature of the refrigerant, resulting in a highly reliable system that does not cause thermal decomposition of the refrigerant.Furthermore, when the refrigerant heater runs out of refrigerant, the refrigerant overheats. When
Immediately detect this and protect equipment and normalize system operation.

【0007】[0007]

【課題を解決するための手段】本発明は上記目的を達成
するため、冷媒入口部と冷媒出口部に連通した熱交換部
と、前記熱交換部を加熱する熱源部と、前記冷媒出口部
に設けた冷媒温度検知手段と、前記熱交換部に設けた過
熱温度検知手段と、前記過熱温度検知手段の温度出力が
一定値以上である時は過熱信号を出力する制御部とを備
え、前記制御部は前記冷媒温度検知手段の温度出力が所
定の値1になってから前記冷媒過熱温度検知手段の温度
出力が前記値1より大なる所定の値2になるまでの時間
を演算し、この演算した時間が所定の値以下である時は
過熱信号を出力する構成としてある。
In order to achieve the above object, the present invention provides a heat exchange section communicating with a refrigerant inlet section and a refrigerant outlet section, a heat source section for heating the heat exchange section, and a refrigerant outlet section. The refrigerant temperature detection means provided, the overheat temperature detection means provided in the heat exchange section, and a control section for outputting an overheat signal when the temperature output of the overheat temperature detection means is a certain value or more, the control The section calculates the time from when the temperature output of the refrigerant temperature detecting means reaches a predetermined value 1 until the temperature output of the refrigerant overheat temperature detecting means reaches a predetermined value 2 which is larger than the value 1, and this calculation When the time is less than a predetermined value, an overheat signal is output.

【0008】[0008]

【作用】本発明は上記構成によって、通常時、冷媒は、
冷媒入口部から連通した熱交換部にはいり、熱源部によ
り熱交換部で加熱され、高温冷媒ガスとなって冷媒出口
部から出て循環する。この時、冷媒は蒸発による潜熱で
熱を搬送するため、冷媒出口部に設けた冷媒温度検知手
段により検知した熱交換部から出る冷媒温度と、熱交換
部に設けた過熱温度検知手段により検知した熱源部によ
り加熱される熱交換部の温度は、ほぼ同じ温度となる。
熱交換部は熱源部から加熱される熱量と冷媒に放出する
熱量でバランスしており、運転中に冷媒が外部に洩れる
等、充填量の減少あるいは循環量が減少した時等の、熱
を冷媒に正常に放出できない時は、熱交換部が急激に過
熱し高温となって冷媒並びに冷凍機油が高温劣化する。
また、異常時として、運転開始時に熱交換部に冷媒が無
い時は、熱源部により熱交換部が過熱され過熱温度検知
手段の温度出力は急激に上昇する。
According to the present invention, the refrigerant is
It enters the heat exchange section communicating from the refrigerant inlet section, is heated in the heat exchange section by the heat source section, becomes high-temperature refrigerant gas, and exits from the refrigerant outlet section and circulates. At this time, since the refrigerant carries heat by latent heat due to evaporation, the temperature of the refrigerant discharged from the heat exchange section detected by the refrigerant temperature detection means provided at the refrigerant outlet and the overheat temperature detection means provided at the heat exchange section were detected. The temperatures of the heat exchange section heated by the heat source section are almost the same.
The heat exchange part balances the amount of heat that is heated from the heat source part and the amount of heat that is released to the refrigerant, so that the heat can be transferred to the refrigerant when, for example, the refrigerant leaks to the outside during operation, the filling amount decreases or the circulation amount decreases. If the heat is not released normally, the heat exchange section rapidly heats up to a high temperature, and the refrigerant and the refrigerating machine oil deteriorate at a high temperature.
Further, as an abnormal condition, when there is no refrigerant in the heat exchanging portion at the start of operation, the heat exchanging portion is overheated by the heat source portion, and the temperature output of the overheat temperature detecting means rapidly rises.

【0009】そこで、過熱温度検知手段の温度出力が一
定値以上になると過熱信号を制御部に出力し、機器の保
護とシステムの動作を正常化する。また、別の異常時と
して、運転開始時に熱交換部に冷媒が有り、かつ冷媒の
循環が停止した時は、最初、熱源部により熱交換部が受
けた熱はこの冷媒の蒸発潜熱に変わるため、過熱温度検
知手段の温度出力の応答が遅くなる。そこで、熱交換部
に有る冷媒が全て蒸発する時間を予知することにより、
機器を停止する。すなわち、加熱を始め、熱交換部の冷
媒が蒸発し始める冷媒温度検知手段の温度出力が所定の
値1になってから冷媒過熱温度検知手段の温度出力が所
定の値2になるまでの時間を制御部で演算し、この演算
した時間が所定の値以下である時は過熱信号を出力する
ことにより、機器の保護とシステムの動作を正常化す
る。
Therefore, when the temperature output of the overheat temperature detecting means exceeds a certain value, an overheat signal is output to the control section to normalize the protection of the equipment and the operation of the system. Further, as another abnormal time, when there is a refrigerant in the heat exchange section at the start of operation and the circulation of the refrigerant is stopped, the heat received by the heat exchange section by the heat source section is first changed to the latent heat of vaporization of this refrigerant. The response of the temperature output of the overheat temperature detecting means becomes slow. Therefore, by predicting the time when all the refrigerant in the heat exchange section evaporates,
Turn off the equipment. That is, the time from when the temperature output of the refrigerant temperature detecting means, which starts heating and when the refrigerant in the heat exchanging portion starts to evaporate, reaches a predetermined value 1 until the temperature output of the refrigerant overheat temperature detecting means reaches a predetermined value 2, The control unit calculates and when the calculated time is less than or equal to a predetermined value, an overheat signal is output to protect the equipment and normalize the operation of the system.

【0010】[0010]

【実施例】以下、本発明の実施例を添付図面を参照して
説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0011】図1から図2において、10は内面に断熱
材23を設けて燃焼室10aを形成した円筒状の燃焼室
ケースで、底部にバーナ8を臨ませている。この燃焼室
ケース10は先端の開口面を、多数の縦方向の高温ガス
通路12を有する高温ガス通路体12aの外面に接合さ
せている。高温ガス通路体12aは上下に2分割して両
者間に、各高温ガス通路12が燃焼室10aのガス出口
13へ連通するように横長の入口12bを形成してい
る。そして、高温ガス通路体12aは伝熱隔壁11に接
合して、これに高温ガス通路12の熱及び伝熱フィン2
2を通じて熱を均一に伝える。14aは燃焼室ケース1
0の先端を延長して、高温ガス通路体12aの各高温ガ
ス通路12の上下の出口側および高温ガス通路体12a
の左右側を囲んで排気室14bを形成した排気ケース
で、上部に排気路14を有する。15は伝熱隔壁11の
外面に熱的に結合させた熱交換部であり、縦方向の冷媒
通路16が多数設けられている。17は熱交換部15の
下端に設けた入口ヘッダー管、18は熱交換部15の上
端に設けた出口ヘッダー管でありそれぞれ冷媒入口管1
9、冷媒出口管20を接続し、この各々により冷媒回路
と接続しており、入口ヘッダー管17の他端には下方に
曲折しオイル抜き管21を設けてある。入口ヘッダー管
17と出口ヘッダー管18はそれぞれ縦方向の冷媒通路
16により連通している。22は伝熱隔壁11の内側に
熱的に接するように設けられた伝熱フィンであり多数枚
としてある。燃焼室10aはその高温ガス通路12と接
しない残りの外面を覆う断熱材23を燃焼ケース10の
内部に設けてある。高温ガス通路12の伝熱隔壁11の
一部に、この伝熱隔壁11に密着して伝熱具24を設
け、この伝熱具24に対抗する位置の熱交換部15に過
熱温度検知手段として温度サーミスタ25を取り付けた
構成としたものである。
In FIGS. 1 and 2, reference numeral 10 denotes a cylindrical combustion chamber case in which a heat insulating material 23 is provided on the inner surface to form a combustion chamber 10a, and a burner 8 is exposed at the bottom. The combustion chamber case 10 has an open end surface joined to the outer surface of a high temperature gas passage body 12a having a large number of vertical high temperature gas passages 12. The hot gas passage body 12a is vertically divided into two, and a horizontally long inlet 12b is formed between the two so as to communicate each hot gas passage 12 with the gas outlet 13 of the combustion chamber 10a. The hot gas passage body 12a is joined to the heat transfer partition wall 11, and the heat of the hot gas passage 12 and the heat transfer fins 2 are connected to the heat transfer partition wall 11.
Heat is evenly transmitted through 2. 14a is a combustion chamber case 1
0 of the high temperature gas passage body 12a is extended to the upper and lower outlet sides of the high temperature gas passage body 12a and the high temperature gas passage body 12a.
It is an exhaust case in which the exhaust chamber 14b is formed so as to surround the left and right sides of, and the exhaust path 14 is provided in the upper part. Reference numeral 15 denotes a heat exchange portion that is thermally coupled to the outer surface of the heat transfer partition wall 11, and has a large number of vertical refrigerant passages 16. Reference numeral 17 denotes an inlet header pipe provided at the lower end of the heat exchange unit 15, and 18 denotes an outlet header pipe provided at the upper end of the heat exchange unit 15.
9. The refrigerant outlet pipe 20 is connected to each other and connected to the refrigerant circuit by each of them, and the other end of the inlet header pipe 17 is provided with an oil drain pipe 21 bent downward. The inlet header pipe 17 and the outlet header pipe 18 are communicated with each other by a vertical refrigerant passage 16. Reference numeral 22 is a heat transfer fin provided so as to be in thermal contact with the inside of the heat transfer partition wall 11 and is a large number. The combustion chamber 10a is provided with a heat insulating material 23 inside the combustion case 10 for covering the remaining outer surface which is not in contact with the hot gas passage 12. A part of the heat transfer partition wall 11 of the high-temperature gas passage 12 is provided with a heat transfer tool 24 in close contact with the heat transfer partition wall 11, and the heat exchange section 15 at a position opposed to the heat transfer tool 24 serves as an overheat temperature detecting means. The temperature thermistor 25 is attached.

【0012】本実施例では、伝熱具24、伝熱フィン2
2、伝熱隔壁11をアルミ材とし、伝熱具24は伝熱フ
ィン22に嵌合した状態で伝熱隔壁11にブレージング
ロー付けすることにより、伝熱隔壁11と伝熱フィン2
2に伝熱具24を密着して設けてある。この伝熱具24
のほぼ中央に伝熱隔壁11を貫通し、熱交換部15の冷
媒通路16の近傍に至る穴を設け、この穴に温度サーミ
スタ25を熱伝導材を塗布して挿入し固定具26で保持
している。温度サーミスタ25の温度感温部は、先端に
設けてあり冷媒通路16の近くに位置する。28は冷媒
温度検知手段であり、出口管20の外壁面に保持具27
で咬めて取り付けた温度サーミスタである。29は出力
部と演算部を有する制御部であり、温度サーミスタ25
と温度サーミスタ28の検出出力を演算し、その結果の
出力によりシステムを制御するマイコン等で構成した制
御器である。温度サーミスタ28の検出出力によりバー
ナ8の燃焼量を制御する。温度サーミスタ25の検出出
力が一定値(90℃)以上である時は、過熱信号を制御
部29が出力し、また、制御部29の演算部にて、温度
サーミスタ28の検出出力が所定の値1(40℃)にな
ってから、温度サーミスタ25の検出出力が所定の値2
(70℃)になるまでの時間を演算し、この演算した時
間が所定の値(90秒)以下である時は過熱信号を出力
する。本実施例では、冷媒としてR−22を用いてい
る。。そして、冷媒回路は行き管30から、戻り管31
に至る間に放熱用の熱交換器等(図示せず)を構成す
る。なお、32は気液分離タンクである。33は雰囲気
温度検知手段であり、熱交換部15近傍に設けた温度サ
ーミスタである。
In this embodiment, the heat transfer tool 24 and the heat transfer fin 2 are used.
2. The heat transfer partition wall 11 is made of an aluminum material, and the heat transfer tool 24 is fitted to the heat transfer fins 22 and brazed to the heat transfer partition wall 11 so that the heat transfer partition wall 11 and the heat transfer fins 2
A heat transfer tool 24 is provided in close contact with the second member 2. This heat transfer tool 24
A hole that penetrates through the heat transfer partition wall 11 and reaches the vicinity of the refrigerant passage 16 of the heat exchange section 15 is provided substantially in the center, and the temperature thermistor 25 is coated with a heat conductive material and is inserted and held by the fixture 26. ing. The temperature sensitive portion of the temperature thermistor 25 is provided at the tip and is located near the refrigerant passage 16. Reference numeral 28 is a refrigerant temperature detecting means, and a holder 27 is provided on the outer wall surface of the outlet pipe 20.
It is a temperature thermistor bitten and attached by. Reference numeral 29 denotes a control unit having an output unit and a calculation unit, and the temperature thermistor 25
And a detection output of the temperature thermistor 28, and a controller configured by a microcomputer or the like for controlling the system by the output of the result. The combustion output of the burner 8 is controlled by the detection output of the temperature thermistor 28. When the detection output of the temperature thermistor 25 is a constant value (90 ° C.) or more, the control unit 29 outputs an overheat signal, and the calculation unit of the control unit 29 outputs the detection output of the temperature thermistor 28 at a predetermined value. After reaching 1 (40 ° C), the detection output of the temperature thermistor 25 reaches the specified value 2
The time until the temperature reaches (70 ° C.) is calculated, and when the calculated time is a predetermined value (90 seconds) or less, an overheat signal is output. In this embodiment, R-22 is used as the refrigerant. . Then, the refrigerant circuit goes from the going pipe 30 to the return pipe 31.
A heat exchanger or the like for heat dissipation (not shown) is configured between the above and. In addition, 32 is a gas-liquid separation tank. Reference numeral 33 denotes an ambient temperature detecting means, which is a temperature thermistor provided near the heat exchange section 15.

【0013】上記構成において、燃料の供給装置により
供給した燃料をバーナ8で燃焼させ、燃焼室10aに発
生した高温ガスは燃焼ガス出口13から入口12bを通
り高温ガス通路体12aの上下に2分割した各々に流れ
て高温ガス通路12と伝熱フィン22の間の通路を通
り、高温ガス通路12の上の出口から排気室14bに流
れる高温ガスと、高温ガス通路12の下の出口から高温
ガス通路体12aの左右側を囲んだ排気室14bに流れ
る高温ガスは上の排気室14bで合流し排気路14に流
れる。
In the above structure, the fuel supplied by the fuel supply device is burned by the burner 8, and the high temperature gas generated in the combustion chamber 10a is divided into two parts, the combustion gas outlet 13 and the inlet 12b, and the upper and lower parts of the high temperature gas passage body 12a. Flow into the exhaust chamber 14b through the passage between the hot gas passage 12 and the heat transfer fins 22, and the hot gas from the outlet below the hot gas passage 12 The high temperature gas flowing in the exhaust chamber 14b surrounding the left and right sides of the passage body 12a merges in the upper exhaust chamber 14b and flows into the exhaust passage 14.

【0014】冷媒入口管19を通って入口ヘッダー管1
7に入った液冷媒は、熱交換部15の下部より多数の縦
方向の冷媒通路16に分流して流れ、高温ガス通路12
内を流れる燃焼ガスおよび伝熱フィン22から伝熱隔壁
11を介して熱を熱交換部15に伝熱する。したがっ
て、この熱交換部15の縦方向の冷媒通路16内の冷媒
を入口ヘッダー17に近い下部より十分に加熱する。そ
こで加熱された液状冷媒は気化蒸発を開始し液の中に気
泡を生じる気液二相状態となる。発生した気泡は浮力効
果で縦方向に設けた冷媒通路16内を下方から上方に上
昇する。特に燃焼ガスは燃焼室10aから燃焼ガス出口
13を出たのち高温ガス通路12より伝熱隔壁11を介
し冷媒に伝熱するために、燃焼ガスの温度と流れが均一
となり熱交換部15の各部を均一に加熱できスムーズか
つ均一に冷媒を蒸発させ、かつ冷媒を局部過熱させるこ
とがなく無動力熱搬送を確実におこなわせ冷媒の熱分解
を生じない。そして、熱交換部15の冷媒通路16を均
一加熱できることにより、冷媒通路16の各々の流量が
均等となり全体としの抵抗を低減させ、気泡上昇力は強
められ自然循環力が強くなり上部へ冷媒を送る気泡ポン
プ作用が発生する。冷媒通路16の上端に達した冷媒は
出口ヘッダー管18に流入し冷媒出口管20より気液分
離タンク32に流れ、分離したガス冷媒は行き管30か
らの放熱用の熱交換器(図示せず)に向かって流出す
る。この熱交換器の放熱量の変動に対して、冷媒の温度
を温度センサ28で常に検知し、一定の温度になるよう
にバーナ8の燃焼量を制御部29でコントロールする。
Inlet header tube 1 through refrigerant inlet tube 19
The liquid refrigerant that has entered 7 flows into the multiple vertical refrigerant passages 16 from the lower portion of the heat exchange portion 15, and flows into the high temperature gas passages 12
Heat is transferred from the combustion gas flowing inside and the heat transfer fins 22 to the heat exchange section 15 via the heat transfer partition wall 11. Therefore, the refrigerant in the longitudinal refrigerant passage 16 of the heat exchange section 15 is sufficiently heated from the lower portion near the inlet header 17. Then, the heated liquid refrigerant starts vaporization and evaporation, and becomes a gas-liquid two-phase state in which bubbles are generated in the liquid. Due to the buoyancy effect, the generated bubbles rise upward from below in the refrigerant passage 16 provided in the vertical direction. Particularly, since the combustion gas leaves the combustion chamber 10a through the combustion gas outlet 13 and then transfers the heat from the high temperature gas passage 12 to the refrigerant through the heat transfer partition wall 11, the temperature and flow of the combustion gas become uniform, and each part of the heat exchange section 15 becomes uniform. Can be uniformly heated to evaporate the refrigerant smoothly and uniformly, and the refrigerant is not locally overheated so that the non-powered heat transfer is reliably performed and the thermal decomposition of the refrigerant does not occur. Since the refrigerant passage 16 of the heat exchange section 15 can be uniformly heated, the flow rate of each of the refrigerant passages 16 becomes uniform and the resistance as a whole is reduced, the bubble rising force is strengthened and the natural circulation force is strengthened, and the refrigerant is flown to the upper part. A bubble pump action to send occurs. The refrigerant reaching the upper end of the refrigerant passage 16 flows into the outlet header pipe 18 and flows from the refrigerant outlet pipe 20 into the gas-liquid separation tank 32, and the separated gas refrigerant is radiated from the going pipe 30 for heat dissipation (not shown). ) Towards. The temperature of the refrigerant is constantly detected by the temperature sensor 28 in response to the variation of the heat radiation amount of the heat exchanger, and the combustion amount of the burner 8 is controlled by the control unit 29 so that the temperature becomes constant.

【0015】また、高温ガス通路12を高温ガス通路体
12aで形成し、かつ伝熱隔壁11と密着した熱交換部
15で構成した二重壁構成により、前記内壁から伝熱フ
ィン22を通じて冷媒通路16に伝熱するため、伝熱効
率が上昇しまた多孔管構成の熱交換部15で構成した二
重壁構成による冷媒の燃焼ガス部への洩れ防止と高温の
燃焼室10aと冷媒通路16を高温ガス通路体12aで
完全に分離したため局部過熱による冷媒の熱分解、劣化
が生じ無く信頼性の高いシステムである。燃焼室10a
の高温ガス通路12と接しない燃焼室ケース10の内面
は断熱材23で覆い放熱を防止する。
Further, the high temperature gas passage 12 is formed by the high temperature gas passage body 12a, and the double wall structure is constituted by the heat exchange portion 15 which is in close contact with the heat transfer partition wall 11. Thus, the refrigerant passage is formed from the inner wall through the heat transfer fins 22. Since the heat is transferred to the heat exchanger 16, heat transfer efficiency is increased, and the double wall structure constituted by the heat exchange section 15 having the perforated pipe structure prevents the refrigerant from leaking to the combustion gas portion and keeps the high temperature combustion chamber 10a and the refrigerant passage 16 at a high temperature. Since it is completely separated by the gas passage body 12a, the refrigerant is not thermally decomposed or deteriorated due to local overheating, so that the system has high reliability. Combustion chamber 10a
The inner surface of the combustion chamber case 10 that is not in contact with the high temperature gas passage 12 is covered with a heat insulating material 23 to prevent heat radiation.

【0016】そして、通常運転中、冷媒は戻り管31、
冷媒入口管19から入口ヘッダ管17から熱交換部15
の冷媒通路16の部材にはいり、熱源部であるバーナ8
により熱交換部15で加熱され、高温冷媒ガスとなって
冷媒出口管20から行き管30に流出し循環する。冷媒
は蒸発による潜熱で搬送するため、冷媒の圧力に応じて
常に一定温度であり、冷媒出口管20に設けた温度サー
ミスタ28により検知した熱交換部15から出る冷媒温
度と熱交換部15に設けた温度サーミスタ25により検
知した熱交換部の温度はほぼ同じ温度となり、熱交換部
は熱源部から加熱される熱量と冷媒に放出する熱量でバ
ランスして一定の温度に平衡し保っている。
During normal operation, the refrigerant returns to the return pipe 31,
From the refrigerant inlet pipe 19 to the inlet header pipe 17 to the heat exchange unit 15
Of the burner 8 which is a heat source part.
Is heated in the heat exchange section 15 and becomes high-temperature refrigerant gas, which flows out from the refrigerant outlet pipe 20 to the going pipe 30 and circulates. Since the refrigerant is transported by latent heat due to evaporation, the temperature is always constant according to the pressure of the refrigerant, and the temperature of the refrigerant discharged from the heat exchange section 15 detected by the temperature thermistor 28 provided in the refrigerant outlet pipe 20 and the temperature of the heat exchange section 15 are provided. The temperature of the heat exchange section detected by the temperature thermistor 25 becomes almost the same temperature, and the heat exchange section balances the heat quantity heated from the heat source section and the heat quantity released to the refrigerant to keep a constant temperature.

【0017】運転中に冷媒が外部に洩れるなど充填量の
減少あるいは循環量が減少した時等、熱を冷媒に正常に
放出できない時、熱交換部15は、冷媒が潜熱変化から
顕熱変化に移行し、冷媒の温度が急激に温度が上昇する
ため、温度サーミスタ25は急速に上昇し応答遅れ無く
検知し、制御部29はただちに燃焼を停止するように動
作する。異常時として、運転開始時に熱交換部15に冷
媒が無い時は、同様に、バーナ8の燃焼熱により熱交換
部15が過熱され温度サーミスタ25の温度出力は急激
に上昇する。そこで、温度サーミスタ25の出力が一定
値(90℃)以上になると過熱信号を制御部29に出力
し、機器の保護とシステムの動作を正常化する。この場
合、冷媒が無い為、多少高温に過熱しても冷媒の劣化は
ない。そして、別の異常時として、運転開始時に熱交換
部15に冷媒が有り、かつ冷媒の循環が停止した時は、
最初、バーナ8により熱交換部15が受けた熱はこの冷
媒の蒸発潜熱に変わるため、温度サーミスタ25の出力
の応答が遅くなる。そこで、熱交換部15に有る冷媒が
全て蒸発する時間を予知することにより、機器を停止す
る。すなわち、バーナ8により加熱を始め熱交換部15
の冷媒が蒸発し始めると、同時に、出口管20の温度サ
ーミスタ28の出力は上昇する。温度サーミスタ28の
最初の温度上昇は、熱交換部15の各部分の熱容量や周
囲の温度の影響を受けてその温度上昇カーブは変化す
る。温度サーミスタ28の出力が所定の値(40℃)に
なった時、信号を制御部29に送り、この制御部29で
時間をカウントする。そして、熱交換部15に有る冷媒
が全て蒸発するに必要な時間は、熱交換部15に有る冷
媒量とバーナ8から受ける熱量で決まる。そのため、熱
交換部15の冷媒がほとんど無くなり冷媒が顕熱で熱搬
送を開始する時は、温度サーミスタ25の出力が急激に
上昇を開始する。そこで、熱交換部15の冷媒の蒸発開
始を温度サーミスタ28で検知してから、温度サーミス
タ25の出力が所定の値(70℃)になるまでの時間を
制御部29で演算し、この演算した時間が所定の値(9
0秒)以下である時は過熱信号を出力することにより、
熱交換部15の冷媒が完全に無くなる前に、この異常を
予知することが可能となり応答遅れによる熱交換部15
の異常な高温になることがなく、機器の保護とシステム
の動作を正常化する。それによって、冷媒加熱器に冷媒
が不足した場合等冷媒が過熱する時、直ちに冷媒の温度
を検知し機器の保護とシステムの動作を正常化でき、過
熱温度を低く保ち、冷媒の熱分解、劣化が生じ無く信頼
性の高いシステムにできる。
When heat cannot be normally released to the refrigerant, such as when the amount of charge is reduced or the amount of circulation is reduced due to leakage of the refrigerant to the outside during operation, the heat exchange section 15 causes the refrigerant to change from latent heat change to sensible heat change. Since the temperature of the refrigerant shifts and the temperature of the refrigerant rapidly rises, the temperature thermistor 25 rapidly increases and detects without a response delay, and the control unit 29 operates to immediately stop the combustion. When there is no refrigerant in the heat exchange section 15 at the start of operation as an abnormal time, similarly, the heat exchange section 15 is overheated by the combustion heat of the burner 8 and the temperature output of the temperature thermistor 25 rapidly rises. Therefore, when the output of the temperature thermistor 25 exceeds a certain value (90 ° C.), an overheat signal is output to the control unit 29 to normalize the device protection and system operation. In this case, since there is no refrigerant, there is no deterioration of the refrigerant even if it is overheated to a slightly high temperature. Then, as another abnormal time, when there is a refrigerant in the heat exchange section 15 at the start of operation and the circulation of the refrigerant is stopped,
Initially, the heat received by the heat exchanging portion 15 by the burner 8 is changed into the latent heat of vaporization of this refrigerant, so that the response of the output of the temperature thermistor 25 is delayed. Therefore, the equipment is stopped by predicting the time when all the refrigerant in the heat exchange section 15 evaporates. That is, heating is started by the burner 8 and the heat exchange section 15
When the above refrigerant starts to evaporate, at the same time, the output of the temperature thermistor 28 of the outlet pipe 20 increases. The initial temperature rise of the temperature thermistor 28 is affected by the heat capacity of each part of the heat exchange section 15 and the ambient temperature, and the temperature rise curve changes. When the output of the temperature thermistor 28 reaches a predetermined value (40 ° C.), a signal is sent to the control unit 29, and the control unit 29 counts time. The time required for all the refrigerant in the heat exchange unit 15 to evaporate is determined by the amount of refrigerant in the heat exchange unit 15 and the amount of heat received from the burner 8. Therefore, when the refrigerant in the heat exchange section 15 is almost exhausted and the refrigerant starts to convey heat by sensible heat, the output of the temperature thermistor 25 starts to rapidly increase. Therefore, the control unit 29 calculates the time from when the temperature thermistor 28 detects the start of evaporation of the refrigerant in the heat exchange unit 15 until the output of the temperature thermistor 25 reaches a predetermined value (70 ° C.). Time is a predetermined value (9
When it is 0 seconds or less, by outputting an overheat signal,
This abnormality can be predicted before the refrigerant in the heat exchanging section 15 is completely consumed, and the heat exchanging section 15 due to the response delay can be predicted.
It protects the equipment and normalizes the operation of the system without the abnormally high temperature. As a result, when the refrigerant overheats due to lack of refrigerant in the refrigerant heater, the temperature of the refrigerant can be immediately detected to protect the equipment and normalize the system operation, keep the overheat temperature low, and thermally decompose and deteriorate the refrigerant. The system can be made highly reliable without causing

【0018】また、熱交換部15の外周辺に雰囲気温度
検知手段する温度サーミスタ33を設け、この温度サー
ミスタ33の温度出力を制御部29に出力する。そし
て、制御部29ではこの出力に応じて冷媒温度検知手段
の温度出力の所定の値1を補正する(温度サーミスタ3
3の温度が低い時は前記所定の値1を低く)ことによ
り、温度サーミスタ28の最初の温度上昇時の、熱交換
部15の周囲の温度の影響によるその温度上昇カーブの
変化を修正できる。これにより、冷媒温度検知手段の温
度出力の所定の値を、誤動作無く、より低く設定するこ
とが可能となり、機器の異常による温度上昇をより早く
検知でき、熱交換部、冷媒等に加わる熱的ストレスを小
さくなり、耐久的に信頼性が向上する。
Further, a temperature thermistor 33 serving as an ambient temperature detecting means is provided around the outside of the heat exchange section 15, and the temperature output of the temperature thermistor 33 is output to the control section 29. Then, the control unit 29 corrects a predetermined value 1 of the temperature output of the refrigerant temperature detecting means in accordance with this output (temperature thermistor 3).
By lowering the predetermined value 1 when the temperature of 3 is low), it is possible to correct the change in the temperature rise curve due to the influence of the temperature around the heat exchange section 15 when the temperature of the temperature thermistor 28 first rises. As a result, the predetermined value of the temperature output of the refrigerant temperature detecting means can be set to a lower value without malfunction, the temperature rise due to the abnormality of the device can be detected earlier, and the thermal exchange part, the refrigerant, etc. Stress is reduced and reliability is improved in durability.

【0019】[0019]

【発明の効果】以上説明したように本発明は、冷媒入口
部と冷媒出口部に連通した熱交換部と、前記熱交換部を
加熱する熱源部と、前記冷媒出口部に設けた冷媒温度検
知手段と、前記熱交換部に設けた過熱温度検知手段と、
前記過熱温度検知手段の温度出力が一定値以上である時
は過熱信号を出力する制御部とを備え、前記制御部は前
記冷媒温度検知手段の温度出力が所定の値1になってか
ら前記冷媒過熱温度検知手段の温度出力が前記値1より
大なる所定の値2になるまでの時間を演算し、この演算
した時間が所定の値以下である時は過熱信号を出力する
ものであるから、次の効果が得られる。 (1)運転中に冷媒が外部に洩れるあるいは循環量が減
少した時は、過熱温度検知手段の温度出力が一定値以上
になると過熱信号を制御部から出力することにより、機
器の保護とシステムの動作を正常化できる。また、運転
開始時に熱交換部に冷媒が有り、かつ冷媒の循環が停止
した時も応答遅れなく直ちに冷媒の温度を検知し機器の
保護とシステムの動作を正常化でき、冷媒の熱分解、劣
化が生じ無く信頼性の高いシステムにできる。 (2)熱交換部の外周辺に雰囲気温度検出手段を設け、
この温度出力を制御部に出力し、この出力に応じて冷媒
温度検知手段の温度出力の所定の値を補正するので、冷
媒温度検知手段の温度出力の所定の値を、誤動作無く、
より低く設定することが可能となり、機器の異常による
温度上昇をより早く検知でき、熱交換部、冷媒等に加わ
る熱的ストレスが小さくなり、耐久的に信頼性が向上す
る。
As described above, according to the present invention, the heat exchange section communicating with the refrigerant inlet section and the refrigerant outlet section, the heat source section for heating the heat exchange section, and the refrigerant temperature detection provided at the refrigerant outlet section. Means, an overheat temperature detecting means provided in the heat exchange section,
A controller that outputs an overheat signal when the temperature output of the overheat temperature detecting means is equal to or higher than a certain value, and the controller controls the refrigerant after the temperature output of the refrigerant temperature detecting means reaches a predetermined value 1. The time until the temperature output of the overheat temperature detecting means reaches the predetermined value 2 which is larger than the value 1 is calculated, and when the calculated time is less than the predetermined value, the overheat signal is output. The following effects are obtained. (1) When the refrigerant leaks to the outside or the circulation amount decreases during operation, when the temperature output of the overheat temperature detecting means exceeds a certain value, an overheat signal is output from the control unit to protect the equipment and prevent the system from operating. The operation can be normalized. In addition, when there is a refrigerant in the heat exchange section at the start of operation and when the circulation of the refrigerant stops, the temperature of the refrigerant can be immediately detected without delaying the response to protect the equipment and normalize the operation of the system, and the thermal decomposition and deterioration of the refrigerant. The system can be made highly reliable without causing (2) An atmosphere temperature detecting means is provided around the outside of the heat exchange section,
This temperature output is output to the control unit, and the predetermined value of the temperature output of the refrigerant temperature detection means is corrected in accordance with this output, so the predetermined value of the temperature output of the refrigerant temperature detection means can be set without malfunction.
It becomes possible to set the temperature lower, the temperature rise due to the abnormality of the device can be detected earlier, the thermal stress applied to the heat exchange section, the refrigerant, etc. is reduced, and the reliability is improved in durability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明冷媒加熱器の制御装置の一実施例におけ
る要部を断面した斜視図
FIG. 1 is a perspective view showing a cross section of a main part of an embodiment of a control device for a refrigerant heater according to the present invention.

【図2】同装置の熱交換部の要部断面図FIG. 2 is a sectional view of an essential part of a heat exchange section of the same device.

【図3】従来の冷媒加熱器の回路構成図FIG. 3 is a circuit configuration diagram of a conventional refrigerant heater.

【図4】従来の冷媒加熱器の外観斜視図FIG. 4 is an external perspective view of a conventional refrigerant heater.

【符号の説明】[Explanation of symbols]

8 バーナー(熱源部) 15 熱交換部 17 入口ヘッダ管(冷媒入口部) 18 出口ヘッダ管(冷媒出口部) 25 過熱温度検知手段 28 冷媒温度検知手段 29 制御部 8 Burner (heat source part) 15 Heat exchange part 17 Inlet header pipe (refrigerant inlet part) 18 Outlet header pipe (refrigerant outlet part) 25 Overheat temperature detecting means 28 Refrigerant temperature detecting means 29 Control part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 尾浜 昌宏 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 近藤 龍太 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masahiro Obama 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Ryota Kondo, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】冷媒入口部と冷媒出口部に連通した熱交換
部と、前記熱交換部を加熱する熱源部と、前記冷媒出口
部に設けた冷媒温度検知手段と、前記熱交換部に設けた
加熱温度検知手段と、前記過熱温度検知手段の温度出力
が一定値以上である時は過熱信号を出力する制御部とを
備え、前記制御部は前記冷媒温度検知手段の温度出力が
所定の値1になってから前記冷媒過熱温度検知手段の温
度出力が前記値1より大なる所定の値2になるまでの時
間を演算し、この演算した時間が所定の値以下である時
は過熱信号を出力する冷媒加熱器の制御装置。
1. A heat exchange section communicating with a refrigerant inlet section and a refrigerant outlet section, a heat source section for heating the heat exchange section, a refrigerant temperature detecting means provided at the refrigerant outlet section, and a heat exchange section provided at the heat exchange section. And a control unit for outputting an overheat signal when the temperature output of the overheat temperature detection unit is equal to or higher than a certain value, and the control unit controls the temperature output of the refrigerant temperature detection unit to a predetermined value. The time from when it becomes 1 to when the temperature output of the refrigerant overheat temperature detecting means becomes a predetermined value 2 which is larger than the value 1 is calculated, and when the calculated time is less than the predetermined value, an overheat signal is output. Control device for refrigerant heater to output.
【請求項2】熱交換部の周辺に設けた雰囲気温度検出手
段と、この雰囲気温度検出手段の温度出力に応じて冷媒
温度検知手段の所定の値を補正した請求項1記載の冷媒
加熱器の制御装置。
2. The refrigerant heater according to claim 1, wherein the ambient temperature detecting means provided around the heat exchange section and the predetermined value of the refrigerant temperature detecting means are corrected in accordance with the temperature output of the ambient temperature detecting means. Control device.
JP15640392A 1992-06-16 1992-06-16 Controlling device for refrigerant heater Pending JPH063088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15640392A JPH063088A (en) 1992-06-16 1992-06-16 Controlling device for refrigerant heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15640392A JPH063088A (en) 1992-06-16 1992-06-16 Controlling device for refrigerant heater

Publications (1)

Publication Number Publication Date
JPH063088A true JPH063088A (en) 1994-01-11

Family

ID=15626982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15640392A Pending JPH063088A (en) 1992-06-16 1992-06-16 Controlling device for refrigerant heater

Country Status (1)

Country Link
JP (1) JPH063088A (en)

Similar Documents

Publication Publication Date Title
US4567351A (en) Electric space heater employing a vaporizable heat exchange fluid
JP2013235759A (en) Heating device
US20080277097A1 (en) Hot-Water Supply System Having Dual Pipe
KR100892547B1 (en) Absorption type water chiller and heater
US6928237B2 (en) Fluid heating apparatus
US5881952A (en) Heater for liquids
KR20110058442A (en) A boiler based on vacuum circulation
JPH063088A (en) Controlling device for refrigerant heater
JP2921264B2 (en) Refrigerant heater controller
JP2848113B2 (en) Refrigerant heater controller
JP3732885B2 (en) Insulation device for drain neutralization container
JP2834302B2 (en) Heat exchanger
JP2850587B2 (en) Heat exchanger
JP4066843B2 (en) Water heater
JP3019548B2 (en) Heat exchanger
JP2548380B2 (en) Heat exchanger
JP2834303B2 (en) Heat exchanger
KR950003784B1 (en) Hot water circulating apparatus
JPH06137707A (en) Refrigerator with intermittently operated sorption refrigerating plant
JPH05118778A (en) Heat exchanger
JPH05126488A (en) Heat exchanger
KR20030064706A (en) The steamer with drain structure of inner
JP2001142405A (en) Gas discharge display device
JP2674217B2 (en) Heat exchange equipment
JP2600930B2 (en) Heat exchange equipment