JPH06305710A - Ozone generator - Google Patents

Ozone generator

Info

Publication number
JPH06305710A
JPH06305710A JP5097316A JP9731693A JPH06305710A JP H06305710 A JPH06305710 A JP H06305710A JP 5097316 A JP5097316 A JP 5097316A JP 9731693 A JP9731693 A JP 9731693A JP H06305710 A JPH06305710 A JP H06305710A
Authority
JP
Japan
Prior art keywords
dielectric
ozone
voltage
electric power
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5097316A
Other languages
Japanese (ja)
Other versions
JP3416982B2 (en
Inventor
Masako Tanaka
雅子 田中
Hisashi Suwahara
久 諏訪原
Michio Nishino
民智夫 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP09731693A priority Critical patent/JP3416982B2/en
Publication of JPH06305710A publication Critical patent/JPH06305710A/en
Application granted granted Critical
Publication of JP3416982B2 publication Critical patent/JP3416982B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/30Dielectrics used in the electrical dischargers
    • C01B2201/34Composition of the dielectrics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To provide the ozone generator which is better in both of the amt. of the ozone to be generated per unit area and discharge electric power efficiency by providing the generator with a dielectric substance consisting of dielectric glass. CONSTITUTION:This ozone generator of a silent discharge type is provided with the dielectric substance provided with a high-voltage electrode on its one surface and a grounding electrode juxtaposed via a gap on the other surface of this dielectric substance and is constituted to generate ozone in the gaseous raw material passed in this gap part by impressing a voltage between both electrodes. This dielectric substance is constituted of the dielectric substance glass set at respective ranges of >=4.5 specific dielectric constant, >=10<11>OMEGA.cm volumetric resistivity and 10<9> to 10<13>OMEGA surface resistivity (preferably lead glass consisting of compsn. components contg. >=25wt.% PbO or PbO+BaO and <=1.5wt.% Na2O). The throwing electric power per unit area is larger than the throwing electric power per unit area of the conventional device and the amt. of the ozone to be generated by throwing of the same electric power is larger and, therefore, both the amt. of the ozone to be generated per unit area and the discharge electric power efficiency are higher.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水処理や屎尿処理等に
利用される無声放電式のオゾン発生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silent discharge type ozone generator used for water treatment, human waste treatment and the like.

【0002】[0002]

【従来の技術】オゾンは極めて強い酸化力を有し、水の
殺菌、脱臭、脱色等の上下水処理や屎尿処理及び食品関
連における殺菌などの多くの用途に使われている。オゾ
ンの生成法には、紫外線照射法、放射線照射法、プラズ
マ放電法、無声放電法及び水の電気分解法等があるが、
工業的には無声放電法が主体である。図3に無声放電法
によるオゾン発生装置の原理を示す。図3において高電
圧電極1と接地電極2は、両者間に空隙部3が形成され
るように誘電体4を介在させて並設されている。両電極
1,2間に例えばAC電圧を印加して空隙部3で無声放
電を発生させ、原料となるガス(乾燥空気もしくは酸
素)をこの空隙部3に通すことによりオゾンを発生させ
ている。
2. Description of the Related Art Ozone has an extremely strong oxidizing power and is used for many purposes such as water and sewage treatment such as water sterilization, deodorization and decolorization, human waste treatment and food related sterilization. The ozone generation method includes an ultraviolet irradiation method, a radiation irradiation method, a plasma discharge method, a silent discharge method, and a water electrolysis method.
The silent discharge method is mainly used industrially. FIG. 3 shows the principle of the ozone generator by the silent discharge method. In FIG. 3, the high voltage electrode 1 and the ground electrode 2 are arranged side by side with a dielectric 4 interposed so that a void 3 is formed therebetween. For example, an AC voltage is applied between the electrodes 1 and 2 to generate a silent discharge in the void portion 3, and a gas (dry air or oxygen) as a raw material is passed through the void portion 3 to generate ozone.

【0003】オゾンO3の理論収率は、 O2→O+O−118Kcal(吸熱反応) O+O2→O3+25Kcal(発熱反応) より、 3O2→2O3−68Kcal となり、O3を1mol生成するために34Kcal必
要となる。従って理論上の収率は1.2kgO3/KW
hとなる。しかし、消費電力に対するオゾンの生成効率
は理論収率に比べて極めて低く数%に過ぎず、残りの9
0数%の電力は熱となってオゾン生成に寄与していない
というのがオゾン発生装置の現状である。
The theoretical yield of ozone O 3 is O 2 → O + O-118 Kcal (endothermic reaction) O + O 2 → O 3 +25 Kcal (exothermic reaction), resulting in 3O 2 → 2O 3 -68 Kcal, and 1 mol of O 3 is produced. 34 Kcal is required. Therefore, the theoretical yield is 1.2 kgO 3 / KW
h. However, the ozone generation efficiency with respect to the power consumption is extremely low compared to the theoretical yield and is only a few percent, and the remaining 9
The current state of the ozone generator is that 0% or less of electric power does not contribute to ozone generation as heat.

【0004】[0004]

【発明が解決しようとする課題】オゾンの生成量に影響
を及ぼす主な因子としては、電極の形状、電極間ギャッ
プの大きさ、誘電体の形状及び材質、電極の冷却方法、
原料ガスの除湿や冷却方法、印加電圧の波形等が上げら
れる。
The main factors affecting the amount of ozone produced are the shape of the electrodes, the size of the gap between the electrodes, the shape and material of the dielectric, the cooling method of the electrodes,
The dehumidification and cooling method of the source gas, the waveform of the applied voltage, etc. can be increased.

【0005】現在の大型オゾン発生装置は、冷却の容易
性、組み立ての容易性、メインテナンスの容易性等の点
から同軸円筒管の多管方式が多く用いられている。その
中で高圧電極部は一般には誘電体管としてガラスに金属
コーティングを施したものが用いられている。この金属
コーティングには一般にAl溶射膜が用いられているが
厚みが薄いため、沿面方向の体積抵抗が大きくこれを低
減するために高圧線にブラシ状の接触部を設け接触面積
を増やしている。更に、腐食の問題も深刻である。ま
た、放電時の誘電体自身の温度上昇によるオゾン発生濃
度の低下が問題となっている。しかも構造上、水冷によ
る冷却は困難である。
A large-scale ozone generator at present uses a multi-tube system of coaxial cylindrical tubes in many cases from the viewpoint of ease of cooling, ease of assembly, ease of maintenance, and the like. Among them, the high-voltage electrode part is generally made of a dielectric tube having glass coated with a metal. An Al sprayed film is generally used for this metal coating, but since the thickness is thin, the volume resistance in the creeping direction is large, and in order to reduce this, a brush-shaped contact portion is provided on the high voltage wire to increase the contact area. Furthermore, the problem of corrosion is also serious. Further, there is a problem that the concentration of ozone generated decreases due to the temperature rise of the dielectric itself during discharge. Moreover, it is difficult to cool with water because of its structure.

【0006】ガラス管自体においてはオゾンの高効率の
発生に対しては高誘電率の材料が望ましいとされてい
る。また、セラミクス管は高い誘電率が期待できるが加
工性が悪く薄く均一な円筒管を得ることができない等の
問題点があった。
In the glass tube itself, a material having a high dielectric constant is considered desirable for highly efficient generation of ozone. Further, although a ceramics tube can be expected to have a high dielectric constant, it has a problem in that it has poor workability and a thin and uniform cylindrical tube cannot be obtained.

【0007】本発明は上記の点に鑑みてなされたもので
その目的は、優れたオゾン発生特性が得られるオゾン発
生装置を提供することにある。
The present invention has been made in view of the above points, and an object thereof is to provide an ozone generator capable of obtaining excellent ozone generating characteristics.

【0008】[0008]

【課題を解決するための手段】本発明は、一方の面に高
圧電電極が設けられた誘電体と、該誘電体の他方の面に
空隙部を介して並設された接地電極とを備え、前記高電
圧電極と接地電極間に電圧を印加して前記空隙部内に流
通させた原料ガス中にオゾンを発生させる無声放電式の
オゾン発生装置において、(1)前記誘電体を、誘電体
ガラスとしたことを特徴とし、(2)前記誘電体を、比
誘電率が4.5以上に、体積抵抗率が1011Ω・cm以
上に、表面抵抗が109〜1013Ωの範囲に各々設定さ
れたガラス誘電体で構成したことを特徴とし、(3)前
記誘電体を、PbO又はPbO+BaOの含有量が25
重量%以上で、且つNa2Oの含有量が1.5重量%以
下の組成成分から成る鉛ガラス系の誘電体で構成したこ
とを特徴としている。
The present invention comprises a dielectric having a high-voltage electrode provided on one surface thereof, and a ground electrode provided on the other surface of the dielectric material side by side with a gap therebetween. A silent discharge ozone generator that applies a voltage between the high-voltage electrode and a ground electrode to generate ozone in the raw material gas that has been circulated in the void, wherein (1) the dielectric is a dielectric glass (2) The dielectric material has a relative dielectric constant of 4.5 or more, a volume resistivity of 10 11 Ω · cm or more, and a surface resistance of 10 9 to 10 13 Ω. (3) The content of PbO or PbO + BaO is 25.
It is characterized in that it is composed of a lead glass-based dielectric composed of composition components having a Na 2 O content of 1.5 wt% or less and a wt% or more.

【0009】[0009]

【作用】[Action]

(1)請求項1、2の発明において、高電圧電極と接地
電極の間に電圧を印加すると空隙部において放電現象が
起こり、該放電電力によりオゾンが発生する。このとき
誘電体の誘電率が高いため、実効電界が上昇するととも
に放電開始電圧は下がる。
(1) In the inventions of claims 1 and 2, when a voltage is applied between the high voltage electrode and the ground electrode, a discharge phenomenon occurs in the void portion, and ozone is generated by the discharge power. At this time, since the dielectric constant of the dielectric is high, the effective electric field rises and the discharge start voltage falls.

【0010】また、もし仮に表面抵抗の高い物質で誘電
体が構成されていると、放電柱の発生位置はほぼ固定化
されるので、パルス発生速度に比べて非常に移動の遅い
酸素分子に、電子が衝突する確率は低い。しかし本発明
のように誘電体の表面抵抗を従来のものより少し下げて
(109〜1013Ω)設定した場合は、誘電体表面に蓄
積された電荷の沿面方向への移動が起こり放電柱の発生
箇所が移動する。これによって電子と酸素分子の衝突確
率が上昇し、オゾンの発生量が増加する。また、誘電体
の表面抵抗を下げ過ぎる(109Ω未満)と、次第に電
荷が集中し、最後にはアーク放電に至る。
Further, if the dielectric is made of a substance having a high surface resistance, the generation position of the discharge column is almost fixed, so that oxygen molecules, which move much slower than the pulse generation speed, are generated. The probability of electron collision is low. However, when the surface resistance of the dielectric is set to be slightly lower than that of the conventional one (10 9 to 10 13 Ω) as in the present invention, the charge accumulated on the surface of the dielectric is moved in the creeping direction and the discharge column The occurrence location of is moved. As a result, the collision probability of electrons and oxygen molecules increases, and the amount of ozone generated increases. Further, when the surface resistance of the dielectric material is lowered too much (less than 10 9 Ω), the electric charges are gradually concentrated and finally arc discharge is reached.

【0011】上記のように本発明の装置は、誘電体の比
誘電率を4.5以上に、体積抵抗率を1011Ω・cm以
上に、表面抵抗を109〜1013Ωの範囲に各々設定し
ているので、それ以外の電気特性の誘電体(従来のも
の)を用いた装置に比べて、単位面積当たりの投入電力
が大きく、また同一電力の投入に対するオゾン発生量も
大きい。このため単位面積当たりのオゾン発生量も放電
電力効率も従来のものより優れている。
As described above, the device of the present invention has a dielectric constant of 4.5 or more, a volume resistivity of 10 11 Ω · cm or more, and a surface resistance of 10 9 to 10 13 Ω. Since each of them is set, the input electric power per unit area is large and the ozone generation amount is large when the same electric power is input, as compared with a device using a dielectric (conventional one) having other electrical characteristics. Therefore, both the amount of ozone generated per unit area and the discharge power efficiency are superior to the conventional ones.

【0012】(2)請求項3の発明において、高電圧電
極と接地電極の間に電圧を印加すると空隙部において放
電現象が起こり、該放電電力によりオゾンが発生する。
このとき誘電体は鉛含有成分が高いので、高誘電率が得
られる。このため実効電界が上昇するとともに放電開始
電圧は下がる。
(2) In the invention of claim 3, when a voltage is applied between the high voltage electrode and the ground electrode, a discharge phenomenon occurs in the void portion, and ozone is generated by the discharge power.
At this time, since the dielectric material has a high content of lead, a high dielectric constant can be obtained. For this reason, the effective electric field rises and the discharge starting voltage falls.

【0013】また誘電体はNa2Oの含有量を小さくし
ているので、体積抵抗が高くなって誘電体表面に電荷が
蓄積され易くなり、表面抵抗が低くなる。これによって
空隙部における放電柱の発生エリアが拡大されて酸素分
子と電子の衝突確率が大きくなる。したがって単位面積
あたりの投入電力が大きく、また同一電力の投入に対す
るオゾン発生量も大きい。このため単位面積あたりのオ
ゾン発生量も放電電力効率も従来のものより優れてい
る。
Further, since the dielectric has a small content of Na 2 O, the volume resistance becomes high, and the electric charges are easily accumulated on the surface of the dielectric, so that the surface resistance becomes low. As a result, the discharge column generation area in the void portion is expanded, and the probability of collision between oxygen molecules and electrons increases. Therefore, the input electric power per unit area is large, and the ozone generation amount is large when the same electric power is input. Therefore, the ozone generation amount per unit area and the discharge power efficiency are superior to those of the conventional one.

【0014】[0014]

【実施例】以下、図面を参照しながら請求項1、2に記
載の発明の一実施例を説明する。本発明では様々な電気
的特性を有する誘電体管のオゾン発生特性を従来例と比
較し、オゾンの発生において特に優れた発生特性を持つ
誘電体管に必要な条件の設定に成功したので以下に説明
する。特に注目した電気的特性は誘電率と体積抵抗およ
び表面抵抗である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the invention described in claims 1 and 2 will be described below with reference to the drawings. In the present invention, the ozone generation characteristics of the dielectric tube having various electric characteristics are compared with the conventional example, and the conditions necessary for the dielectric tube having particularly excellent generation characteristics in the generation of ozone have been successfully set. explain. The electrical characteristics of particular interest are the dielectric constant, volume resistance and surface resistance.

【0015】表1に従来例及び実施例に用いた誘電体管
の電気的特性の一覧表を示す。
Table 1 shows a list of electrical characteristics of the dielectric tubes used in the conventional example and the example.

【0016】[0016]

【表1】 [Table 1]

【0017】誘電率においては3〜10、体積抵抗(l
ogR)については室温において15〜20.5、15
0°Cにおいて10〜13.5の範囲で検討を行った。
オゾン発生用の電極構造は誘電体厚2mm、空隙長を
1.5mmに設定した。
The dielectric constant is 3 to 10, and the volume resistance (l
ogR) at room temperature is 15 to 20.5, 15
The examination was conducted in the range of 10 to 13.5 at 0 ° C.
The electrode structure for ozone generation had a dielectric thickness of 2 mm and a void length of 1.5 mm.

【0018】図1には実施例における単位面積当たりの
投入電力の比較を、図2には単位面積当たりの放電電力
に対するオゾンの発生量の比較を示す。図1、図2から
明らかなように特に実施例2、3に示す誘電体管を使用
したものが単位面積当たりの投入電力も大きく又同じ電
力の投入に対してのオゾン発生量も大きい。結果として
単位面積当たりのオゾンの発生量も、オゾン発生量の放
電電力効率も実施例2、3の誘電体管が優れていること
が判った。放電の状況を観察すると上記実施例2、3の
誘電体管の方が電圧印加時の放電パルスの電荷量が大き
く原料ガスに供給する電力が大きいことが判った。すな
わち実施例において優れたオゾン発生特性を示したのは
誘電体管の中でも誘電率が高く、尚且つ体積抵抗が高く
表面抵抗の低い物であった。
FIG. 1 shows a comparison of input power per unit area in the embodiment, and FIG. 2 shows a comparison of ozone generation amount with respect to discharge power per unit area. As is clear from FIG. 1 and FIG. 2, particularly when the dielectric tubes shown in Examples 2 and 3 are used, the input electric power per unit area is large and the ozone generation amount is large when the same electric power is input. As a result, it was found that the dielectric tubes of Examples 2 and 3 were excellent in the amount of ozone generated per unit area and the discharge power efficiency of the amount of ozone generated. Observation of the state of discharge revealed that the dielectric tubes of Examples 2 and 3 had a larger amount of charge in the discharge pulse when a voltage was applied and a larger amount of power to be supplied to the raw material gas. That is, it was the dielectric tube having a high dielectric constant, a high volume resistance, and a low surface resistance that showed excellent ozone generation characteristics in the examples.

【0019】これらオゾン発生効率の上昇が得られる原
因としては、まず誘電率が高いため実効電界が上昇し、
放電開始電圧が下がることが挙げられる。さらに、放電
現象における放電柱の発生の微妙な違いである可能性が
考えられる。すなわち表面抵抗の高い物質表面上では、
放電柱の発生する位置はほぼ固定化されており、パルス
の発生速度に比較すると非常に移動の遅い酸素分子に電
子が衝突する確率は限られたものになる。それに対し表
面抵抗が少し下がると誘電体表面に蓄積された電荷の沿
面方向への移動が起こり、放電柱の発生箇所が移動する
ようになる。この状態で電子と酸素分子との衝突確率が
上がりオゾンの発生量が増えると考えられる。更に表面
抵抗が下がると次第に電荷が集中し最後にアーク放電に
至るため、効率の良いオゾン発生の領域は限られると思
われる。
The reason why the ozone generation efficiency is increased is that the effective electric field is increased due to the high dielectric constant.
It can be mentioned that the discharge start voltage is lowered. Furthermore, it is possible that there is a subtle difference in the generation of discharge columns in the discharge phenomenon. That is, on a material surface with high surface resistance,
The position where the discharge column is generated is almost fixed, and the probability that electrons collide with oxygen molecules, which move very slowly compared to the pulse generation speed, is limited. On the other hand, when the surface resistance is slightly lowered, the charges accumulated on the surface of the dielectric material move in the creeping direction, and the locations where the discharge columns are generated move. In this state, the probability of collision between electrons and oxygen molecules increases and the amount of ozone generated is considered to increase. Further, as the surface resistance decreases, the electric charge gradually concentrates and finally reaches the arc discharge, so that the area of efficient ozone generation seems to be limited.

【0020】以上の結果により上記の条件を満足する誘
電体管としては体積抵抗率が150°C以下で10
11(Ω・cm)以上である事、比誘電率が4.5以上で
ある事、表面抵抗は109〜1013Ωの範囲である事の
3点の電気的特性を満たす必要がある。
From the above results, a dielectric tube satisfying the above conditions has a volume resistivity of 150 ° C. or less and 10
It is necessary to satisfy the three electrical characteristics of 11 (Ω · cm) or more, relative permittivity of 4.5 or more, and surface resistance of 10 9 to 10 13 Ω.

【0021】尚本実施例においては円筒型のオゾナイザ
を使用したがこれに限らず、無声放電型のオゾナイザを
使用する限り平行平板型においても同様の効果が期待さ
れる。
In this embodiment, a cylindrical ozonizer is used, but the present invention is not limited to this, and the same effect can be expected in a parallel plate type as long as a silent discharge type ozonizer is used.

【0022】次に請求項3に記載の発明の一実施例を説
明する。本発明では様々な電気的特性を有する誘電体ガ
ラス管のオゾン発生特性を従来例と比較しオゾンの発生
において特に発生特性の良いガラス成分の選択に成功し
たので、以下に説明する。先ず請求項1の発明で得たオ
ゾン発生特性の優れた誘電体の電気的特性(表1、図
1、図2の実施例2、3のもの)を実現することができ
るガラス成分を表2のように求めた。
Next, an embodiment of the invention described in claim 3 will be described. In the present invention, the ozone generation characteristics of the dielectric glass tube having various electrical characteristics are compared with those of the conventional example, and a glass component having particularly good generation characteristics in ozone generation has been successfully selected, which will be described below. First, Table 2 shows the glass components that can realize the electrical characteristics of the dielectrics excellent in ozone generation characteristics obtained in the invention of claim 1 (Table 1, Table 1 and Examples 2 and 3 in FIG. 2). Asked like.

【0023】[0023]

【表2】 [Table 2]

【0024】放電の状況を観察した結果、鉛ガラス系の
方が電圧印加時の放電パルスの電荷量が大きく原料ガス
に供給する電力が大きい事が判った。即ち本実施例にお
いて優れたオゾン発生特性を示したのは鉛ガラスの中で
も誘電率が高く、尚且つ体積抵抗が高く表面抵抗の低い
物であった。これらオゾン発生効率の上昇が得られる原
因としては、請求項1、2の発明の詳細な説明で述べた
ように、2つの事が考えられる。すなわち高誘電率の誘
電体管を用いる事によって、実効電界の上昇を図るとと
もに放電開始電圧を下げる事と、表面抵抗を下げる事に
よって放電柱の発生するエリアの拡大を図り、酸素分子
と電子の衝突確率を上げる事である。
As a result of observing the state of discharge, it was found that the lead glass system had a larger amount of charge in the discharge pulse when a voltage was applied and the power supplied to the raw material gas was larger. That is, it was the lead glass having a high dielectric constant, a high volume resistance, and a low surface resistance that exhibited excellent ozone generation characteristics in this example. As described above in the detailed description of the invention of claims 1 and 2, there are two possible causes for the increase in ozone generation efficiency. That is, by using a high-dielectric-constant dielectric tube, the effective electric field is increased, the discharge start voltage is lowered, and the surface resistance is lowered to expand the area where the discharge column is generated. To increase the collision probability.

【0025】以上の結果より上記の2点の条件を満足す
る誘電体管として以下の組成のガラスが特に適当である
という結論がでた。鉛ガラスにおいてPbO(あるいは
PbO+BaO)の含有量が25重量%以上で、且つN
2Oの含有量が1.5重量%以下の組成の物(実施例
2、3の物)である。
From the above results, it was concluded that the glass having the following composition is particularly suitable as the dielectric tube satisfying the above two conditions. In the lead glass, the content of PbO (or PbO + BaO) is 25% by weight or more, and N
It is a composition having a content of a 2 O of 1.5% by weight or less (Examples 2 and 3).

【0026】即ち高誘電率を得る為には鉛ガラス系の鉛
含有成分が高い方が良い。一方表面の電気抵抗を下げる
には様々な要因が考えられるが、表面吸着の水分が無視
できる程原料ガスが充分に乾燥しており、表面がスムー
ズな物であれば高誘電率で体積抵抗の高い物ほど表面に
電荷が蓄積され易く表面抵抗が低くなる傾向にある。し
たがって体積抵抗を高く保つためにNa2Oの含有量は
1.5重量%以下が望ましい。
That is, in order to obtain a high dielectric constant, it is preferable that the lead-containing component of the lead glass type is high. On the other hand, various factors can be considered to reduce the electric resistance of the surface, but if the raw material gas is sufficiently dry so that the moisture adsorbed on the surface can be ignored, and the surface is smooth, it has a high dielectric constant and volume resistance. The higher the height, the more easily charges are accumulated on the surface, and the lower the surface resistance tends to be. Therefore, in order to keep the volume resistance high, the content of Na 2 O is preferably 1.5% by weight or less.

【0027】尚本実施例においては円筒管型のオゾナイ
ザを使用したが、これに限らず無声放電型のオゾナイザ
を使用する限り、平行平板型においても同様の効果が期
待される。
Although the cylindrical tube type ozonizer is used in this embodiment, the same effect can be expected in the parallel plate type as long as a silent discharge type ozonizer is used.

【0028】[0028]

【発明の効果】以上のように請求項1、2の発明によれ
ば、誘電体を、比誘電率が4.5以上に、体積抵抗率が
1011Ω以上に、表面抵抗が109〜1013Ωの範囲に
各々設定されたガラス誘電体で構成したので、次のよう
な優れた効果が得られる。
As described above, according to the first and second aspects of the invention, the dielectric has a relative permittivity of 4.5 or more, a volume resistivity of 10 11 Ω or more, and a surface resistance of 10 9 to 10. Since the glass dielectrics are set in the range of 10 13 Ω, the following excellent effects can be obtained.

【0029】即ち、誘電体の誘電率が高いため、実効電
界が上昇するとともに放電開始電圧は下がる。また誘電
体の表面抵抗を従来のものより少し下げて(109〜1
13Ω)設定しているので、誘電体表面に蓄積された電
荷の沿面方向への移動が起こり放電柱の発生箇所が移動
し、これによって電子と酸素分子の衝突確率が上昇し、
オゾンの発生量が増加する。従って従来の装置に比べ
て、単位面積当たりの投入電力が大きく、また同一電力
の投入に対するオゾン発生量も大きい。このため単位面
積当たりのオゾン発生量も放電電力効率も従来のものよ
り優れている。
That is, since the dielectric constant of the dielectric is high, the effective electric field rises and the discharge starting voltage falls. In addition, the surface resistance of the dielectric should be slightly lower than that of the conventional one (10 9 -1
0 13 Ω), the charge accumulated on the surface of the dielectric moves in the creeping direction, and the location where the discharge column occurs moves, which increases the probability of collision between electrons and oxygen molecules.
The amount of ozone generated increases. Therefore, compared with the conventional device, the input electric power per unit area is large, and the ozone generation amount is large when the same electric power is input. Therefore, both the amount of ozone generated per unit area and the discharge power efficiency are superior to the conventional ones.

【0030】また、請求項3の発明によれば、誘電体
を、PbO又はPbO+BaOの含有量が25重量%以
上で、且つNa2Oの含有量が1.5重量%以下の組成
成分から成る鉛ガラス系の誘電体で構成したので、次の
ような優れた効果が得られる。
According to the third aspect of the present invention, the dielectric is composed of composition components having a PbO or PbO + BaO content of 25 wt% or more and a Na 2 O content of 1.5 wt% or less. Since it is composed of a lead glass-based dielectric, the following excellent effects can be obtained.

【0031】即ち、誘電体のNa2Oの含有量を小さく
しているので、体積抵抗が高くなって誘電体表面に電荷
が蓄積され易くなり、表面抵抗が低くなる。これによっ
て空隙部における放電柱の発生エリアが拡大されて酸素
分子と電子の衝突確率が大きくなる。したがって単位面
積あたりの投入電力が大きく、また同一電力の投入に対
するオゾン発生量も大きい。このため単位面積あたりの
オゾン発生量も放電電力効率も従来のものより優れてい
る。
That is, since the content of Na 2 O in the dielectric is small, the volume resistance becomes high, the electric charges are easily accumulated on the surface of the dielectric, and the surface resistance becomes low. As a result, the discharge column generation area in the void portion is expanded, and the probability of collision between oxygen molecules and electrons increases. Therefore, the input electric power per unit area is large, and the ozone generation amount is large when the same electric power is input. Therefore, the ozone generation amount per unit area and the discharge power efficiency are superior to those of the conventional one.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示し、印加電圧と放電電力
の関係を表す特性図。
FIG. 1 is a characteristic diagram showing the relationship between an applied voltage and discharge power according to an embodiment of the present invention.

【図2】本発明の一実施例を示し、単位面積当たりの放
電電力とオゾン発生量の関係を表す特性図。
FIG. 2 is a characteristic diagram showing a relationship between discharge power per unit area and ozone generation amount, showing an embodiment of the present invention.

【図3】無声放電法によるオゾン生成の原理を示す説明
図。
FIG. 3 is an explanatory diagram showing the principle of ozone generation by the silent discharge method.

【符号の説明】[Explanation of symbols]

1…高電圧電極 2…接地電極 3…空隙部 4…誘電体 1 ... High-voltage electrode 2 ... Ground electrode 3 ... Void part 4 ... Dielectric

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一方の面に高電圧電極が設けられた誘電
体と、該誘電体の他方の面に空隙部を介して並設された
接地電極とを備え、前記高電圧電極と接地電極間に電圧
を印加して前記空隙部内に流通させた原料ガス中にオゾ
ンを発生させる無声放電式のオゾン発生装置において、 前記誘電体を、誘電体ガラスとしたことを特徴とするオ
ゾン発生装置。
1. A high-voltage electrode and a ground electrode, comprising: a dielectric having a high-voltage electrode provided on one surface thereof; and a ground electrode provided on the other surface of the dielectric side by side with a gap therebetween. A silent discharge type ozone generator for generating ozone in a raw material gas which is circulated in the gap by applying a voltage therebetween, wherein the dielectric is a dielectric glass.
【請求項2】 一方の面に高電圧電極が設けられた誘電
体と、該誘電体の他方の面に空隙部を介して並設された
接地電極とを備え、前記高電圧電極と接地電極間に電圧
を印加して前記空隙部内に流通させた原料ガス中にオゾ
ンを発生させる無声放電式のオゾン発生装置において、 前記誘電体を、比誘電率が4.5以上に、体積抵抗率が
1011Ω・cm以上に、表面抵抗が109〜1013Ωの
範囲に各々設定されたガラス誘電体で構成したことを特
徴とするオゾン発生装置。
2. A high-voltage electrode and a ground electrode, comprising: a dielectric having a high-voltage electrode provided on one surface thereof; and a ground electrode provided on the other surface of the dielectric side by side with a gap therebetween. In a silent discharge type ozone generator that generates ozone in a raw material gas that is circulated in the gap by applying a voltage therebetween, the dielectric has a relative dielectric constant of 4.5 or more and a volume resistivity of An ozone generator comprising a glass dielectric material having a surface resistance of 10 11 Ω · cm or more and a surface resistance of 10 9 to 10 13 Ω.
【請求項3】 一方の面に高電圧電極が設けられた誘電
体と、該誘電体の他方の面に空隙部を介して並設された
接地電極とを備え、前記高電圧電極と接地電極間に電圧
を印加して前記空隙部内に流通させた原料ガス中にオゾ
ンを発生させる無声放電式のオゾン発生装置において、 前記誘電体を、PbO又はPbO+BaOの含有量が2
5重量%以上で、且つNa2Oの含有量が1.5重量%
以下の組成成分から成る鉛ガラス系の誘電体で構成した
ことを特徴とするオゾン発生装置。
3. A high-voltage electrode and a ground electrode, comprising: a dielectric having a high-voltage electrode provided on one surface thereof; and a ground electrode provided on the other surface of the dielectric in parallel with a gap therebetween. In a silent discharge type ozone generator for generating ozone in a raw material gas which has been applied with a voltage between them and which has been circulated in the gap, the dielectric contains PbO or PbO + BaO in an amount of 2 or less.
5% by weight or more and the content of Na 2 O is 1.5% by weight
An ozone generator comprising a lead glass-based dielectric made of the following composition components.
JP09731693A 1993-04-23 1993-04-23 Ozone generator Expired - Fee Related JP3416982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09731693A JP3416982B2 (en) 1993-04-23 1993-04-23 Ozone generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09731693A JP3416982B2 (en) 1993-04-23 1993-04-23 Ozone generator

Publications (2)

Publication Number Publication Date
JPH06305710A true JPH06305710A (en) 1994-11-01
JP3416982B2 JP3416982B2 (en) 2003-06-16

Family

ID=14189085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09731693A Expired - Fee Related JP3416982B2 (en) 1993-04-23 1993-04-23 Ozone generator

Country Status (1)

Country Link
JP (1) JP3416982B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010150098A (en) * 2008-12-26 2010-07-08 Sumitomo Precision Prod Co Ltd Ozonizer
JP2010265121A (en) * 2009-05-12 2010-11-25 Sumitomo Precision Prod Co Ltd Discharge cell for ozonizer
US8328998B2 (en) 2004-04-08 2012-12-11 Mitsubishi Denki Kabushiki Kaisha Ozone generating apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8328998B2 (en) 2004-04-08 2012-12-11 Mitsubishi Denki Kabushiki Kaisha Ozone generating apparatus
CN102815672A (en) * 2004-04-08 2012-12-12 三菱电机株式会社 Ozone generating apparatus
JP2010150098A (en) * 2008-12-26 2010-07-08 Sumitomo Precision Prod Co Ltd Ozonizer
JP2010265121A (en) * 2009-05-12 2010-11-25 Sumitomo Precision Prod Co Ltd Discharge cell for ozonizer

Also Published As

Publication number Publication date
JP3416982B2 (en) 2003-06-16

Similar Documents

Publication Publication Date Title
JPS62841B2 (en)
US3903426A (en) Corona generator electrode
JPH06305710A (en) Ozone generator
US3842286A (en) Apparatus for producing ozone
JP4036600B2 (en) Plasma decomposition apparatus and gas plasma decomposition method
Fitria et al. The Effects of Different Electrode Holes on Ozone Generation
JP3417037B2 (en) Ozone generator
JPH0741303A (en) Ozone generator
JPH08231206A (en) Ozonizer
JP3339114B2 (en) High voltage electrode structure of ozone generator
JPH09156904A (en) Ozone generator
JPH0831546A (en) Ozonizer
JP2550625B2 (en) Ozone generator
JP2000072410A (en) Ozone generation device
JPH07277707A (en) Ozone generator
JPH11209105A (en) Ozonizer
JP2002274814A (en) Ozone-generating device
JPH03164404A (en) Ozone generating device
JPS61168502A (en) Ozonizer
JP2003036954A (en) Ion-generating element and ion-generator
JPH08290901A (en) Ozonizer
JPH0831547A (en) Ozonizer
KR102091668B1 (en) Ion generating apparatus
JP6675208B2 (en) Dielectric for ozone generation and generator
JP3051571U (en) Ozone generator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100411

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees