JPH06307813A - Method and device for measuring three-dimensional position on curved surface - Google Patents

Method and device for measuring three-dimensional position on curved surface

Info

Publication number
JPH06307813A
JPH06307813A JP5095922A JP9592293A JPH06307813A JP H06307813 A JPH06307813 A JP H06307813A JP 5095922 A JP5095922 A JP 5095922A JP 9592293 A JP9592293 A JP 9592293A JP H06307813 A JPH06307813 A JP H06307813A
Authority
JP
Japan
Prior art keywords
measured
curved surface
video camera
coordinate system
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5095922A
Other languages
Japanese (ja)
Other versions
JP3195851B2 (en
Inventor
Naoki Yamada
直樹 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP09592293A priority Critical patent/JP3195851B2/en
Publication of JPH06307813A publication Critical patent/JPH06307813A/en
Application granted granted Critical
Publication of JP3195851B2 publication Critical patent/JP3195851B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To provide accurate measurability by solving as simultaneous equation the curved surface approximating formula, obtained by calculating on the basis of a plurality of point data pieces actually measured, and the line-of-view equation calculated from the image receiving screen of a video camera. CONSTITUTION:For example from the image receiving screen of a video camera 16 corresponding to the part where a coating flaw is generated, a host computer 14 calculates the line-of-view equation Ee expressing a straight line, on which the flaw generation part passes, in the video camera coordinate system by the use of the data stored in a calibration data memory 32. Among the three-dimensional position data of a plurality of points obtained by a coordinate measuring means 44 to be stored in an actually measured data memory 34, the host computer 14 selects a specified plurality of point data pieces in correspondence to the photographing region of the video camera 16, and through calculations the curved surface shape of the coating film surface 4 on the car body concerned 2 is acquired as a curved surface approximating formula Ec of the video camera coordinate system. A processor 36 calculates the flaw generation part by solving the curved surface approximating formula Ec and line-of-view equation Ee as simultaneous equation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、車体等のように曲面形
状を有する物体上の被計測点の三次元位置をビデオカメ
ラを用いて計測する、曲面上の三次元位置計測方法及び
その装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a three-dimensional position on a curved surface and a device for measuring the three-dimensional position of a point to be measured on an object having a curved surface such as a vehicle body using a video camera. It is about.

【0002】[0002]

【従来の技術】車体塗装の仕上り品質の良否は車両の商
品性に大きく影響するので、一般に、車両製造ラインの
車体塗装工程の後工程には塗膜欠陥検査工程が設けられ
ている。この塗膜欠陥検査工程においては、車体表面に
施された塗膜に対して種々の欠陥検査が行われる。例え
ば、特開昭62−233710号公報には、塗膜表面に
光を照射し、その塗膜表面からの反射光から得られる情
報に基づいて塗膜の欠陥検査を行う塗膜欠陥検査装置が
開示されている。
2. Description of the Related Art Since the quality of finish of a vehicle body coating has a great influence on the marketability of a vehicle, a coating film defect inspection step is generally provided after the vehicle body coating step in a vehicle manufacturing line. In this coating film defect inspection step, various kinds of defect inspections are performed on the coating film applied to the vehicle body surface. For example, Japanese Patent Application Laid-Open No. 62-233710 discloses a coating film defect inspection apparatus which irradiates a coating film surface with light and inspects the coating film for defects based on information obtained from reflected light from the coating film surface. It is disclosed.

【0003】そして、上記塗膜欠陥検査工程において塗
膜欠陥が検出された場合には、後工程で塗膜研磨等によ
る塗膜欠陥の修正処理が行われるが、この修正処理がロ
ボット等により自動的に行われる場合には、上記塗膜欠
陥の発生部位を三次元的に計測して後工程に伝達する必
要がある。
When a coating film defect is detected in the coating film defect inspection process, a coating film defect correction process such as coating film polishing is performed in a subsequent process. This correction process is automatically performed by a robot or the like. In this case, it is necessary to three-dimensionally measure the site where the coating film defect occurs and transmit it to the subsequent process.

【0004】このため従来より、特開平2−30920
2号公報に開示されているような立体視による三次元位
置計測方法が用いられている。
Therefore, in the past, Japanese Patent Laid-Open No. 2-30920
A three-dimensional position measuring method by stereoscopic vision as disclosed in Japanese Patent Publication No. 2 is used.

【0005】この計測方法においては、2台のビデオカ
メラにより車体表面上の同一領域を撮像して上記塗膜欠
陥検査を行うようになっており、塗膜欠陥が検出された
ときには、各ビデオカメラの受像画面上における塗膜欠
陥発生部位(被計測点)の画素位置のずれから、塗膜欠
陥発生部位を三次元的に計測するようになっている。
In this measuring method, the same area on the vehicle body surface is imaged by two video cameras to inspect the coating film defect. When a coating film defect is detected, each video camera is detected. The coating film defect generation portion is three-dimensionally measured from the deviation of the pixel position of the coating film defect generation portion (measured point) on the image receiving screen.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来の三次元位置計測方法においては、次のような問題が
生じていた。すなわち、立体視による三次元位置計測を
行うためには、ビデオカメラが2台必要であり、また、
塗膜欠陥発生部位が複数箇所にある場合には、両ビデオ
カメラ相互間で、受像画面上における各塗膜欠陥発生部
位の画素位置の対応付けを行うことが困難となることが
少なくないことから、塗膜欠陥発生部位を正確に計測す
る上で支障をきたす場合が多かった。
However, the above-mentioned conventional three-dimensional position measuring method has the following problems. That is, two video cameras are required to perform three-dimensional position measurement by stereoscopic vision.
When there are multiple coating film defect locations, it is often difficult to associate the pixel positions of each coating film defect location on the image receiving screen between both video cameras. However, there are many cases in which there is a hindrance in accurately measuring a coating film defect occurrence site.

【0007】なお、上記問題は、車体表面の塗膜欠陥部
位を計測する場合に限らず、曲面形状を有する物体上の
被計測点の三次元位置をビデオカメラを用いて計測する
場合一般において同様に生じ得る問題である。
The above problem is not limited to the case where the coating film defective portion on the vehicle body surface is measured, but is generally the same when the three-dimensional position of the measured point on the object having the curved surface shape is measured using the video camera. It is a problem that can occur.

【0008】本発明は、このような事情に鑑みてなされ
たものであって、曲面形状を有する物体上の被計測点の
三次元位置を簡単かつ正確に計測することができる、曲
面上の三次元位置計測方法及びその装置を提供すること
を目的とするものである。
The present invention has been made in view of the above circumstances, and it is possible to easily and accurately measure the three-dimensional position of a point to be measured on an object having a curved surface. It is an object of the present invention to provide an original position measuring method and its apparatus.

【0009】[0009]

【課題を解決するための手段】本発明に係る曲面上の三
次元位置計測方法及びその装置は、予め物体上の複数の
点の三次元位置を計測し、そのデータに基づいて曲面近
似式を算出するとともに、ビデオカメラの受像画面上に
おける被計測点の画素位置を基に該被計測点を通る直線
を表わす視線方程式を算出し、これら両式を連立させて
その交点を求めることにより、1台のビデオカメラで被
計測点の三次元位置を計測できるようにし、もって上記
目的達成を図るようにしたものである。
A three-dimensional position measuring method on a curved surface and an apparatus therefor according to the present invention measure three-dimensional positions of a plurality of points on an object in advance and calculate a curved surface approximation formula based on the data. In addition to the calculation, a line-of-sight equation that represents a straight line passing through the measured point is calculated based on the pixel position of the measured point on the image-receiving screen of the video camera, and these two equations are simultaneously expressed to obtain the intersection point. The three-dimensional position of the point to be measured can be measured with a single video camera, thereby achieving the above-mentioned object.

【0010】すなわち、請求項1記載の発明は、被計測
空間内の所定位置に配された曲面形状を有する物体上の
被計測点の三次元位置を、該被計測点を含む前記物体上
の所定領域を撮像するビデオカメラを用いて計測する方
法であって、前記物体上の複数の点の三次元位置を、前
記被計測空間を規定する被計測空間座標系における座標
で計測し、これら計測された点データの中から所定の複
数の点データを選択し、これら選択された点データに基
づき前記物体の曲面形状を曲面近似式として表わし、さ
らにこの曲面近似式を、前記被計測空間座標系と所定の
座標対応関係を有するようにして前記ビデオカメラに対
して設定されたビデオカメラ座標系に座標変換して表わ
し、一方、前記ビデオカメラの受像画面上における前記
被計測点の画素位置から、前記ビデオカメラ座標系にお
いて前記被計測点を通る直線を表わす視線方程式を算出
し、その後、この視線方程式と前記ビデオカメラ座標系
で表わされた前記曲面近似式とを連立させて解くことに
より、前記被計測点の前記ビデオカメラ座標系における
座標を算出し、さらに、この座標を前記被計測空間座標
系に座標変換することにより、前記被計測点の三次元位
置計測を行う、ことを特徴とするものである。
That is, according to the first aspect of the present invention, the three-dimensional position of the measured point on the object having a curved surface shape, which is arranged at a predetermined position in the measured space, is set on the object including the measured point. A method of measuring using a video camera for imaging a predetermined area, comprising measuring three-dimensional positions of a plurality of points on the object with coordinates in a measured space coordinate system that defines the measured space, and measuring these. A plurality of predetermined point data are selected from the selected point data, the curved surface shape of the object is represented as a curved surface approximation formula based on these selected point data, and the curved surface approximation formula is further defined as the measured space coordinate system. Is converted into a video camera coordinate system set for the video camera so as to have a predetermined coordinate correspondence relationship with the pixel position of the measured point on the image receiving screen of the video camera. To calculate a line-of-sight equation that represents a straight line passing through the measured point in the video camera coordinate system, and then solve the line-of-sight equation and the curved surface approximation formula expressed in the video camera coordinate system simultaneously. By calculating the coordinates of the measured point in the video camera coordinate system, and by further converting the coordinates into the measured space coordinate system, three-dimensional position measurement of the measured point is performed. It is a feature.

【0011】また、請求項2記載の発明は、被計測空間
内の所定位置に配された曲面形状を有する物体上の被計
測点の三次元位置を、該被計測点を含む前記物体上の所
定領域を撮像するビデオカメラを用いて計測する方法で
あって、前記物体上の複数の点の三次元位置を、前記被
計測空間を規定する被計測空間座標系における座標で計
測し、これら計測された点データの中から所定の複数の
点データを選択し、これら選択された点データに基づき
前記物体の曲面形状を曲面近似式として表わし、一方、
前記被計測空間座標系と所定の座標対応関係を有するよ
うにして前記ビデオカメラに対して設定されたビデオカ
メラ座標系において、前記ビデオカメラの受像画面上に
おける前記被計測点の画素位置から、前記被計測点を通
る直線を表わす視線方程式を算出し、さらに、この視線
方程式を前記被計測空間座標系に座標変換し、その後、
この座標変換された視線方程式と前記曲面近似式とを連
立させて解くことにより、前記被計測点の三次元位置計
測を行う、ことを特徴とするものである。
According to a second aspect of the present invention, the three-dimensional position of a measured point on an object having a curved surface shape and arranged at a predetermined position in the measured space is set on the object including the measured point. A method of measuring using a video camera for imaging a predetermined area, comprising measuring three-dimensional positions of a plurality of points on the object with coordinates in a measured space coordinate system that defines the measured space, and measuring these. Select a predetermined plurality of point data from among the point data, and express the curved surface shape of the object as a curved surface approximation formula based on the selected point data, while
In the video camera coordinate system set for the video camera so as to have a predetermined coordinate correspondence with the measured space coordinate system, from the pixel position of the measured point on the image receiving screen of the video camera, A line-of-sight equation representing a straight line passing through the measured point is calculated, and further, this line-of-sight equation is coordinate-converted into the measured space coordinate system, and thereafter,
The coordinate-transformed line-of-sight equation and the curved surface approximation equation are simultaneously solved to solve the three-dimensional position of the measured point.

【0012】[0012]

【発明の作用および効果】上記構成に示すように、物体
上の複数の点の実測データの中から選択された所定の複
数の点データに基づいて算出した曲面近似式とビデオカ
メラの受像画面上における被計測点の画素位置から算出
した視線方程式とを連立させて解いた交点として、被計
測点の三次元位置を計測するようになっているので、1
台のビデオカメラで被計測点の三次元位置を計測するこ
とができる。
As described above, the curved surface approximation formula calculated on the basis of a plurality of predetermined point data selected from the measured data of a plurality of points on the object and the image receiving screen of the video camera. Since the three-dimensional position of the measured point is measured as an intersection obtained by simultaneously solving the line-of-sight equation calculated from the pixel position of the measured point at
It is possible to measure the three-dimensional position of the measured point with one video camera.

【0013】したがって、本発明によれば、ビデオカメ
ラの所要台数を削減することができるとともに、ビデオ
カメラが2台の場合に生じる、両ビデオカメラ相互間で
の画素位置の対応付けが不要となり、これにより、たと
え複数の被計測候補点がある場合であっても、曲面形状
を有する物体上の被計測点の三次元位置を簡単かつ正確
に計測することができる。
Therefore, according to the present invention, it is possible to reduce the required number of video cameras, and it becomes unnecessary to associate the pixel positions between the two video cameras, which occurs when there are two video cameras. This makes it possible to easily and accurately measure the three-dimensional position of a measured point on an object having a curved surface even if there are a plurality of measured candidate points.

【0014】この場合において、上記実測データから複
数の点データを選択する際、上記物体の広い領域にわた
って選択を行うようにしてもよいが、車体等のように複
雑な曲面形状を有する物体の場合には、この曲面形状を
曲面近似式として表わすために選択すべき点データは厖
大な数になり、このため曲面近似式の次数が高くなるの
でデータ演算処理時間も長くなってしまうが、請求項3
に記載したように、計測データから複数の点を選択する
際、ビデオカメラの撮像領域に応じた物体上の所定領域
内で計測された点データの中から行うようにすれば、物
体の曲面形状を分割して比較的単純な曲面形状とするこ
とが可能となり、これにより曲面近似式の次数を下げて
データ演算処理時間を短くすることができる。
In this case, when selecting a plurality of point data from the actual measurement data, selection may be performed over a wide area of the object, but in the case of an object having a complicated curved surface shape such as a vehicle body. In addition, since the point data to be selected in order to express this curved surface shape as a curved surface approximation formula becomes an enormous number, and therefore the order of the curved surface approximation formula becomes high, the data calculation processing time also becomes long. Three
As described in, when selecting multiple points from the measurement data, if it is performed from the point data measured within a predetermined area on the object according to the imaging area of the video camera, the curved surface shape of the object Can be divided into a relatively simple curved surface shape, whereby the order of the curved surface approximation formula can be lowered and the data calculation processing time can be shortened.

【0015】ところで、本発明のように、上記曲面近似
式を、物体上の点の三次元位置を実際に計測して得られ
た点データに基づいて算出する代りに、物体のCADデ
ータを利用してこれを算出するようにすることも考えら
れる。しかしながら、このようにCADデータを利用し
た曲面近似式算出は、次のような問題がある。すなわ
ち、CADデータから算出された曲面近似式を用いての
被計測点の三次元位置計測は、被計測空間内の所定位置
に上記物体が正確に配されていることを前提としている
が、物体の実際の位置と上記所定位置との間には多少の
ずれが不可避的に生じるため、このずれが大きい場合に
は、高い三次元位置計測精度を得ることができない。ま
た、厖大なCADデータを記憶しておくための記憶容量
の大きなメモリが必要となる。これに対し、本発明にお
いては、実際に計測して得られた点データに基づいて曲
面近似式を算出するようになっているので、物体の実際
の位置と上記所定位置とのずれがあってもこれによる三
次元位置計測精度への影響がなく、高い三次元位置計測
精度を得ることができる。また、計測された点データを
記憶するだけの記憶容量の小さなメモリを用意するだけ
で足りる。
By the way, as in the present invention, instead of calculating the curved surface approximation formula based on the point data obtained by actually measuring the three-dimensional position of the point on the object, CAD data of the object is used. Then, it is possible to calculate this. However, the calculation of the curved surface approximate expression using the CAD data has the following problems. That is, the three-dimensional position measurement of the measured point using the curved surface approximation formula calculated from the CAD data is premised on that the object is accurately arranged at a predetermined position in the measured space. Since some deviation inevitably occurs between the actual position and the above-mentioned predetermined position, if this deviation is large, high three-dimensional position measurement accuracy cannot be obtained. In addition, a memory having a large storage capacity for storing enormous CAD data is required. On the other hand, in the present invention, since the curved surface approximation formula is calculated based on the point data obtained by actual measurement, there is a deviation between the actual position of the object and the predetermined position. However, this does not affect the accuracy of three-dimensional position measurement, and high accuracy of three-dimensional position measurement can be obtained. Further, it is sufficient to prepare a memory having a small storage capacity for storing the measured point data.

【0016】[0016]

【実施例】以下、添付図面を参照しながら、本発明の実
施例について説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0017】図1は、本発明に係る曲面上の三次元位置
計測装置の一実施例を示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of a three-dimensional position measuring apparatus on a curved surface according to the present invention.

【0018】この三次元位置計測装置10は、車両製造
ラインの車体2の塗膜欠陥検査ステーションにおいて、
塗膜欠陥が検出されたとき、該塗膜欠陥の発生部位を三
次元的に計測する装置であって、ビデオカメラロボット
12とホストコンピュータ14と、その周辺機器とから
なっている。
This three-dimensional position measuring apparatus 10 is used in a coating film defect inspection station of a vehicle body 2 of a vehicle manufacturing line.
When a coating film defect is detected, the device is a device for three-dimensionally measuring the portion where the coating film defect occurs, and includes a video camera robot 12, a host computer 14, and its peripheral devices.

【0019】上記ビデオカメラロボット12は、ビデオ
カメラ(CCDカメラ)16が、ロボット本体18のア
−ム先端部に取り付けられてなり、ロボット制御盤20
によって、ロボット本体18を作動させてビデオカメラ
16の向きを三次元的に変え得るようになっている。
The video camera robot 12 has a video camera (CCD camera) 16 attached to the arm tip of a robot body 18, and a robot control panel 20.
The robot body 18 can be operated to change the orientation of the video camera 16 three-dimensionally.

【0020】車体2は、パレット22の所定位置に載置
された状態で、コンベア24によって、図示矢印方向に
搬送される。ホストコンピュータ14には、コンベア2
4に配置されたエンコーダ26からのエンコーダパルス
に基づいてシーケンサ28から車体2の位置情報が入力
される。シーケンサ28から車体2が塗膜欠陥検査ステ
ーションまで搬送されたことが情報入力されると、ホス
トコンピュータ14は、ロボット制御盤20にこれを出
力する。これにより、ロボット制御盤20は、ロボット
本体18を作動させてビデオカメラ16の向きを車体2
と所定間隔を置きながら車体2の表面に沿って三次元的
に変えて、車体2に施された塗膜表面4の欠陥検査を行
う。この塗膜表面4の欠陥検査方法については、特開平
4−204314号公報に開示されているので、その詳
細な説明は省略するが、塗膜表面4と平行な平面内にお
いて一方向にのみ光学特性が変化する照射光で塗膜表面
4を照射しながら、該塗膜表面4をビデオカメラ16で
撮像し、その受像画面を画像処理装置38において解析
することにより、塗膜欠陥を検出するようになってい
る。
The vehicle body 2 is conveyed in the direction of the arrow in the figure by the conveyor 24 while being placed at a predetermined position on the pallet 22. The host computer 14 has a conveyor 2
The position information of the vehicle body 2 is input from the sequencer 28 based on the encoder pulse from the encoder 26 arranged in No. 4. When information that the vehicle body 2 has been conveyed to the coating film defect inspection station is input from the sequencer 28, the host computer 14 outputs this to the robot control panel 20. As a result, the robot control panel 20 activates the robot body 18 so that the direction of the video camera 16 is changed to the body 2
Then, three-dimensionally changing along the surface of the vehicle body 2 at a predetermined interval, a defect inspection of the coating film surface 4 applied to the vehicle body 2 is performed. This defect inspection method for the coating film surface 4 is disclosed in Japanese Patent Laid-Open No. 4-204314, so a detailed description thereof will be omitted, but only in one direction in a plane parallel to the coating film surface 4. While irradiating the coating film surface 4 with irradiation light whose characteristics change, the coating film surface 4 is imaged by the video camera 16 and the image receiving screen is analyzed by the image processing device 38 to detect the coating film defect. It has become.

【0021】ロボット制御盤20は、図2に示すよう
に、ビデオカメラ16に対して、その受像画面上におけ
るCCD(画素)配列の横方向および縦方向ならびにビ
デオカメラ16の光軸方向に座標軸Xc、Yc、Zcを
各々有するビデオカメラ座標系Σcを設定しており、ビ
デオカメラロボット12が設置された空間(被計測空
間)を規定する被計測空間座標系Σwに対するビデオカ
メラ座標系Σcの座標変換パラメータを随時ホストコン
ピュータ14に入力する。あるいは、ティーチングデー
タをメモリに予め記憶しておき、それを随時取り出して
くるようにしてもよい。
As shown in FIG. 2, the robot control panel 20 has a coordinate axis Xc with respect to the video camera 16 in the horizontal and vertical directions of the CCD (pixel) array on the image receiving screen and in the optical axis direction of the video camera 16. , Yc, Zc respectively are set, and coordinate conversion of the video camera coordinate system Σc to the measured space coordinate system Σw that defines the space (measured space) in which the video camera robot 12 is installed is set. Parameters are input to the host computer 14 as needed. Alternatively, the teaching data may be stored in the memory in advance and taken out at any time.

【0022】ホストコンピュータ14は、塗膜欠陥の発
生部位Pd(被計測点)に対応するビデオカメラ16の
受像画面30上の画素位置Pp(図3参照)から、ビデ
オカメラ座標系Σcにおいて塗膜欠陥発生部位Pdが通
る直線を表わす視線方程式Eeを算出する。なお、この
視線方程式Eeの算出にあたっては、キャリブレーショ
ンデータメモリ32に記憶されているキャリブレーショ
ンデータが用いられる。このキャリブレーションデータ
は、撮影時のビデオカメラ16のキャリブレーション結
果を基に受像画面30上の各画素位置から該画素位置に
対応する視線方程式Eeを算出する際に用いられるデー
タである。
The host computer 14 applies the coating film in the video camera coordinate system Σc from the pixel position Pp (see FIG. 3) on the image receiving screen 30 of the video camera 16 corresponding to the coating film defect occurrence site Pd (measured point). A line-of-sight equation Ee representing a straight line passing through the defect occurrence site Pd is calculated. Note that the calibration data stored in the calibration data memory 32 is used to calculate the line-of-sight equation Ee. This calibration data is data used when calculating the line-of-sight equation Ee corresponding to each pixel position on the image receiving screen 30 based on the calibration result of the video camera 16 at the time of shooting.

【0023】本実施例に係る三次元位置計測装置10
は、車体2の表面上の複数の点のデータを記憶した実測
データメモリ34を備えている。上記点データは、車体
2が塗膜欠陥検査ステーションまで搬送されてくる間
に、座標計測手段44により、上記複数の点の三次元位
置を被計測空間座標系Σwにおける座標で計測して得ら
れたデータである。上記座標計測手段44は、車体2の
エッジ部位あるいはマーキングされた部位等を1対のビ
デオカメラを用いてステレオ視することにより、上記点
データの計測を行うようになっている。なお、これ以外
にも、測長器等他の計測手段を用いて上記計測を行うよ
うにしてもよい。
Three-dimensional position measuring apparatus 10 according to this embodiment
Includes a measured data memory 34 that stores data of a plurality of points on the surface of the vehicle body 2. The point data is obtained by measuring the three-dimensional positions of the plurality of points with the coordinates in the measured space coordinate system Σw by the coordinate measuring means 44 while the vehicle body 2 is conveyed to the coating film defect inspection station. Data. The coordinate measuring means 44 measures the point data by stereoscopically viewing an edge portion or a marked portion of the vehicle body 2 with a pair of video cameras. Other than this, the above measurement may be performed using another measuring means such as a length measuring device.

【0024】ホストコンピュータ14は、上記実測デー
タメモリ34に記憶されている点データの中から、塗膜
表面4におけるビデオカメラ16の撮像領域に応じた領
域内の座標データから所定の複数の点データを選択し、
これら選択された点データに基づき最小2乗法を用いた
演算により車体2の塗膜表面4の曲面形状を曲面近似式
Ewとして表わす。
From the point data stored in the actual measurement data memory 34, the host computer 14 selects a plurality of predetermined point data from the coordinate data in the area corresponding to the imaging area of the video camera 16 on the coating film surface 4. Select
The curved surface shape of the coating film surface 4 of the vehicle body 2 is represented as a curved surface approximate expression Ew by the calculation using the least squares method based on the selected point data.

【0025】すなわち、図4に示すように、塗膜欠陥検
査の対象となる塗膜表面4を第1表面部4Aから第5表
面部4Eまで前後方向に5つに分割し、これら各表面部
に対して上記曲面近似式Ewを算出する。分割された各
表面部の曲面形状は、元の塗膜表面4全体の曲面形状に
対して単純化されるので、これを所定精度で曲面近似式
Ewとして表わすために選択すべき点データの数は少な
くて足りる。したがって、曲面近似式Ewの次数を下げ
てデータ演算処理時間の短縮を図ることができる。
That is, as shown in FIG. 4, the coating film surface 4 to be inspected for coating film defects is divided into five parts in the front-rear direction from the first surface part 4A to the fifth surface part 4E, and each of these surface parts is divided. Then, the curved surface approximation formula Ew is calculated. Since the curved surface shape of each of the divided surface portions is simplified with respect to the original curved surface shape of the entire coating film surface 4, the number of point data to be selected in order to express this as the curved surface approximate expression Ew with a predetermined accuracy. Is small enough. Therefore, the degree of the curved surface approximation equation Ew can be lowered to shorten the data calculation processing time.

【0026】ホストコンピュータ14は、上記曲面近似
式Ewをビデオカメラ座標系Σcに変換して曲面近似式
Ecとする。ホストコンピュータ14は、さらに、この
曲面近似式Ecと視線方程式Eeとをプロセッサ36に
入力する。プロセッサ36は、これら曲面近似式Ecと
視線方程式Eeとを連立させて解くことにより、塗膜欠
陥発生部位Pdのビデオカメラ座標系Σcにおける座標
Pd(xc、yc、zc)を算出する。すなわち、曲面
近似式Ecが表わす曲面と視線方程式Eeが表わす直線
との交点として、上記座標Pd(xc、yc、zc)を
算出する。ホストコンピュータ14は、さらに、この座
標Pd(xc、yc、zc)を被計測空間座標系Σwの
座標Pd(xw、yw、zw)に座標変換することによ
り、塗膜欠陥発生部位Pdの被計測空間内における三次
元位置計測を行う。
The host computer 14 converts the curved surface approximation formula Ew into a video camera coordinate system Σc to obtain a curved surface approximation formula Ec. The host computer 14 further inputs the curved surface approximation equation Ec and the line-of-sight equation Ee to the processor 36. The processor 36 calculates the coordinates Pd (xc, yc, zc) in the video camera coordinate system Σc of the coating film defect occurrence portion Pd by solving the curved surface approximation formula Ec and the line-of-sight equation Ee in parallel. That is, the coordinates Pd (xc, yc, zc) are calculated as the intersection of the curved surface represented by the curved surface approximation equation Ec and the straight line represented by the line-of-sight equation Ee. The host computer 14 further performs coordinate conversion of the coordinates Pd (xc, yc, zc) into the coordinates Pd (xw, yw, zw) of the measured space coordinate system Σw to measure the coating film defect occurrence portion Pd. Performs three-dimensional position measurement in space.

【0027】ホストコンピュータ14は、上記塗膜欠陥
がビデオカメラ16の撮像領域内において複数個検出さ
れたときには、各塗膜欠陥発生部位Pdに対して、上記
手順でその三次元位置計測を行う。
When a plurality of coating film defects are detected in the image pickup area of the video camera 16, the host computer 14 measures the three-dimensional position of each coating film defect occurrence site Pd in the above procedure.

【0028】このようにして計測された塗膜欠陥発生部
位Pdは、欠陥部位メモリ40に一旦記憶された後、後
工程の補修システム42に伝送され、該補修システム4
2において塗膜研磨等による塗膜欠陥の修正処理が行わ
れる。
The coating film defect site Pd measured in this way is temporarily stored in the defect site memory 40 and then transmitted to the repair system 42 in the subsequent step, and the repair system 4 is then transmitted.
In 2, the coating film is corrected by polishing the coating film.

【0029】以上詳述したように、本実施例において
は、車体2の塗膜表面4の点の実測データに基づいて算
出した曲面近似式Ewとビデオカメラ16の受像画面3
0上における塗膜欠陥発生部位Pdの画素位置Ppから
算出した視線方程式Eeとを連立させて解いた交点とし
て、1台のビデオカメラ16で塗膜欠陥発生部位Pdの
三次元位置を計測することができる。
As described above in detail, in the present embodiment, the curved surface approximation formula Ew calculated based on the measured data of the points on the coating film surface 4 of the vehicle body 2 and the image receiving screen 3 of the video camera 16.
Measuring the three-dimensional position of the coating film defect generation portion Pd with one video camera 16 as an intersection point obtained by simultaneously solving the line-of-sight equation Ee calculated from the pixel position Pp of the coating film defect generation portion Pd on 0. You can

【0030】したがって、本実施例によれば、上記塗膜
欠陥発生部位Pdの位置計測に2台のビデオカメラを使
用した場合に生じる、両ビデオカメラ相互間での画素位
置の対応付けが不要となり、これにより、塗膜欠陥発生
部位Pdの三次元位置を簡単かつ正確に計測することが
できる。なお、本実施例においては、座標計測手段44
において1対のビデオカメラを用いているが、この座標
計測は、塗膜欠陥のように予めその発生部位を特定する
ことができない点に対して行われるのではなく、車体2
のエッジ部位等のように車体2において特定された点に
対して行われるので、両ビデオカメラ相互間での画素位
置の対応付けが困難になるという問題が生じることはな
い。
Therefore, according to the present embodiment, it is not necessary to associate the pixel positions between the two video cameras, which occurs when two video cameras are used to measure the position of the coating film defect occurrence portion Pd. Thus, the three-dimensional position of the coating film defect occurrence portion Pd can be measured easily and accurately. In this embodiment, the coordinate measuring means 44
Although a pair of video cameras is used in the above, this coordinate measurement is not performed on a point where the occurrence site cannot be specified in advance such as a coating film defect, but on the vehicle body 2
Since it is performed with respect to a specified point on the vehicle body 2 such as the edge portion of (2), there is no problem that it becomes difficult to associate the pixel positions between the video cameras.

【0031】また、本実施例においては、実際に計測し
て得られた点データに基づいて曲面近似式を算出するよ
うになっているので、車体2のパレット22への搭載誤
差、位置決め誤差等により、車体2の実際の位置と上記
所定位置とのずれがあっても、これによる三次元位置計
測精度への影響がなく、高い三次元位置計測精度を得る
ことができる。また、計測された点データを記憶させる
だけの記憶容量の小さな実測データメモリ34を用意す
るだけで足りる。
Further, in this embodiment, since the curved surface approximation formula is calculated based on the point data obtained by actual measurement, the mounting error on the pallet 22 of the vehicle body 2, the positioning error, etc. As a result, even if there is a deviation between the actual position of the vehicle body 2 and the above-mentioned predetermined position, this does not affect the three-dimensional position measurement accuracy, and high three-dimensional position measurement accuracy can be obtained. Further, it is sufficient to prepare the actual measurement data memory 34 having a small storage capacity for storing the measured point data.

【0032】上記実施例においては、ビデオカメラ座標
系Σcにおいて視線方程式Eeと曲面近似式Ecとを連
立させて解くようにしたが、被計測空間座標系Σwにお
いてこれら両式を連立させて解くようにしてもよい。こ
のようにすれば、曲面近似式Ewについては座標変換が
不要となり、ビデオカメラ座標系Σcで表わされた視線
方程式Ecを被計測空間座標系Σwに座標変換するだけ
で足りるので、三次元位置計測のための演算を簡素化す
ることができる。
In the above embodiment, the line-of-sight equation Ee and the curved surface approximation formula Ec are solved simultaneously in the video camera coordinate system Σc, but these two formulas are solved simultaneously in the measured space coordinate system Σw. You may By doing so, coordinate conversion is not required for the curved surface approximation formula Ew, and it is sufficient to perform coordinate conversion of the line-of-sight equation Ec represented by the video camera coordinate system Σc into the measured space coordinate system Σw, and thus the three-dimensional position The calculation for measurement can be simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る曲面上の三次元位置計測装置の一
実施例を示すブロック図
FIG. 1 is a block diagram showing an embodiment of a three-dimensional position measuring apparatus on a curved surface according to the present invention.

【図2】上記実施例における三次元位置計測の概要を示
す説明図
FIG. 2 is an explanatory diagram showing an outline of three-dimensional position measurement in the above embodiment.

【図3】上記三次元位置計測の説明のために受像画面を
示す図
FIG. 3 is a diagram showing an image receiving screen for explaining the three-dimensional position measurement.

【図4】上記三次元位置計測の説明のために車体を示す
斜視図
FIG. 4 is a perspective view showing a vehicle body for explaining the three-dimensional position measurement.

【符号の説明】[Explanation of symbols]

2 車体 4 塗膜表面 10 三次元位置計測装置 12 ビデオカメラロボット 14 ホストコンピュータ(曲面近似式作成変換手
段、視線方程式算出手段、被計測点座標変換手段) 16 ビデオカメラ 30 受像画面 32 キャリブレーションデータメモリ 34 実測データメモリ 36 プロセッサ(被計測点座標算出手段) 44 座標計測手段 Σc ビデオカメラ座標系 Σw 被計測空間座標系 Pd 塗膜欠陥発生部位(被計測点) Pp 塗膜欠陥発生部位に対応する画素位置 Eb 被計測空間座標系Σwにおける曲面近似式 Ec ビデオカメラ座標系Σcにおける曲面近似式 Ee 視線方程式
2 vehicle body 4 coating film surface 10 three-dimensional position measuring device 12 video camera robot 14 host computer (curved surface approximate expression creating conversion means, line-of-sight equation calculation means, measured point coordinate conversion means) 16 video camera 30 image receiving screen 32 calibration data memory 34 actual measurement data memory 36 processor (measurement point coordinate calculation means) 44 coordinate measurement means Σc video camera coordinate system Σw measurement space coordinate system Pd coating film defect occurrence site (measurement point) Pp pixel corresponding to coating film defect occurrence site Position Eb Curved surface approximation formula in measured space coordinate system Σw Ec Curved surface approximation formula in video camera coordinate system Σc Ee Line-of-sight equation

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 被計測空間内の所定位置に配された曲面
形状を有する物体上の被計測点の三次元位置を、該被計
測点を含む前記物体上の所定領域を撮像するビデオカメ
ラを用いて計測する方法であって、 前記物体上の複数の点の三次元位置を、前記被計測空間
を規定する被計測空間座標系における座標で計測し、こ
れら計測された点データの中から所定の複数の点データ
を選択し、これら選択された点データに基づき前記物体
の曲面形状を曲面近似式として表わし、さらにこの曲面
近似式を、前記被計測空間座標系と所定の座標対応関係
を有するようにして前記ビデオカメラに対して設定され
たビデオカメラ座標系に座標変換して表わし、 一方、前記ビデオカメラの受像画面上における前記被計
測点の画素位置から、前記ビデオカメラ座標系において
前記被計測点を通る直線を表わす視線方程式を算出し、 その後、この視線方程式と前記ビデオカメラ座標系で表
わされた前記曲面近似式とを連立させて解くことによ
り、前記被計測点の前記ビデオカメラ座標系における座
標を算出し、 さらに、この座標を前記被計測空間座標系に座標変換す
ることにより、前記被計測点の三次元位置計測を行う、
ことを特徴とする曲面上の三次元位置計測方法。
1. A video camera for imaging a three-dimensional position of a measured point on an object having a curved surface arranged at a predetermined position in a measured space, and a predetermined region on the object including the measured point. A method of measuring using a three-dimensional position of a plurality of points on the object is measured by coordinates in a measured space coordinate system that defines the measured space, and predetermined from among these measured point data. Of a plurality of point data, the curved surface shape of the object is represented as a curved surface approximation formula based on the selected point data, and the curved surface approximation formula has a predetermined coordinate correspondence with the measured space coordinate system. In this way, the coordinate is converted into the video camera coordinate system set for the video camera, and the video camera coordinate system is calculated from the pixel position of the measured point on the image receiving screen of the video camera. At this point, the line-of-sight equation representing a straight line passing through the point-to-be-measured is calculated, and then the line-of-sight equation and the curved surface approximate expression represented by the video camera coordinate system are simultaneously solved to solve the point-of-measurement point. The coordinate in the video camera coordinate system is calculated, and the coordinate is converted into the measured space coordinate system to measure the three-dimensional position of the measured point.
A method for measuring a three-dimensional position on a curved surface, which is characterized in that
【請求項2】 被計測空間内の所定位置に配された曲面
形状を有する物体上の被計測点の三次元位置を、該被計
測点を含む前記物体上の所定領域を撮像するビデオカメ
ラを用いて計測する方法であって、 前記物体上の複数の点の三次元位置を、前記被計測空間
を規定する被計測空間座標系における座標で計測し、こ
れら計測された点データの中から所定の複数の点データ
を選択し、これら選択された点データに基づき前記物体
の曲面形状を曲面近似式として表わし、 一方、前記被計測空間座標系と所定の座標対応関係を有
するようにして前記ビデオカメラに対して設定されたビ
デオカメラ座標系において、前記ビデオカメラの受像画
面上における前記被計測点の画素位置から、前記被計測
点を通る直線を表わす視線方程式を算出し、さらに、こ
の視線方程式を前記被計測空間座標系に座標変換し、 その後、この座標変換された視線方程式と前記曲面近似
式とを連立させて解くことにより、前記被計測点の三次
元位置計測を行う、ことを特徴とする曲面上の三次元位
置計測方法。
2. A video camera for imaging a three-dimensional position of a measured point on an object having a curved surface arranged at a predetermined position in a measured space, and a predetermined area on the object including the measured point. A method of measuring using a three-dimensional position of a plurality of points on the object is measured by coordinates in a measured space coordinate system that defines the measured space, and predetermined from among these measured point data. Of the plurality of point data, and based on these selected point data, the curved surface shape of the object is expressed as a curved surface approximation formula. On the other hand, the video is made to have a predetermined coordinate correspondence with the measured space coordinate system. In the video camera coordinate system set for the camera, the line-of-sight equation representing a straight line passing through the measured point is calculated from the pixel position of the measured point on the image receiving screen of the video camera, and Coordinate conversion of the line-of-sight equation to the measured space coordinate system, and then by simultaneously solving the coordinate-converted line-of-sight equation and the curved surface approximation formula to perform three-dimensional position measurement of the measured point. A method for measuring a three-dimensional position on a curved surface, which is characterized in that
【請求項3】 前記複数の点データの選択を、前記ビデ
オカメラの撮像領域に応じた前記物体上の所定領域内で
計測された点データの中から行う、ことを特徴とする請
求項1または2記載の曲面上の三次元位置計測方法。
3. The selection of the plurality of point data is performed from point data measured in a predetermined area on the object according to an image pickup area of the video camera. The three-dimensional position measuring method on the curved surface described in 2.
【請求項4】 被計測空間内の所定位置に配された曲面
形状を有する物体上の被計測点の三次元位置を、該被計
測点を含む前記物体上の所定領域を撮像するビデオカメ
ラを用いて計測する装置であって、 前記物体上の複数の点の三次元位置を、前記被計測空間
を規定する被計測空間座標系における座標で計測する座
標計測手段と、 これら計測された点データの中から所定の複数の点デー
タを選択し、これら選択された点データに基づき前記物
体の曲面形状を曲面近似式として表わし、さらにこの曲
面近似式を、前記被計測空間座標系と所定の座標対応関
係を有するようにして前記ビデオカメラに対して設定さ
れたビデオカメラ座標系に座標変換して表わす曲面近似
式作成変換手段と、 前記ビデオカメラの受像画面上における前記被計測点の
画素位置から、前記ビデオカメラ座標系において前記被
計測点を通る直線を表わす視線方程式を算出する視線方
程式算出手段と、 前記ビデオカメラ座標系で表わされた前記曲面近似式と
前記視線方程式とを連立させて解くことにより、前記被
計測点の前記ビデオカメラ座標系における座標を算出す
る被計測点座標算出手段と、 この座標を前記被計測空間座標系に座標変換する被計測
点座標変換手段と、を備えてなることを特徴とする曲面
上の三次元位置計測装置。
4. A video camera for imaging a three-dimensional position of a measured point on an object having a curved surface arranged at a predetermined position in a measured space, and a predetermined area on the object including the measured point. An apparatus for measuring using three-dimensional positions of a plurality of points on the object, coordinate measuring means for measuring the three-dimensional positions of the points on a coordinate system in a measured space coordinate system that defines the measured space, and these measured point data. A plurality of predetermined point data is selected from among the points, the curved surface shape of the object is represented as a curved surface approximation formula based on the selected point data, and the curved surface approximation formula is further defined as the measured space coordinate system and predetermined coordinates. Curved surface approximate expression creating / converting means for performing coordinate conversion to a video camera coordinate system set for the video camera so as to have a correspondence relationship, and an image of the measured point on the image receiving screen of the video camera. A line-of-sight equation calculation means for calculating a line-of-sight equation representing a straight line passing through the measured point in the video camera coordinate system from a raw position, the curved surface approximation formula and the line-of-sight equation represented in the video camera coordinate system, A measured point coordinate calculation means for calculating the coordinates of the measured point in the video camera coordinate system by simultaneous solving, and a measured point coordinate conversion means for converting the coordinates into the measured space coordinate system. A three-dimensional position measuring device on a curved surface, comprising:
【請求項5】 被計測空間内の所定位置に配された曲面
形状を有する物体上の被計測点の三次元位置を、該被計
測点を含む前記物体上の所定領域を撮像するビデオカメ
ラを用いて計測する装置であって、 前記物体上の複数の点の三次元位置を、前記被計測空間
を規定する被計測空間座標系における座標で計測する座
標計測手段と、 これら計測された点データの中から所定の複数の点デー
タを選択し、これら選択された点データに基づき前記物
体の曲面形状を曲面近似式として表わす曲面近似式作成
手段と、 前記被計測空間座標系と所定の座標対応関係を有するよ
うにして前記ビデオカメラに対して設定されたビデオカ
メラ座標系において、前記ビデオカメラの受像画面上に
おける前記被計測点の画素位置から、前記被計測点を通
る直線を表わす視線方程式を算出し、さらに、この視線
方程式を前記被計測空間座標系に座標変換する視線方程
式算出変換手段と、 前記被計測空間座標系で表わされた視線方程式と前記曲
面近似式とを連立させて解くことにより、前記被計測点
の前記被計測空間座標系における座標を算出する被計測
点座標算出手段と、を備えてなることを特徴とする曲面
上の三次元位置計測装置。
5. A video camera for imaging a three-dimensional position of a measured point on an object having a curved surface arranged at a predetermined position in a measured space, and a predetermined area on the object including the measured point. An apparatus for measuring using three-dimensional positions of a plurality of points on the object, coordinate measuring means for measuring the three-dimensional positions of the points on a coordinate system in a measured space coordinate system that defines the measured space, and these measured point data. Selected from a plurality of predetermined point data, and based on these selected point data, a curved surface approximation formula creating means for expressing the curved surface shape of the object as a curved surface approximation formula, and the measured space coordinate system and predetermined coordinate correspondence In the video camera coordinate system set for the video camera so as to have a relationship, a straight line that passes through the measured point from the pixel position of the measured point on the image receiving screen of the video camera is represented. The line-of-sight equation is calculated, and further, the line-of-sight equation calculation conversion unit that performs coordinate conversion of the line-of-sight equation into the measured space coordinate system, the line-of-sight equation represented in the measured space coordinate system, and the curved surface approximation formula A three-dimensional position measuring device on a curved surface, comprising: a measured point coordinate calculation means for calculating coordinates of the measured point in the measured space coordinate system by solving them simultaneously.
【請求項6】 前記曲面近似式作成変換手段が、前記ビ
デオカメラの撮像領域に応じた前記物体上の所定領域内
で計測された点データの中から行うように構成されてい
る、ことを特徴とする請求項4または5記載の曲面上の
三次元位置計測装置。
6. The curved surface approximate expression creating and converting means is configured to perform from the point data measured within a predetermined area on the object according to the imaging area of the video camera. The three-dimensional position measuring device on a curved surface according to claim 4 or 5.
JP09592293A 1993-04-22 1993-04-22 Method and apparatus for measuring three-dimensional position on curved surface Expired - Fee Related JP3195851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09592293A JP3195851B2 (en) 1993-04-22 1993-04-22 Method and apparatus for measuring three-dimensional position on curved surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09592293A JP3195851B2 (en) 1993-04-22 1993-04-22 Method and apparatus for measuring three-dimensional position on curved surface

Publications (2)

Publication Number Publication Date
JPH06307813A true JPH06307813A (en) 1994-11-04
JP3195851B2 JP3195851B2 (en) 2001-08-06

Family

ID=14150777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09592293A Expired - Fee Related JP3195851B2 (en) 1993-04-22 1993-04-22 Method and apparatus for measuring three-dimensional position on curved surface

Country Status (1)

Country Link
JP (1) JP3195851B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292430A (en) * 2007-05-28 2008-12-04 Panasonic Electric Works Co Ltd Appearance inspecting method and appearance inspecting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292430A (en) * 2007-05-28 2008-12-04 Panasonic Electric Works Co Ltd Appearance inspecting method and appearance inspecting device

Also Published As

Publication number Publication date
JP3195851B2 (en) 2001-08-06

Similar Documents

Publication Publication Date Title
KR101167292B1 (en) Method for planing an inspection path for determining areas that are to be inspected
US8233041B2 (en) Image processing device and image processing method for performing three dimensional measurements
US6728417B1 (en) Measurement apparatus
JP4221768B2 (en) Method and apparatus for positioning an object in space
KR102056076B1 (en) Apparatus for weld bead detecting and method for detecting welding defects of the same
RU2769373C1 (en) Method of measuring geometrical discrepancies between curved surfaces of a plurality of analyzed materials and a curved surface of a reference material
CN112884743A (en) Detection method and device, detection equipment and storage medium
EP1662252A1 (en) X-ray inspection apparatus, x-ray inspection method, and x-ray inspection program
JP2018522240A (en) Method for measuring artifacts
JP2786070B2 (en) Inspection method and apparatus for transparent plate
JP2006162335A (en) X-ray inspection device, x-ray inspection method and x-ray inspection program
JPH1079029A (en) Stereoscopic information detecting method and device therefor
JP3195850B2 (en) Method and apparatus for measuring three-dimensional position on curved surface
JPH07260444A (en) Method and apparatus for measuring object three-dimensionally by light section method
JP2000081329A (en) Shape measurement method and device
JP3195851B2 (en) Method and apparatus for measuring three-dimensional position on curved surface
JP2002288633A (en) Image processing device and its positional correction method
JPH0545347A (en) Automatic ultrasonic flaw detecting method
JP2003510568A (en) LCD inspection method and LCD inspection apparatus by pattern comparison
JPH1073419A (en) Device for inspecting erroneous and missing parts mounted externally on engine
JP2913370B2 (en) Optical position measurement method
JP2588339Y2 (en) Body surface inspection device
JP3013254B2 (en) Shape measurement method
JP2879357B2 (en) Shape judgment method
KR920006740B1 (en) Noncontact type tire contour shape measurement method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090601

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees