JPH06308294A - X-ray reflecting mirror - Google Patents

X-ray reflecting mirror

Info

Publication number
JPH06308294A
JPH06308294A JP5103131A JP10313193A JPH06308294A JP H06308294 A JPH06308294 A JP H06308294A JP 5103131 A JP5103131 A JP 5103131A JP 10313193 A JP10313193 A JP 10313193A JP H06308294 A JPH06308294 A JP H06308294A
Authority
JP
Japan
Prior art keywords
film
substrate
reflecting
mirror
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5103131A
Other languages
Japanese (ja)
Inventor
Kazunori Takenouchi
一憲 竹之内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP5103131A priority Critical patent/JPH06308294A/en
Publication of JPH06308294A publication Critical patent/JPH06308294A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/702Reflective illumination, i.e. reflective optical elements other than folding mirrors, e.g. extreme ultraviolet [EUV] illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70233Optical aspects of catoptric systems, i.e. comprising only reflective elements, e.g. extreme ultraviolet [EUV] projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
    • G03F7/70875Temperature, e.g. temperature control of masks or workpieces via control of stage temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • G03F7/70891Temperature

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To reduce the temperature rise of a mirror and improve durability and reliability by forming the substrate of the mirror with aluminum nitride ceramic, forming a surface smoothing film on the surface, and forming a reflecting film on it. CONSTITUTION:A surface smoothing film 2 is provided on a substrate 1 made of aluminum nitride ceramic (AlN 99.9wt.% or above), a reflecting film 3 is formed on it, a reflecting film 3 is formed on it, and the surface is formed as the reflecting surface of a mirror. Multiple lugs 1a are formed as cooling fins on the back face of the substrate 1 on the opposite side to the reflecting surface 4. The heat conductivity of the substrate 1 is very high, the heat of the reflecting surface 4 is easily transferred to the back face side of the substrate 1, and the temperature rise of the reflecting surface 4 can be reduced. When the lugs 1a are cooled with cooling water, the cooling efficiency of the mirror can be increased. When SiC or AlN is used for the material of the smoothing film 2, the heat of the reflecting surface 4 can be easily released. When gold, platinum, and SiO2 are laminated to form the reflecting film 3, the heat resistance can be further improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、X線露光装置、X線顕
微鏡等の装置に使用されるX線反射用ミラーに関するも
のである。なお、X線反射用ミラーとは、上記の装置に
おいてX線を反射させ、所定のX線光学系を実現するた
めのものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray reflecting mirror used in devices such as an X-ray exposure device and an X-ray microscope. The X-ray reflection mirror is a mirror for reflecting X-rays in the above device to realize a predetermined X-ray optical system.

【0002】[0002]

【従来の技術】X線露光装置は、X線を利用してマスク
のパターンをウェハ上に転写するものであり、半導体メ
モリー装置用として開発されつつある256メガ・ビッ
ト、1ギガビットの半導体装置の製造装置として使用さ
れ、露光装置の解像度を0.2μm以下とし、理論的に
は解像度0.05μmを実現できるものである。
2. Description of the Related Art An X-ray exposure apparatus, which transfers a mask pattern onto a wafer by using X-rays, is a 256-megabit, 1-Gigabit semiconductor device that is being developed for semiconductor memory devices. It is used as a manufacturing apparatus, and the resolution of an exposure apparatus is 0.2 μm or less, and theoretically a resolution of 0.05 μm can be realized.

【0003】また、X線顕微鏡は生体を生きたまま観察
できる特徴を持ち、今後の医学界で活躍が期待される装
置である。
Further, the X-ray microscope is a device which is expected to be useful in the medical field in the future because it has a feature that it can observe a living body as it is alive.

【0004】これらのX線露光装置、X線顕微鏡に使用
されるX線としては、一般的にSOR(シンクロトロン
・オーピタル・ラジエーション)装置で、真空容器中を
光速に近く運動している電子の進路を磁場によって曲げ
てやることにより、その電子がもともと運動していた方
向にシンクロトロン放射光が得られるが、このシンクロ
トロン放射光は紫外線領域からX線領域迄の光を含むこ
とから、この中から取り出される軟X線(波長10−1
00Å)が利用される。
As an X-ray used in these X-ray exposure apparatus and X-ray microscope, generally, an SOR (synchrotron-radial-radiation) apparatus is used, which is an electron moving near the speed of light in a vacuum container. By bending the path with a magnetic field, synchrotron radiation can be obtained in the direction in which the electrons were originally moving. Since this synchrotron radiation contains light from the ultraviolet region to the X-ray region, Soft X-rays (wavelength 10-1
00Å) is used.

【0005】このシンクロトロン放射光は、 強度が従来の光源に較べて非常に高い X線から紫外線領域までの広い波長範囲で連続的なス
ペクトル分布を持っている 強度が安定している 指向性が強い 発光が高真空中で行われるので、清浄な光源である などの特徴を持つ、優れた光源である。
This synchrotron radiation has a very high intensity compared to conventional light sources. It has a continuous spectral distribution in a wide wavelength range from X-rays to the ultraviolet region. It has a stable directivity. Since it emits strong light in a high vacuum, it is an excellent light source with features such as a clean light source.

【0006】また、SOR装置では電子の運動エネルギ
ーが大きいほど短波長のX線が得られ、目的の波長を自
在に取り出せることから、鋭い指向性、高輝度を持った
シンクロトロン放射光が得られる。
Further, in the SOR apparatus, X-rays of shorter wavelength can be obtained as the kinetic energy of electrons is larger, and the target wavelength can be freely extracted, so that synchrotron radiation having sharp directivity and high brightness can be obtained. .

【0007】従ってX線露光装置、X線顕微鏡に使用さ
れるX線反射用ミラーは、反射率および解像度を高める
ために超精密な表面粗さと平面度を有していること、及
び使用時の熱歪を緩和し高精度の形状を維持するために
高熱伝導率であることが要求されている。
Therefore, the mirror for X-ray reflection used in the X-ray exposure apparatus and the X-ray microscope has an ultra-precision surface roughness and flatness in order to improve reflectance and resolution, and High thermal conductivity is required in order to relax thermal strain and maintain a highly accurate shape.

【0008】このようなX線反射用ミラーは、図3に示
すように基体11の表面に白金、金、酸化シリコンをP
VD法等により積層して多層の反射膜13を形成して反
射面14を形成し、この反射膜13で所定のX線反射特
性を得るものが主流である。
In such an X-ray reflection mirror, as shown in FIG.
The mainstream method is one in which a multilayered reflective film 13 is formed by stacking by the VD method or the like to form a reflective surface 14, and a predetermined X-ray reflection characteristic is obtained with this reflective film 13.

【0009】そして、上記基体11の材質としては、従
来より銅、アルミニウム等の熱伝導、耐放射線性能の良
い金属材料(特開平3−279902号公報参照)や、
タングステン、タンタル、モリブデン等の高融点金属
(特開平2−218997号公報参照)、あるいはシリ
コン(特開平2−19850号、特開平2−37303
号公報等参照)等が用いられている。
As a material of the base 11, a metal material such as copper and aluminum having good heat conduction and radiation resistance has conventionally been used (see Japanese Patent Laid-Open No. 3-279902).
Refractory metals such as tungsten, tantalum, molybdenum (see JP-A-2-218997), or silicon (JP-A-2-19850, JP-A-2-37303).
No. gazette, etc.) are used.

【0010】また、基体11の材質として炭化珪素、酸
化アルミニウム、酸化ベリリウム、窒化珪素、窒化アル
ミニウムなど、高硬度、高融点のセラミックス材料を使
用し、その表面を鏡面加工してそのまま反射面とするこ
と(特開昭62−13518号公報参照)、特に高熱伝
導炭化珪素が好ましいこと(特開昭62−113104
号公報参照)が提案されている。
Further, a ceramic material having a high hardness and a high melting point such as silicon carbide, aluminum oxide, beryllium oxide, silicon nitride or aluminum nitride is used as the material of the base 11, and its surface is mirror-finished to be a reflection surface as it is. (Refer to Japanese Patent Laid-Open No. 62-13518), particularly high-thermal-conductivity silicon carbide is preferable (Japanese Patent Laid-Open No. 62-113104).
(See Japanese Patent Publication).

【0011】さらに、基体11を炭化珪素質セラミック
スで形成し、その表面に炭化珪素をCVDで形成した
後、その表面に反射膜を形成することも提案されている
(特開平3−126671号公報参照)。
Further, it has been proposed that the substrate 11 is made of silicon carbide ceramics, silicon carbide is formed on the surface of the substrate by CVD, and then a reflective film is formed on the surface thereof (Japanese Patent Laid-Open No. 3-126671). reference).

【0012】[0012]

【発明が解決しようとする課題】X線反射用ミラーのシ
ンクロトロン放射光の反射面14は非常に高温となるた
め、基体11の裏面側は水冷等による冷却が行われてい
る。そのため、基体11として銅等の金属材を用いた場
合は、金属の溶損や錆等の発生等の問題点があった。ま
た、金属材からなる基体11は高温時に変形して反射面
14の平坦度が悪くなりやすいという問題点もあった。
Since the reflection surface 14 of the synchrotron radiation of the X-ray reflection mirror has a very high temperature, the rear surface of the base 11 is cooled by water cooling or the like. Therefore, when a metal material such as copper is used as the base 11, there are problems such as metal melting loss and rust. There is also a problem that the base 11 made of a metal material is deformed at a high temperature and the flatness of the reflecting surface 14 is apt to deteriorate.

【0013】また、基体11としてセラミックスを用い
た場合は、セラミックスは一般的に熱伝導率が低いこと
から放熱性が悪く、熱変形などの問題が生じていた。さ
らに、セラミックス製基体11の表面には微少なボイド
が存在するため、反射面14の表面粗さを極めて小さく
することができず、反射率や解像度を向上できないとい
う不都合もあった。
Further, when ceramics is used as the substrate 11, ceramics generally have a low thermal conductivity, so that the heat dissipation is poor and problems such as thermal deformation occur. Furthermore, since minute voids are present on the surface of the ceramic base 11, the surface roughness of the reflecting surface 14 cannot be extremely reduced, and the reflectance and resolution cannot be improved.

【0014】また、基体11として炭化珪素質セラミッ
クスに炭化珪素膜を形成したものでも、やはり炭化珪素
質セラミックスは熱伝導率がさほど高くないことから、
放熱性が悪く、熱変形等の問題が生じていた。
Further, even when the silicon carbide film is formed on the silicon carbide ceramics as the base 11, the silicon carbide ceramics is not so high in thermal conductivity.
The heat dissipation was poor and problems such as thermal deformation occurred.

【0015】[0015]

【課題を解決するための手段】本発明は、上記の事情に
鑑み、X線反射用ミラーにおいて、基体を高熱伝導率の
窒化アルミニウム質セラミックスで形成するとともに、
その表面に表面平滑膜を形成し、さらにこの表面平滑膜
上に反射膜を形成したものである。
In view of the above-mentioned circumstances, the present invention provides a mirror for X-ray reflection, wherein the base is made of aluminum nitride ceramics having high thermal conductivity, and
A surface smoothing film is formed on the surface, and a reflecting film is further formed on the surface smoothing film.

【0016】また本発明は、高熱伝導率材からなる基体
に凹凸面を形成し、この凹凸面上に表面平滑膜を被着
し、さらにこの表面平滑膜上に反射膜を形成してX線反
射用ミラーを構成したものである。なお、上記凹凸面と
は、凹凸形状をした面や表面粗さの大きい粗面のことを
意味する。
According to the present invention, an uneven surface is formed on a substrate made of a material having a high thermal conductivity, a surface smoothing film is deposited on the uneven surface, and a reflecting film is further formed on the surface smoothing film to form an X-ray. This is a reflection mirror. The uneven surface means a surface having an uneven shape or a rough surface having a large surface roughness.

【0017】さらに本発明は、これらのX線反射用ミラ
ーにおいて、基体の裏側に冷却フィンとしての複数の突
起を形成したものである。
Further, according to the present invention, in these X-ray reflecting mirrors, a plurality of protrusions serving as cooling fins are formed on the back side of the substrate.

【0018】[0018]

【作用】本発明によれば、X線反射用ミラーの基体を極
めて熱伝導率の高い窒化アルミニウム質セラミックスで
形成することにより、シンクロトロン放射光の照射によ
る反射面の温度上昇を速やかに冷却機能を持つ裏面側へ
熱伝導させることができ、X線反射用ミラーの温度上昇
を軽減し耐久性、信頼性を向上させることができる。
According to the present invention, the base of the mirror for X-ray reflection is made of aluminum nitride ceramics having a very high thermal conductivity, so that the temperature rise of the reflecting surface due to the irradiation of synchrotron radiation can be rapidly cooled. It is possible to conduct heat to the back side of the mirror, reduce the temperature rise of the X-ray reflection mirror, and improve durability and reliability.

【0019】また、基体に表面平滑膜を形成すること
で、非常に滑らかな表面を形成し、この上に反射膜を形
成することで反射面の平坦度を優れたものとできる。さ
らに、表面平滑膜として高熱伝導率材を用いれば、反射
面の温度上昇を低減でき、反射面の精度を維持すること
ができる。
Further, by forming a surface smoothing film on the substrate, a very smooth surface is formed, and by forming a reflecting film on this, the flatness of the reflecting surface can be made excellent. Furthermore, if a high thermal conductivity material is used as the surface smoothing film, the temperature rise of the reflecting surface can be suppressed and the accuracy of the reflecting surface can be maintained.

【0020】また、基体に凹凸面を形成し、この凹凸面
上に表面平滑膜を形成することで、基体と表面平滑膜と
の接触面積を大きくして熱伝達率を向上させるととも
に、密着強度を高めることができ、X線反射用ミラーの
温度上昇を軽減し耐久性、信頼性を向上させることがで
きる。
By forming an uneven surface on the substrate and forming a surface smoothing film on the uneven surface, the contact area between the substrate and the surface smoothing film is increased to improve the heat transfer coefficient and the adhesion strength. The temperature rise of the X-ray reflection mirror can be reduced, and durability and reliability can be improved.

【0021】さらに、基体の裏面に冷却フィンの機能を
持った複数の突起を形成することにより、冷却性能を高
めることができ、耐久性、信頼性をさらに向上させるこ
とができる。
Further, by forming a plurality of protrusions having the function of cooling fins on the back surface of the substrate, it is possible to improve the cooling performance and further improve durability and reliability.

【0022】[0022]

【実施例】以下、本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0023】図1に示すX線反射用ミラーは、窒化アル
ミニウム質セラミックスからなる基体1に表面平滑膜2
を備え、この上に反射膜3を形成して、その表面を反射
面4としたものである。また、基体1の反射面4と反対
側の裏面には、冷却フィンとしての複数の突起1aを形
成してある。
The X-ray reflection mirror shown in FIG. 1 has a base 1 made of aluminum nitride ceramics, a surface smoothing film 2 and a surface smoothing film 2.
And a reflective film 3 is formed thereon, and the surface thereof is used as a reflective surface 4. A plurality of protrusions 1a as cooling fins are formed on the back surface of the base 1 opposite to the reflection surface 4.

【0024】表1に各種セラミックスとの特性の比較を
示すように、上記基体1を成す窒化アルミニウム質セラ
ミックスは熱伝導率が0.4cal・cm/cm2 ・s
ec・℃と極めて高いことから、反射面4の熱を基体1
の裏面側に伝えやすく、反射面4の温度上昇を低減する
ことができる。
As shown in Table 1 for comparison of characteristics with various ceramics, the aluminum nitride ceramics forming the substrate 1 has a thermal conductivity of 0.4 cal · cm / cm 2 · s.
The heat of the reflecting surface 4 is applied to the substrate 1 because it is extremely high at ec.
Can be easily transmitted to the back surface side, and the temperature rise of the reflecting surface 4 can be suppressed.

【0025】なお、窒化アルミニウム質セラミックスと
しては、AlN99.9重量%以上の高純度窒化アルミ
ニウム質セラミックス、あるいは焼結性を改善するため
に窒化アルミニウム粉末に焼結助剤を加え、1600〜
1900℃の非酸化性雰囲気中で焼成したものを用い
る。そして、上記焼結助剤としては、焼結体中に周期律
表第3a族元素化合物を0.01〜10重量%、アルカ
リ土類元素化合物を0.001〜10重量%含有するこ
とが好ましい。上記周期律表第3a族元素は焼結体の密
度を高め、熱伝導率を高めるために必要な成分であり、
特にY2 3 やEr2 3 を用いることが好ましい。ま
た、アルカリ土類元素は低温焼成を行うためのものであ
り、特にCaOを用いることが好ましい。さらに、窒化
アルミニウム質セラミックスの焼結体に平均結晶粒径は
1〜50μm、好ましくは2〜20μmが良い。また、
焼結体中の鉄やシリコン等の陽イオン不純物は0.5重
量%以下、好ましくは0.1重量%以下が良い。さら
に、粒界相がガーネット型結晶および/またはペロブス
カイト型結晶であることが好ましい。
As the aluminum nitride ceramics, high-purity aluminum nitride ceramics having an AlN content of 99.9% by weight or more, or a sintering aid is added to aluminum nitride powder to improve sinterability.
The one fired in a non-oxidizing atmosphere at 1900 ° C. is used. As the above-mentioned sintering aid, it is preferable that the sintered body contains 0.01 to 10% by weight of a Group 3a element compound of the periodic table and 0.001 to 10% by weight of an alkaline earth element compound. . The Group 3a element of the periodic table is a component necessary for increasing the density of the sintered body and increasing the thermal conductivity,
Particularly, it is preferable to use Y 2 O 3 or Er 2 O 3 . The alkaline earth element is used for low temperature firing, and CaO is particularly preferably used. Furthermore, the average crystal grain size of the sintered body of aluminum nitride ceramics is 1 to 50 μm, preferably 2 to 20 μm. Also,
The content of cationic impurities such as iron and silicon in the sintered body is 0.5% by weight or less, preferably 0.1% by weight or less. Further, the grain boundary phase is preferably a garnet type crystal and / or a perovskite type crystal.

【0026】また基体1の裏面には複数の突起1aを形
成しており、不図示の冷却装置を用いてこの突起1aを
冷却水で冷却すれば、X線反射用ミラーの冷却効率を高
めることができる。これらの突起1aは、基体1の成形
時に同時に形成したり、成形体の切削加工や焼結後の研
削加工によって容易に形成することができる。なお、X
線反射用ミラーは平面度を必要とするため、上記突起1
aの高さは全体厚みの1/2以下とすることが好まし
い。
Further, a plurality of projections 1a are formed on the back surface of the substrate 1, and if the projections 1a are cooled with cooling water using a cooling device (not shown), the cooling efficiency of the X-ray reflection mirror can be improved. You can These protrusions 1a can be formed at the same time when the base body 1 is formed, or can be easily formed by cutting the formed body or grinding after sintering. Note that X
Since the line-reflecting mirror requires flatness, the projection 1
The height of a is preferably 1/2 or less of the total thickness.

【0027】次に、表面平滑膜2は、基体1表面のボイ
ドを埋めて極めて滑らかな表面とするためのものであ
り、基体1の表面にCVD法やPVD法により形成す
る。なお、上記作用をなすためには表面平滑膜2の膜厚
は10μm以上とすることが好ましく、一方成膜コスト
や成膜残留応力等の点からは膜厚1mm以下が好まし
い。さらに、表面平滑膜2の表面をダイヤモンド砥粒等
で研磨して表面粗さ5ÅRMS以下の極めて滑らかな表
面とすることが好ましい。
Next, the surface smoothing film 2 is for filling the voids on the surface of the substrate 1 to form an extremely smooth surface, and is formed on the surface of the substrate 1 by the CVD method or the PVD method. In order to achieve the above-mentioned effect, the film thickness of the surface smoothing film 2 is preferably 10 μm or more, while the film thickness is preferably 1 mm or less from the viewpoint of film forming cost, film forming residual stress and the like. Further, it is preferable to polish the surface of the surface smoothing film 2 with diamond abrasive grains or the like to obtain an extremely smooth surface having a surface roughness of 5ÅRMS or less.

【0028】また、表面平滑膜2の材質は、基体1と熱
膨張率が近似し、かつ熱伝導率が0.1cal・cm/
cm2 ・sec・℃以上のものを用いることにより、反
射面4の熱を逃がしやすくすることができ、好ましくは
炭化珪素または窒化アルミニウムを用いる。なお、表面
平滑膜2として窒化アルミニウムを用いる場合は、成膜
温度や成膜ガス成分等をコントロールして、その表面を
原子間隔が最密の(0001)面となるようにすること
が好ましい。
The material of the surface smoothing film 2 has a coefficient of thermal expansion similar to that of the substrate 1 and a thermal conductivity of 0.1 cal.cm/cm.
The heat of the reflecting surface 4 can be easily dissipated by using a material of cm 2 · sec · ° C. or more, and silicon carbide or aluminum nitride is preferably used. When aluminum nitride is used as the surface smoothing film 2, it is preferable to control the film forming temperature, the film forming gas components, and the like so that the surface becomes the (0001) plane with the closest atomic spacing.

【0029】例えば、窒化アルミニウム質セラミックス
製の基体1の表面に炭化珪素からなる表面平滑膜2をC
VD法により0.2mmの膜厚で形成し、その表面を1
/4μmダイヤモンド砥粒でラッピングすることによ
り、表面粗さを自乗平均平方根粗さ(RMS)で2.8
Åと極めて滑らかな面とすることができた。
For example, a surface smoothing film 2 made of silicon carbide is formed on the surface of a substrate 1 made of aluminum nitride ceramics.
Formed to a thickness of 0.2 mm by the VD method and
The surface roughness is 2.8 as root mean square roughness (RMS) by lapping with / 4 μm diamond abrasive grains.
Å and the surface was extremely smooth.

【0030】また、窒化アルミニウム質セラミックス製
の基体1の表面に、窒化アルミニウムからなる表面平滑
膜2を、その表面が(0001)面となるようにCVD
法で0.2mmの膜厚で形成し、その表面を1/8μm
ダイヤモンド砥粒でラッピングすることにより、表面粗
さを2.8ÅRMSと極めて滑らかな面とすることがで
きた。
Further, the surface smoothing film 2 made of aluminum nitride is formed on the surface of the substrate 1 made of aluminum nitride ceramics so that the surface becomes the (0001) plane.
Method to form a film with a thickness of 0.2 mm, and its surface is 1/8 μm
By lapping with diamond abrasive grains, the surface roughness could be made to be 2.8ÅRMS and an extremely smooth surface.

【0031】いずれの例も、表面平滑膜2上に、金、白
金、酸化シリコンを積層して反射膜3を形成し、X線反
射用ミラーとすると、優れた耐熱性を示した。
In all of the examples, when gold, platinum and silicon oxide were laminated on the surface smoothing film 2 to form the reflecting film 3 and used as an X-ray reflecting mirror, excellent heat resistance was exhibited.

【0032】[0032]

【表1】 [Table 1]

【0033】次に本発明の他の実施例を説明する。Next, another embodiment of the present invention will be described.

【0034】図2に示すX線反射用ミラーは、高熱伝導
率材からなる基体1の表面に凹凸面1bを形成し、この
凹凸面1b上に表面平滑膜2および反射膜3を形成した
ものである。また、上記基体1の反射面4と反対側の裏
面には冷却フィンとしての複数の突起1aを形成してあ
る。そして、このX線ミラーは基体1の凹凸面1b上に
表面平滑膜2を備えていることから、両者の接合面積が
大きいため、熱伝達率を高めるとともに密着強度を大き
くすることができる。
The X-ray reflection mirror shown in FIG. 2 has an uneven surface 1b formed on the surface of a substrate 1 made of a high thermal conductivity material, and a surface smoothing film 2 and a reflective film 3 formed on the uneven surface 1b. Is. A plurality of projections 1a as cooling fins are formed on the back surface of the base 1 opposite to the reflection surface 4. Since this X-ray mirror is provided with the surface smoothing film 2 on the uneven surface 1b of the substrate 1, the bonding area between the two is large, so that the heat transfer coefficient and the adhesion strength can be increased.

【0035】なお、上記基体1の材質としては、放熱性
の点から熱伝導率が0.1cal・cm/cm2 ・se
c・℃以上のものが良く、耐食性の点からはセラミック
スを用いることが好ましい。具体的には、前述した窒化
アルミニウム質セラミックス、あるいは炭化珪素質セラ
ミックスを用いる。ここで炭化珪素質セラミックスと
は、炭化珪素(SiC)を主成分とし、硼素(B)と炭
素(C)、またはAl23 、Y2 3 等の焼結助剤を
含有する焼結体であり、表1に示すように他のセラミッ
クスに比べて高い熱伝導率を有している。基体1として
これらのセラミックスを用いることにより、反射面4の
熱を基体1の裏面側に伝えやすく、反射面4の温度上昇
を低減することができる。
The material of the substrate 1 has a heat conductivity of 0.1 cal · cm / cm 2 · se from the viewpoint of heat dissipation.
A material having a temperature of c · ° C. or higher is preferable, and ceramics are preferably used from the viewpoint of corrosion resistance. Specifically, the above-mentioned aluminum nitride ceramics or silicon carbide ceramics is used. Here, the silicon carbide ceramics is a sintered material containing silicon carbide (SiC) as a main component and containing boron (B) and carbon (C), or a sintering aid such as Al 2 O 3 or Y 2 O 3. As shown in Table 1, it is a body and has a higher thermal conductivity than other ceramics. By using these ceramics as the substrate 1, it is possible to easily transfer the heat of the reflecting surface 4 to the back surface side of the substrate 1 and reduce the temperature rise of the reflecting surface 4.

【0036】また基体1の裏面には複数の突起1aを形
成しており、不図示の冷却装置を用いてこの突起1aを
冷却水で冷却すれば、X線反射用ミラーの冷却効率を高
めることができる。これらの突起1aは、基体1の成形
時に同時に形成したり、成形体の切削加工や焼結後の研
削加工によって容易に形成することができる。なお、X
線反射用ミラーは平面度を必要とするため、上記突起1
aの高さは全体厚みの1/2以下とすることが好まし
い。
Further, a plurality of projections 1a are formed on the back surface of the substrate 1, and if the projections 1a are cooled with cooling water using a cooling device (not shown), the cooling efficiency of the X-ray reflection mirror can be improved. You can These protrusions 1a can be formed at the same time when the base body 1 is formed, or can be easily formed by cutting the formed body or grinding after sintering. Note that X
Since the line-reflecting mirror requires flatness, the projection 1
The height of a is preferably 1/2 or less of the total thickness.

【0037】さらに、基体1表面の凹凸面1bは、複数
の溝を形成して凹凸状としてあるが、溝に限らず複数の
突起や孔を形成して凹凸状としたものでも良く、この凹
凸高さが0.5mmより大きいと、表面平滑膜2の形成
が困難となるため、凹凸高さが0.5mm以下が好まし
い。また、凹凸面1bとして、基体1の表面を粗面とし
たものでもよい。例えば、基体1の表面を研削面のまま
としたり、サンドブラストやエッチング等の処理を行っ
て表面粗さ(Ra)が0.1μm以上の凹凸面1bとす
れば、上記のような効果を奏することができる。つま
り、凹凸面1bは、凹凸状または粗面であって、その凹
凸高さが0.1μm〜0.5mmの範囲内にあるもので
あれば良い。次に、表面平滑膜2は、基体1表面のボイ
ドを埋めて極めて滑らかな表面とするためのものであ
り、基体1の表面にCVD法やPVD法により形成する
ことができる。なお、上記作用をなすためには表面平滑
膜2の膜厚は10μm以上とすることが好ましく、一方
成膜コストや成膜残留応力等の点からは膜厚1mm以下
が好ましい。さらに、表面平滑膜の表面をダイヤモンド
砥粒等で研磨して表面粗さ5ÅRMS以下の極めて滑ら
かな表面とすることが好ましい。
Further, the uneven surface 1b on the surface of the substrate 1 has a plurality of grooves formed in an uneven shape, but it is not limited to the grooves, and a plurality of protrusions or holes may be formed in an uneven shape. If the height is larger than 0.5 mm, it becomes difficult to form the surface smoothing film 2, and therefore, the uneven height is preferably 0.5 mm or less. Further, as the uneven surface 1b, the surface of the substrate 1 may be roughened. For example, if the surface of the substrate 1 is left as a ground surface, or if it is subjected to a treatment such as sandblasting or etching to form an uneven surface 1b having a surface roughness (Ra) of 0.1 μm or more, the above-mentioned effects can be obtained. You can That is, the uneven surface 1b may be an uneven surface or a rough surface, and the uneven height thereof is within the range of 0.1 μm to 0.5 mm. Next, the surface smoothing film 2 is for filling voids on the surface of the substrate 1 to form an extremely smooth surface, and can be formed on the surface of the substrate 1 by the CVD method or the PVD method. In order to achieve the above-mentioned effect, the film thickness of the surface smoothing film 2 is preferably 10 μm or more, while the film thickness is preferably 1 mm or less from the viewpoint of film forming cost, film forming residual stress and the like. Further, it is preferable to polish the surface of the surface smoothing film with diamond abrasive grains or the like to obtain an extremely smooth surface having a surface roughness of 5ÅRMS or less.

【0038】また、表面平滑膜2の材質は、基体1と熱
膨張率が近似し、かつ熱伝導率が0.1cal・cm/
cm2 ・sec・℃以上のものを用いることにより、反
射面4の熱を逃がしやすくすることができ、好ましくは
炭化珪素または窒化アルミニウムを用いる。なお、表面
平滑膜2として窒化アルミニウムを用いる場合は、成膜
温度や成膜ガス成分等をコントロールして、その表面を
原子間隔が最密の(0001)面となるようにすること
が好ましい。
The material of the surface smoothing film 2 has a coefficient of thermal expansion similar to that of the substrate 1 and a thermal conductivity of 0.1 cal.cm/cm.
The heat of the reflecting surface 4 can be easily dissipated by using a material of cm 2 · sec · ° C. or more, and silicon carbide or aluminum nitride is preferably used. When aluminum nitride is used as the surface smoothing film 2, it is preferable to control the film forming temperature, the film forming gas components, and the like so that the surface becomes the (0001) plane with the closest atomic spacing.

【0039】例えば、窒化アルミニウム質セラミックス
からなる基体1の凹凸面1bとして、1mmピッチで深
さ0.1mmの溝を平行に形成し、この上に炭化珪素か
らなる表面平滑膜2をCVD法により0.2mmの膜厚
で形成し、その表面を1/4μmダイヤモンド砥粒でラ
ッピングすることにより、表面粗さ2.8ÅRMSと極
めて滑らかなの表面が得られた。
For example, as the uneven surface 1b of the substrate 1 made of aluminum nitride ceramics, grooves having a depth of 0.1 mm are formed in parallel at a pitch of 1 mm, and a surface smoothing film 2 made of silicon carbide is formed thereon by the CVD method. By forming a film having a thickness of 0.2 mm and lapping the surface thereof with 1/4 μm diamond abrasive grains, a surface having a surface roughness of 2.8ÅRMS and an extremely smooth surface was obtained.

【0040】また、上記と同様の構造で、表面平滑膜2
として窒化アルミニウムを用い、CVD法により表面が
(0001)面となるように0.2mmの膜厚で形成
し、その表面を1/8μmダイヤモンド砥粒でラッピン
グすることにより、表面粗さ2.8ÅRMSと極めて滑
らかな面とすることができた。
The surface smoothing film 2 having the same structure as that described above is used.
Aluminum nitride is used as the substrate, a 0.2 mm-thickness is formed by the CVD method so that the surface becomes a (0001) plane, and the surface is lapped with 1/8 μm diamond abrasive grains to obtain a surface roughness of 2.8 Å RMS. And it was possible to make a very smooth surface.

【0041】これらの基体1に金、白金、酸化シリコン
を積層して反射膜3を形成し、X線反射用ミラーとして
用いたところ、より一層耐熱性を向上することができ
た。
When gold, platinum and silicon oxide were laminated on these substrates 1 to form the reflection film 3 and used as an X-ray reflection mirror, the heat resistance could be further improved.

【0042】ここで、図2に示す本発明のX線反射用ミ
ラーとして、基体1の凹凸面1bを研削加工した後1m
mピッチで深さ0.1mmの溝を平行に形成したもの
(実施例1)、基体1の凹凸面1bを研削加工したまま
の面とし表面粗さ(Ra)を0.1μmとしたもの(実
施例2)、および基体1の表面をラッピングにより鏡面
加工して表面粗さ(Ra)を0.01μmとしたもの
(比較例)を用意した。
Here, as the X-ray reflection mirror of the present invention shown in FIG. 2, the uneven surface 1b of the substrate 1 is ground to 1 m after grinding.
One in which grooves having a depth of 0.1 mm were formed in parallel at an m pitch (Example 1), and the uneven surface 1b of the substrate 1 was used as a ground surface and the surface roughness (Ra) was set to 0.1 μm ( Example 2), and the surface of the substrate 1 which was mirror-finished by lapping to have a surface roughness (Ra) of 0.01 μm (comparative example) were prepared.

【0043】それぞれに対し、窒化アルミニウム、炭化
珪素の表面平滑膜2を0.2mmの膜厚で形成し、この
表面平滑膜2の付着力および熱伝達効率を比較したとこ
ろ、実施例1が最も優れ、次いで実施例2、最後に比較
例という順番となった。したがって、基体1に凹凸面1
bを形成することによって、表面平滑膜2の密着性およ
び熱伝達効率を向上できることがわかった。
A surface smoothing film 2 made of aluminum nitride or silicon carbide was formed to a thickness of 0.2 mm for each of them, and the adhesion and heat transfer efficiency of this surface smoothing film 2 were compared. Excellent, then Example 2, and finally Comparative Example. Therefore, the uneven surface 1 is formed on the substrate 1.
It was found that by forming b, the adhesion and heat transfer efficiency of the surface smoothing film 2 can be improved.

【0044】以上の実施例において、X線反射用ミラー
のセッティングのための金属材料としては、熱膨張係数
が基体1に近いタングステンが好ましい。さらに、本発
明のX線反射用ミラーを成す基体1の裏面にタングステ
ンの板状体を接着して冷却フィンを構成することもでき
る。
In the above embodiments, as the metal material for setting the X-ray reflection mirror, tungsten whose thermal expansion coefficient is close to that of the substrate 1 is preferable. Furthermore, a cooling fin may be formed by bonding a tungsten plate member to the back surface of the base body 1 forming the X-ray reflection mirror of the present invention.

【0045】また、X線反射用ミラーは、SOR装置直
近で直接シンクロトロン放射光が照射される1次ミラー
から順次2次、3次と複数のミラーで所定のX線光学系
を形成していくために、その形状は多岐にわたるもので
あり、本発明のX線反射用ミラーも図に示したものに限
らず、さまざまな形状とできることは言うまでもない。
Further, the X-ray reflection mirror forms a predetermined X-ray optical system by a plurality of mirrors in order from the primary mirror which is directly irradiated with synchrotron radiation light in the immediate vicinity of the SOR device. In order to proceed, there are various shapes, and it goes without saying that the X-ray reflection mirror of the present invention is not limited to the one shown in the figure, and various shapes are possible.

【0046】[0046]

【発明の効果】以上のように、本発明によれば、X線露
光装置、X線顕微鏡におけるシンクロトロン放射光等の
高強度の光を反射させるX線反射用ミラーにおいて、そ
の基体を窒化アルミニウム質セラミックスで形成すると
ともに、その表面に表面平滑膜を備え、さらにその上に
反射膜を形成したことによって、基体として高熱伝導
率、高融点の窒化アルミニウム質セラミックスを用いて
いるため、反射面の平坦性を長期にわたって維持するこ
とができ、X線反射用ミラーとしての耐久性、信頼性を
向上させることができる。
As described above, according to the present invention, in an X-ray exposure mirror, an X-ray reflection mirror for reflecting high intensity light such as synchrotron radiation in an X-ray microscope, the substrate is aluminum nitride. It is made of high quality ceramics, has a surface smooth film on its surface, and has a reflective film formed on it, so that aluminum nitride ceramics with high thermal conductivity and high melting point are used as the base material. The flatness can be maintained for a long time, and the durability and reliability of the X-ray reflection mirror can be improved.

【0047】また、本発明によれば、X線反射用ミラー
において、高熱伝導率材からなる基体に凹凸面を形成
し、この凹凸面上にに表面平滑膜および反射膜を形成す
ることで、表面平滑膜と基体との接合面積を大きくし、
熱伝達効率を高め、密着性を増すことができる。そのた
め、反射面の平坦性を長期にわたって維持することがで
き、X線反射用ミラーとしての耐久性、信頼性を向上さ
せることができる。
Further, according to the present invention, in the mirror for X-ray reflection, the concavo-convex surface is formed on the substrate made of the high thermal conductivity material, and the surface smoothing film and the reflective film are formed on the concavo-convex surface. Increase the bonding area between the surface smoothing film and the base,
The heat transfer efficiency can be increased and the adhesion can be increased. Therefore, the flatness of the reflecting surface can be maintained for a long period of time, and the durability and reliability of the X-ray reflecting mirror can be improved.

【0048】さらに、X線反射用ミラーを成す基体の裏
面側にフィン機能を持つ複数の突起を形成することによ
り、冷却性能が向上し、一層耐久性、信頼性を向上させ
ることができる。
Further, by forming a plurality of protrusions having a fin function on the back surface side of the base body forming the X-ray reflecting mirror, cooling performance can be improved, and durability and reliability can be further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のX線反射用ミラーを示す斜視図であ
る。
FIG. 1 is a perspective view showing an X-ray reflection mirror of the present invention.

【図2】本発明のX線反射用ミラーの他の実施例を示す
斜視図である。
FIG. 2 is a perspective view showing another embodiment of the X-ray reflection mirror of the present invention.

【図3】従来のX線反射用ミラーを示す斜視図である。FIG. 3 is a perspective view showing a conventional X-ray reflection mirror.

【符号の説明】[Explanation of symbols]

1 :基体 1a:突起 1b:凹凸面 2 :表面平滑膜 3 :反射膜 4 :反射面 1: substrate 1a: protrusion 1b: uneven surface 2: surface smoothing film 3: reflective film 4: reflective surface

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】X線を反射させるミラーにおいて、基体を
窒化アルミニウム質セラミックスで形成するとともに、
この基体上に表面平滑膜および反射膜を備えてなるX線
反射用ミラー。
1. A mirror for reflecting X-rays, wherein the base is made of aluminum nitride ceramics, and
An X-ray reflecting mirror having a surface smoothing film and a reflecting film on this substrate.
【請求項2】X線を反射させるミラーにおいて、高熱伝
導率材からなる基体に凹凸面を形成するとともに、この
凹凸面上に表面平滑膜および反射膜を備えてなるX線反
射用ミラー。
2. A mirror for reflecting X-rays, wherein an uneven surface is formed on a substrate made of a material having a high thermal conductivity, and a smooth surface film and a reflecting film are provided on the uneven surface.
【請求項3】上記基体における反射面の裏面に、冷却フ
ィンとすべく複数の突起を形成したことを特徴とする請
求項1または請求項2記載のX線反射用ミラー。
3. The X-ray reflection mirror according to claim 1, wherein a plurality of protrusions are formed on the back surface of the reflecting surface of the base body to serve as cooling fins.
JP5103131A 1993-04-28 1993-04-28 X-ray reflecting mirror Pending JPH06308294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5103131A JPH06308294A (en) 1993-04-28 1993-04-28 X-ray reflecting mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5103131A JPH06308294A (en) 1993-04-28 1993-04-28 X-ray reflecting mirror

Publications (1)

Publication Number Publication Date
JPH06308294A true JPH06308294A (en) 1994-11-04

Family

ID=14345995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5103131A Pending JPH06308294A (en) 1993-04-28 1993-04-28 X-ray reflecting mirror

Country Status (1)

Country Link
JP (1) JPH06308294A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0955565A2 (en) 1998-05-08 1999-11-10 Nikon Corporation Mirror for soft x-ray exposure apparatus
EP1522892A1 (en) * 2003-10-09 2005-04-13 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2006037494A2 (en) * 2004-09-30 2006-04-13 Carl Zeiss Smt Ag Device for adjusting the temperature of elements
WO2005109104A3 (en) * 2004-05-06 2006-06-08 Zeiss Carl Laser Optics Gmbh Optical component having an improved thermal behavior
US7483223B2 (en) 2004-05-06 2009-01-27 Carl Zeiss Smt Ag Optical component having an improved transient thermal behavior and method for improving the transient thermal behavior of an optical component
WO2015107812A1 (en) * 2014-01-14 2015-07-23 株式会社アライドマテリアル Aln substrate
KR20160040560A (en) * 2013-08-07 2016-04-14 칼 짜이스 에스엠테 게엠베하 Mirror, more particularly for a microlithographic projection exposure apparatus
JP2022084640A (en) * 2015-01-22 2022-06-07 カール・ツァイス・エスエムティー・ゲーエムベーハー Method for producing reflective optical element, reflective optical element, and use of reflective optical element

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0955565A3 (en) * 1998-05-08 2001-05-30 Nikon Corporation Mirror for soft x-ray exposure apparatus
EP0955565A2 (en) 1998-05-08 1999-11-10 Nikon Corporation Mirror for soft x-ray exposure apparatus
US7397531B2 (en) 2003-10-09 2008-07-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1522892A1 (en) * 2003-10-09 2005-04-13 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US7965456B2 (en) 2004-05-06 2011-06-21 Carl Zeiss Smt Gmbh Optical component having an improved transient thermal behavior and method for improving the transient thermal behavior of an optical component
WO2005109104A3 (en) * 2004-05-06 2006-06-08 Zeiss Carl Laser Optics Gmbh Optical component having an improved thermal behavior
US7483223B2 (en) 2004-05-06 2009-01-27 Carl Zeiss Smt Ag Optical component having an improved transient thermal behavior and method for improving the transient thermal behavior of an optical component
WO2006037494A3 (en) * 2004-09-30 2006-07-20 Zeiss Carl Smt Ag Device for adjusting the temperature of elements
WO2006037494A2 (en) * 2004-09-30 2006-04-13 Carl Zeiss Smt Ag Device for adjusting the temperature of elements
KR20160040560A (en) * 2013-08-07 2016-04-14 칼 짜이스 에스엠테 게엠베하 Mirror, more particularly for a microlithographic projection exposure apparatus
CN105518532A (en) * 2013-08-07 2016-04-20 卡尔蔡司Smt有限责任公司 Mirror, more particularly for microlithographic projection exposure apparatus
US20160154317A1 (en) * 2013-08-07 2016-06-02 Carl Zeiss Smt Gmbh Mirror, in particular for a microlithographic projection exposure apparatus
US10310382B2 (en) * 2013-08-07 2019-06-04 Carl Zeiss Smt Gmbh Mirror, in particular for a microlithographic projection exposure apparatus
WO2015107812A1 (en) * 2014-01-14 2015-07-23 株式会社アライドマテリアル Aln substrate
JPWO2015107812A1 (en) * 2014-01-14 2017-03-23 株式会社アライドマテリアル AlN substrate
JP2022084640A (en) * 2015-01-22 2022-06-07 カール・ツァイス・エスエムティー・ゲーエムベーハー Method for producing reflective optical element, reflective optical element, and use of reflective optical element

Similar Documents

Publication Publication Date Title
KR20180033153A (en) Composite substrate and composite substrate manufacturing method
EP0955565A2 (en) Mirror for soft x-ray exposure apparatus
JP5971172B2 (en) Fluorescent light source device
JP2008085283A (en) Heating apparatus with enhanced thermal uniformity, and method for making thereof
CN111527447B (en) Color wheel and projector
JP6592188B2 (en) Adsorption member
JPH06308294A (en) X-ray reflecting mirror
JP2008109060A (en) Method for depositing reflective multilayer film of reflective mask blank for euv lithography and method for producing reflecting mask blank for euv lithography
JPH08152499A (en) X-ray mirror
JP6841043B2 (en) Fluorescent light source device and its manufacturing method
JP6834478B2 (en) Fluorescent light source device and its manufacturing method
JP2020109796A (en) Semiconductor device, semiconductor device manufacturing method, and substrate bonding method
JP4761948B2 (en) Sintered silicon carbide and parts for semiconductor manufacturing equipment using the same
JP3347444B2 (en) X-ray mirror
JPH09142996A (en) Reflection type mask substrate
JP3297571B2 (en) Electrostatic chuck
JP2560126B2 (en) Synchrotron radiation reflection mirror
JP4795529B2 (en) Ceramic substrate, thin film circuit substrate, and method for manufacturing ceramic substrate
JPH11329918A (en) Soft x-ray projection aligner
CN111352180A (en) Reflection structure, preparation method of reflection structure and wavelength conversion device
JP3347564B2 (en) Processing jig and ion beam processing apparatus using the same
JPH0682601B2 (en) Mirror for X-ray exposure system
JP2003078084A (en) Heatsink and sub-mount
US5848120A (en) X-ray mask blank, X-ray mask and pattern transfer method
KR102461305B1 (en) Surface coating method of cooling jacket for ingot growing device