JPH0630565A - High frequency electric power source unit - Google Patents

High frequency electric power source unit

Info

Publication number
JPH0630565A
JPH0630565A JP4124823A JP12482392A JPH0630565A JP H0630565 A JPH0630565 A JP H0630565A JP 4124823 A JP4124823 A JP 4124823A JP 12482392 A JP12482392 A JP 12482392A JP H0630565 A JPH0630565 A JP H0630565A
Authority
JP
Japan
Prior art keywords
circuit
power supply
current
active filter
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4124823A
Other languages
Japanese (ja)
Other versions
JP2622325B2 (en
Inventor
Moriyuki Ohata
大畠盛幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
S I ELECTRON KK
Original Assignee
S I ELECTRON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S I ELECTRON KK filed Critical S I ELECTRON KK
Priority to JP4124823A priority Critical patent/JP2622325B2/en
Publication of JPH0630565A publication Critical patent/JPH0630565A/en
Application granted granted Critical
Publication of JP2622325B2 publication Critical patent/JP2622325B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inverter Devices (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

PURPOSE:To obtain an active filter circuit which raises power factor and lessens harmonic wave distortion and suppresses cost. CONSTITUTION:This high frequency electric power source unit comprises a noise filter 15, a voltage doubling rectifying circuit (capacitor input type) 16, an active filter circuit, and an output switching circuit 17, with a power source 1 as input, and it is constituted so that charge and discharge of electrolytic capacitors C3 and C4 may be performed through the coils L1 and L2 as the current limiting elements of the active filter circuit by the switching control of the switching transistors Q1 and Q2 of an output switching circuit.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高周波電源装置の力率改
善に関し、さらに詳細には、アクティブフィルター回路
のスイッチングを出力スイッチング回路のスイッチング
トランジスタで併用させることにより回路の簡素化を図
りつつ力率を改善した高周波電源装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to power factor improvement of a high frequency power supply device. More specifically, the power factor is improved while the switching transistor of the output switching circuit is used in combination with the switching of the active filter circuit. The present invention relates to a high-frequency power supply device having improved.

【0002】[0002]

【従来の技術】代表的な従来の電源装置における整流回
路例を図5〜図8を基に説明する。
2. Description of the Related Art An example of a rectifier circuit in a typical conventional power supply device will be described with reference to FIGS.

【0003】図5(A)はコンデンサ入力型倍電圧整流
・平滑回路であり、歴史的に多く使用されてきたもので
あるが、力率が悪く省エネルギーの観点から改善要請が
高まっている。
FIG. 5 (A) shows a capacitor input type voltage doubler rectifying / smoothing circuit, which has been used many times historically, but its power factor is poor and demand for improvement is increasing from the viewpoint of energy saving.

【0004】即ち、図中において商用電源(50/60
Hz)1は本回路の入力(Vin)となり、2は整流回
路、3は平滑回路であり、ダイオードD1にて正極側を
整流し電解コンデンサC1を充電する。また、ダイオー
ドD2にて負極側を整流し電解コンデンサC2を充電す
る。このため、出力電圧Vo他各電圧・電流が図5
(B)に示す波形となり、半サイクル毎に正負の入力電
流Iinが少ない流通角αで流入する。
That is, in the figure, a commercial power source (50/60
Hz) 1 becomes an input (Vin) of this circuit, 2 is a rectifying circuit, 3 is a smoothing circuit, and the positive electrode side is rectified by the diode D1 to charge the electrolytic capacitor C1. Further, the negative electrode side is rectified by the diode D2 to charge the electrolytic capacitor C2. Therefore, the output voltage Vo and other voltages and currents are shown in FIG.
The waveform is as shown in (B), and the positive and negative input currents Iin flow in at a small distribution angle α every half cycle.

【0005】前記回路は簡易であり効率がよいので使用
される機会が多いが、流通角αが狭いが故に力率は50
〜70%程度となり皮相電力が大きく電送経路の電力損
失が無視できないという問題を含んでいる。
The circuit is often used because it is simple and efficient, but the power factor is 50 because the distribution angle α is narrow.
The problem is that the apparent power is large at about 70% and the power loss in the transmission path cannot be ignored.

【0006】上記問題の対策として古くからチョークイ
ンプット型が使用されてきたが、チョーク自体が大き
く、コスト、重量、スペースの点から敬遠され、最近で
は殆ど使用されない状況にある。(図省略) 次に、図6(A)に示す電流補償型整流・平滑回路の場
合は、ブリッジ整流回路4のダイオードD1〜D4にて
両波整流され、平滑・電流補償回路5で電解コンデンサ
C1→ダイオードD6→コイルL1→電解コンデンサC
2の経路にてC1,C2がt1期間充電される(図6
(B)参照)。この際電解コンデンサC1,C2は同一
容量とすることが必要条件となる。
Although a choke input type has been used for a long time as a measure against the above problem, the choke itself is large, and it has been shunned from the viewpoint of cost, weight and space, and recently it is almost not used. Next, in the case of the current compensation type rectifying / smoothing circuit shown in FIG. 6 (A), both waves are rectified by the diodes D1 to D4 of the bridge rectifying circuit 4, and the electrolytic capacitor is used by the smoothing / current compensating circuit 5. C1 → diode D6 → coil L1 → electrolytic capacitor C
C1 and C2 are charged along the route 2 for the period t1 (see FIG. 6).
(See (B)). At this time, it is a necessary condition that the electrolytic capacitors C1 and C2 have the same capacitance.

【0007】整流後の電圧Voが時間とともに減少して
ピーク値の50%に達した時点で電解コンデンサC1お
よびC2に蓄積された電荷が電解コンデンサC1→負荷
→ダイオードD5、電解コンデンサC2→ダイオードD
7→負荷の各々の経路を通って並列に負荷に電力をt2
期間供給することとなる(図6(B)参照)。
When the voltage Vo after rectification decreases with time and reaches 50% of the peak value, the charges accumulated in the electrolytic capacitors C1 and C2 are electrolytic capacitor C1 → load → diode D5, electrolytic capacitor C2 → diode D.
7 → t2 power is supplied to the load in parallel through each path of the load
It will be supplied for a period (see FIG. 6B).

【0008】このようにして上記電流補償型整流・平滑
回路の場合は交流電圧ピーク値の50%までの期間t1
内で入力電流Iinが流入し、図6(B)のようにコン
デンサ入力型倍電圧整流回路の場合に比較して流通角α
が拡大する結果となり、力率が改善される。
As described above, in the case of the current compensation type rectifying / smoothing circuit, the period t1 of up to 50% of the AC voltage peak value is obtained.
The input current Iin flows in, and the distribution angle α is larger than that in the case of the capacitor input type double voltage rectifier circuit as shown in FIG. 6 (B).
The result is that the power factor is improved.

【0009】上記回路では力率90%前後まで改善可能
である。しかし、出力電圧が必然的に決定されるため
(最小値がピーク値の50%)、高い電圧を要する場合
には別途昇圧する必要があるという欠点を有している。
さらに回路の構成上、電解コンデンサC1、C2の充電
電圧は最大Voの半分なので倍電圧整流回路の適用には
無理がある点も使用範囲を狭める要因となっている。
In the above circuit, the power factor can be improved to about 90%. However, since the output voltage is inevitably determined (the minimum value is 50% of the peak value), there is a drawback that it is necessary to separately boost the voltage when a high voltage is required.
Further, in terms of the circuit configuration, since the charging voltage of the electrolytic capacitors C1 and C2 is half of the maximum Vo, it is difficult to apply the voltage doubling rectifier circuit, which is another factor that narrows the range of use.

【0010】次に図7(A)のアクティブフィルタ方式
(昇圧形)の場合は、基本的には力率100%を目指し
たものであり、流入する電流Iinが入力電圧Vinに
比例するように制御回路6でアクティブフィルタ回路7
のスイッチング動作を制御し、図7(B)に示すように
高周波スイッチングされた入力電流8(Ir)の平均値
(入力平均電流9)が整流電圧10(Vi)に比例する
ようにしている。
Next, in the case of the active filter system (step-up type) of FIG. 7A, basically, the power factor is aimed at 100%, and the inflowing current Iin is proportional to the input voltage Vin. The control circuit 6 includes an active filter circuit 7
The switching operation is controlled so that the average value (input average current 9) of the high-frequency switched input current 8 (Ir) is proportional to the rectified voltage 10 (Vi) as shown in FIG. 7B.

【0011】上記方式は力率改善の点からすればほぼ完
全に近いものの、図7(A)より明らかなようにアクテ
ィブフィルタ回路はコイルL1、ダイオードD5、スイ
ッチングトランジスタQ1、平滑コンデンサC1から構
成され、スイッチング制御回路6も複雑となってコスト
高となる。したがって前記方式は大電力用大型電源の適
用例が散見される程度である。最近ではアクティブフィ
ルタの制御回路6をIC化した製品が市販されているが
高価である。
Although the above method is almost perfect from the viewpoint of improving the power factor, the active filter circuit is composed of a coil L1, a diode D5, a switching transistor Q1 and a smoothing capacitor C1 as is apparent from FIG. 7A. The switching control circuit 6 also becomes complicated and the cost increases. Therefore, the above-mentioned method is only applicable to large power sources for large power sources. Recently, a product in which the control circuit 6 of the active filter is integrated is commercially available, but it is expensive.

【0012】上記アクティブフィルタ回路7の機能につ
いて詳述すれば、ライン電圧、ライン電流の瞬時値を検
出し、ラインに直列に挿入されたチョークコイルL1、
およびトランジスタQ1のスイッチにより、スイッチン
グの1サイクル内での実効値(ΔV/ΔI=R)が一定
となるように制御するものである。なおスイッチング周
波数は数10kHz以上に選定されるのが一般的であ
る。また、制御方式は可変周波数方式、パルス幅制御方
式等があり、用途に適した方式が選定される。
To explain the function of the active filter circuit 7 in detail, the instantaneous values of the line voltage and the line current are detected, and the choke coil L1 inserted in series in the line,
Also, the switch of the transistor Q1 controls the effective value (ΔV / ΔI = R) to be constant within one switching cycle. The switching frequency is generally selected to be several tens of kHz or higher. Further, the control method includes a variable frequency method, a pulse width control method, etc., and the method suitable for the application is selected.

【0013】以上に述べた整流・平滑回路は直流電源と
して電力Voを該回路に接続された出力スイッチング回
路(所謂インバータ回路)に供給し該出力スイッチング
回路と共に高周波電源を構成する。
The rectifying / smoothing circuit described above supplies electric power Vo as a DC power source to an output switching circuit (so-called inverter circuit) connected to the circuit, and constitutes a high frequency power source together with the output switching circuit.

【0014】図8の(A)は上記図7(A)のアクティ
ブフィルタ回路を適用した高周波電源回路の回路例であ
る。この際、Q1のスイッチングによりL1およびAC
ラインに流れる電流はそれぞれ(B)、(C)のように
なる。図から判るようにスイッチング制御回路として2
つ必要であって全体の回路構成は複雑で且つコスト高と
なるのは避けられない。
FIG. 8A is a circuit example of a high frequency power supply circuit to which the active filter circuit of FIG. 7A is applied. At this time, by switching Q1, L1 and AC
The currents flowing in the lines are as shown in (B) and (C), respectively. As can be seen from the figure, 2 as a switching control circuit
However, it is inevitable that the overall circuit configuration is complicated and costly.

【0015】[0015]

【発明が解決しようとする課題】最近、電子機器から発
生する高調波に起因する電源ラインの波形歪が問題視さ
れているが、この波形歪が大きくなると同じ電源ライン
に接続される電子機器や電力供給源としての変電所機器
に誤動作や破損を引き起こすことがある(高調波妨
害)。
Recently, the waveform distortion of the power supply line caused by the harmonics generated from the electronic equipment has been regarded as a problem. When the waveform distortion becomes large, the electronic equipment connected to the same power supply line or May cause malfunction or damage to substation equipment as a power supply source (harmonic interference).

【0016】この点、電源ラインに接続される機器が純
粋な抵抗またはインダクタ、キャパシタのみで構成され
る場合には、電源ライン電圧と電流の位相差に応じ力率
が低下するので、無効電流が増加するもののライン電圧
を歪ませることはない。しかしながら、多くの機器で直
流化されるようになった現在、ダイオードとコンデンサ
で構成される整流回路は、電源ラインに対して非線形負
荷として作用し、電源ラインに流れる電流のピーク値は
平均電流の5〜10倍も流れて電源ラインに著しい歪を
生じさせ、高調波妨害の問題が顕現する。したがって該
高調波歪を低減させるためには入力電圧波形(正弦波)
と入力電流波形を比例させること、即ち力率を高くする
必要がある。
In this respect, when the device connected to the power supply line is composed of pure resistors, inductors, or capacitors, the power factor decreases according to the phase difference between the power supply line voltage and current, so that the reactive current is reduced. It increases but does not distort the line voltage. However, now that many devices have been converted to direct current, the rectifier circuit consisting of a diode and a capacitor acts as a non-linear load on the power supply line, and the peak value of the current flowing in the power supply line is the average current. The current flows 5 to 10 times and causes a significant distortion in the power supply line, and the problem of harmonic interference appears. Therefore, in order to reduce the harmonic distortion, the input voltage waveform (sine wave)
And the input current waveform must be proportional, that is, the power factor must be increased.

【0017】一方、前述の如く従来の整流・平滑回路
(図5、図6)における力率の改善は満足できる状態で
はなく、力率の悪さは上記高調波歪の他に無効電力が大
きく電送路での損失増大を招き、また電源スイッチやコ
ネクタの負荷が増大して信頼性を損なう要因の一つにも
なっている。
On the other hand, as described above, the improvement of the power factor in the conventional rectifying / smoothing circuit (FIGS. 5 and 6) is not satisfactory, and the poor power factor is caused by the large reactive power in addition to the above harmonic distortion. This is one of the factors that increase the loss in the road and increase the load of the power switch and the connector, which impairs the reliability.

【0018】この点、前述のアクティブフィルタ方式
(図7)を用いて力率の向上を図ると、(1)入力電流
の減少、(2)入力電圧の広範囲化、(3)入力配線に
よる電圧降下減少、(4)高調波電流の減少、(5)入
力平滑コンデンサのリップル減少等の改善ができる。し
かしながら上記アクティブフィルタ回路は複雑であり、
集積化されたIC製品が市販されてはいるものの高価で
あって、例えば蛍光灯用電源装置のようなコスト低減の
要請が厳しい高周波電源装置については単に電源装置の
整流・平滑回路としてアクティブフィルタ回路を採用す
ることは難しいのが現状であった。
In this respect, when the power factor is improved by using the above-mentioned active filter method (FIG. 7), (1) the input current is reduced, (2) the input voltage is widened, and (3) the voltage due to the input wiring. It is possible to improve drop reduction, (4) reduction of harmonic current, and (5) reduction of ripple of input smoothing capacitor. However, the active filter circuit is complicated,
Although an integrated IC product is commercially available, it is expensive, and for a high-frequency power supply device such as a power supply device for a fluorescent lamp, for which there is a severe demand for cost reduction, an active filter circuit is simply used as a rectifying / smoothing circuit of the power supply device. It was the current situation that it was difficult to adopt.

【0019】以上述べたように、従来の電源装置の整流
・平滑回路において、コンデンサ入力型は簡易であるが
力率が悪い点、電流補償型は力率はかなり改善されるも
のの回路構成的に出力電圧が低く昇圧の必要がある点お
よび倍電圧整流が適用出来ない点、アクティブフィルタ
方式は力率は理想的であるが回路が複雑で高コストにな
る点で各々問題があった。
As described above, in the conventional rectifying / smoothing circuit of the power supply device, the capacitor input type is simple but the power factor is poor, while the current compensation type has a considerably improved power factor, but has a circuit configuration. There are problems that the output voltage is low and boosting is required, the voltage doubler rectification cannot be applied, and the active filter method has an ideal power factor, but the circuit is complicated and the cost is high.

【0020】本発明は上記事情に鑑みてなされたもので
あり、回路の簡素化を図りコストを抑えつつ力率を改善
した高周波電源装置を提供するものである。
The present invention has been made in view of the above circumstances, and provides a high frequency power supply device in which the power factor is improved while simplifying the circuit and suppressing the cost.

【0021】[0021]

【課題を解決するための手段】本発明は、商用交流電源
を入力とし、整流回路と、平滑回路と、トランジスタの
スイッチング制御によるアクティブフィルタ回路と、出
力用電力スイッチング回路と、を備えた高周波電源装置
において、前記アクティブフィルタ回路のスイッチング
動作を前記出力用電力スイッチング回路のトランジスタ
のスイッチング動作にて併せ行うことにより、スイッチ
ング制御を1つの制御回路で行うようにしたことを特徴
とする高周波電源装置を提供することにより、上記目的
を達成するものである。
SUMMARY OF THE INVENTION The present invention is a high frequency power supply which has a commercial AC power supply as an input and which comprises a rectifying circuit, a smoothing circuit, an active filter circuit by switching control of transistors, and an output power switching circuit. In the device, a high-frequency power supply device is characterized in that switching control is performed by one control circuit by simultaneously performing switching operation of the active filter circuit by switching operation of a transistor of the output power switching circuit. By providing it, the said objective is achieved.

【0022】[0022]

【作用】本発明における高周波電源装置においては、出
力用電力スイッチング回路のスイッチングトランジスタ
でアクティブフィルタ回路のスイッチングを行う。した
がって、従来別個に構成されていたアクティブフィルタ
回路と高周波出力スイッチング回路を一体として制御す
るので制御回路が1つで済む。
In the high frequency power supply device of the present invention, the active filter circuit is switched by the switching transistor of the output power switching circuit. Therefore, the active filter circuit and the high-frequency output switching circuit, which are conventionally separately configured, are integrally controlled, so that only one control circuit is required.

【0023】また、使用する整流回路方式に制限は無
い。
There is no limitation on the rectifier circuit system used.

【0024】[0024]

【実施例】本発明に係わる力率改善型高周波電源装置の
実施例を図1を基に詳述する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a power factor improving type high frequency power supply device according to the present invention will be described in detail with reference to FIG.

【0025】図1は本発明に係わる高周波電源装置の回
路例であり、商用電源1を入力としてノイズフィルタ1
5、倍電圧整流回路(コンデンサ入力型)16、アクテ
ィブフィルタ回路および出力スイッチング回路17から
構成される。
FIG. 1 is an example of a circuit of a high frequency power supply device according to the present invention, which uses a commercial power supply 1 as an input and a noise filter 1
5, a voltage doubler rectifier circuit (capacitor input type) 16, an active filter circuit and an output switching circuit 17.

【0026】商用電源が正極性の半サイクル間について
説明すると、ダイオードD1により整流された入力電圧
は小容量のフィルムコンデンサC1を充電する。
Explaining during the positive half cycle of the commercial power supply, the input voltage rectified by the diode D1 charges the small-capacity film capacitor C1.

【0027】大容量の電解コンデンサC3への充電はト
ランジスタQ1→ダイオードD5→チョークコイルL1
を通して行われる。但し、C3の電圧Ec3がC1の電
圧Ec1より低い間のみ充電される。
Charging the large-capacity electrolytic capacitor C3 is performed by transistor Q1 → diode D5 → choke coil L1.
Done through. However, charging is performed only while the voltage Ec3 of C3 is lower than the voltage Ec1 of C1.

【0028】該充電電流はC1とC3の電位差、Q1の
オン時間に比例し、インダクタL1のインダクタンスに
反比例する関係にあり、次式が成り立つ。
The charging current is proportional to the potential difference between C1 and C3, the on-time of Q1, and inversely proportional to the inductance of the inductor L1, and the following equation holds.

【0029】 I11(peak)=(Ec1−Ec3−Eon)×Ton/L1 ここにTonはQ1のオン時間、I11(peak)は
I11の最大値、EonはQ1およびD5のオン電圧
(電圧ロス)である。
I11 (peak) = (Ec1-Ec3-Eon) × Ton / L1 Here, Ton is the ON time of Q1, I11 (peak) is the maximum value of I11, and Eon is the ON voltage (voltage loss) of Q1 and D5. Is.

【0030】電源オンの初期状態では、小容量コンデン
サC1には電源電圧(半波)に近い位相で、ほぼ同電位
まで瞬時に充電されることになるが、コンデンサC3へ
の充電はQ1がオンしている期間のみとなるので瞬間的
なEc3の電位上昇はない。
In the initial state when the power is turned on, the small-capacitance capacitor C1 is instantly charged to almost the same potential in a phase close to the power supply voltage (half wave), but when the capacitor C3 is charged, Q1 is turned on. There is no momentary rise in the potential of Ec3 because it is only during the period.

【0031】時間の経過と共にC3は半波毎に充電さ
れ、Ec3は徐々に上昇していく。
With the passage of time, C3 is charged every half wave, and Ec3 gradually rises.

【0032】この結果、(Ec1−Ec3)は徐々に小
さくなり、充電は減少して負荷に流れる出力電流に応じ
た電圧(Ec1−Ec3)で安定することとなる。
As a result, (Ec1-Ec3) gradually decreases, and the charge decreases and becomes stable at the voltage (Ec1-Ec3) corresponding to the output current flowing through the load.

【0033】また、前記充電電流はEc1>Ec3の条
件で流れ、Ec3の電位の高低により入力電流の流通角
が決定される。よって力率はEc3がEc1に近付くほ
ど悪くなる。
The charging current flows under the condition of Ec1> Ec3, and the distribution angle of the input current is determined by the level of the potential of Ec3. Therefore, the power factor becomes worse as Ec3 approaches Ec1.

【0034】以上の動作における各部の波形を図2に示
す。図2において(A)はEc1〜Ec4の電圧波形、
(B)は図1中の各部の電流波形である。
The waveform of each part in the above operation is shown in FIG. In FIG. 2, (A) is a voltage waveform of Ec1 to Ec4,
(B) is a current waveform of each part in FIG.

【0035】なお、ダイオードD3の動作はEc3の電
位がEc1より高い場合にのみオンし、低い場合にはオ
フとなりオン時のみC3の電荷を負荷に供給する。ダイ
オードD5はQ1がオンの時にC3への充電電流を流
し、Q2がオンの時にC3の電荷を放電させない為のス
イッチとして動作する。
The operation of the diode D3 is turned on only when the potential of Ec3 is higher than Ec1 and turned off when the potential of Ec3 is lower than Ec1, and the charge of C3 is supplied to the load only when it is turned on. The diode D5 operates as a switch for supplying a charging current to C3 when Q1 is on and for not discharging the charge of C3 when Q2 is on.

【0036】また、ダイオードD7、D8はQ1、Q2
がオフした直後の逆電流路であり、所謂転流ダイオード
である。
The diodes D7 and D8 are Q1 and Q2.
Is a reverse current path immediately after turning off, and is a so-called commutation diode.

【0037】以上の結果、出力電流Io1は図2に示す
とおり、T1の期間はC1の電荷を、T2の期間はC3
の電荷を利用して連続した電流を供給することとなる。
As a result of the above, the output current Io1 is, as shown in FIG. 2, the electric charge of C1 during the period of T1 and C3 during the period of T2.
A continuous current will be supplied by utilizing the electric charges.

【0038】本説明は電源入力が正極性の場合について
であったが、負極性の場合についても全く同様に説明さ
れるので省略する。
Although the present description has been made for the case where the power supply input has a positive polarity, the description for the case of a negative polarity will be omitted because it is explained in the same manner.

【0039】次に前記本発明に係わる高周波電源装置を
有する蛍光灯を負荷とする蛍光灯インバータ装置を例に
力率等の特性改善効果について述べる。
Next, the effect of improving the characteristics such as power factor will be described by taking a fluorescent lamp inverter device having a fluorescent lamp as a load, which has the high frequency power supply device according to the present invention as an example.

【0040】図3のような5つの32ワット蛍光灯FL
1〜FL5および限流コイルL1〜L5、共振コンデン
サC1〜C5で構成されている複数組の蛍光灯から成る
負荷を本発明に係わる高周波電源回路(図1)に付加し
た場合の入力電力、入力皮相電力、入力ピーク電流、力
率についての測定データ表1に示す。
Five 32-watt fluorescent lamps FL as shown in FIG.
1 to FL5, current-limiting coils L1 to L5, and resonance capacitors C1 to C5, a load consisting of a plurality of sets of fluorescent lamps is added to the high-frequency power supply circuit (FIG. 1) according to the present invention. Table 1 shows measured data on the apparent power, the input peak current, and the power factor.

【0041】なお、図4に示される従来のコンデンサ入
力型倍電圧整流回路と出力スイッチング回路を組み合わ
せた高周波電源装置の同負荷条件における特性データを
比較のため表1に併記する。
Characteristic data under the same load condition of the high frequency power supply device combining the conventional capacitor input type voltage doubler rectifier circuit and the output switching circuit shown in FIG. 4 are also shown in Table 1 for comparison.

【0042】[0042]

【表1】 [Table 1]

【0043】(注)入力電力を同一にした場合の比較で
ある。
(Note) This is a comparison when the input powers are the same.

【0044】上記表から明らかなように、入力電流のピ
ーク値で約46%の減少、皮相電力で25%の減少、力
率で約20%の上昇となり、大幅な改善効果が確認され
た。
As is clear from the above table, the peak value of the input current was reduced by about 46%, the apparent power was reduced by 25%, and the power factor was increased by about 20%, confirming a significant improvement effect.

【0045】また、当然のことながら従来回路で必要で
あった突入防止回路18もスイッチオン時の流入電流を
決定づける平滑回路コンデンサ容量が小さくなっている
ので削除可能となり突入防止回路部品の削減のみなら
ず、本回路の安全上の課題への配慮が不要となる(図4
比較参照)。
Further, as a matter of course, the inrush prevention circuit 18, which is required in the conventional circuit, can be deleted because the capacity of the smoothing circuit capacitor that determines the inflow current at the time of switch-on is small. Therefore, it is not necessary to consider the safety issues of this circuit (Fig. 4).
See comparison).

【0046】[0046]

【発明の効果】本発明に係わる高周波電源装置は、上記
のように構成されているため、以下に記載するような効
果を有する。
Since the high frequency power supply device according to the present invention is configured as described above, it has the following effects.

【0047】(1)力率の高いアクティブフィルタ回路
を有する高周波電源が簡単な回路構成で実現されるとい
う優れた効果を有する。
(1) It has an excellent effect that a high-frequency power source having an active filter circuit having a high power factor can be realized with a simple circuit configuration.

【0048】(2)力率が改善されることにより高調波
歪が減少するという優れた効果を有する。
(2) It has an excellent effect that harmonic distortion is reduced by improving the power factor.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係わる高周波電源装置の回路図FIG. 1 is a circuit diagram of a high frequency power supply device according to the present invention.

【図2】 (A)は上記回路各部における電圧波形、
(B)は電流波形
FIG. 2A is a voltage waveform in each part of the above circuit,
(B) Current waveform

【図3】 蛍光灯負荷回路図[Figure 3] Fluorescent lamp load circuit diagram

【図4】 従来のコンデンサ入力型倍電圧整流回路を有
する高周波電源装置
FIG. 4 is a high frequency power supply device having a conventional capacitor input type voltage doubler rectifier circuit.

【図5】 (A)は従来のコンデンサ入力型倍電圧整流
・平滑回路図、(B)は同電圧・電流波形
FIG. 5A is a conventional capacitor input type voltage doubler rectifying / smoothing circuit diagram, and FIG. 5B is the same voltage / current waveform.

【図6】 (A)は従来の電流補償型整流・平滑回路
図、(B)は同電圧・電流波形
6A is a conventional current compensation type rectifying / smoothing circuit diagram, and FIG. 6B is the same voltage / current waveform.

【図7】 (A)は従来のアクティブフィルタ回路図、
(B)は入力電流波形
FIG. 7A is a conventional active filter circuit diagram,
(B) Input current waveform

【図8】 (A)は従来のアクティブフィルタ回路を有
する高周波電源装置の回路図、(B)はチョークコイル
L1に流れる電流、(C)はACライン電流
8A is a circuit diagram of a high-frequency power supply device having a conventional active filter circuit, FIG. 8B is a current flowing through a choke coil L1, and FIG. 8C is an AC line current.

【符号の説明】[Explanation of symbols]

C1〜C5 電解コンデンサまたはフィルムコンデン
サ D1〜D7 ダイオード L1〜L3 コイル Q1〜Q3 スイッチングトランジスタ Vo 出力電圧 Vin 入力電圧 Iin 入力電流 α 流通角 1 商用電源(50/60Hz) 2 整流回路 3 平滑回路 4 ブリッジ整流回路 5 平滑・電流補償回路 6 制御回路 7 アクティブフィルタ回路 8 スイッチング入力電流(Ir) 9 入力平均電流 10 整流電流 11 アクティブフィルタ回路 12 出力スイッチング回路 13 ACライン電流 14 平均電流 T 正の半サイクル 15 ノイズフィルタ回路 16 コンデンサ入力型倍電圧整流回路 17 アクティブフィルタ回路および出力スイッチン
グ回路 18 突入防止回路
C1 to C5 electrolytic capacitor or film capacitor D1 to D7 diode L1 to L3 coil Q1 to Q3 switching transistor Vo output voltage Vin input voltage Iin input current α distribution angle 1 commercial power supply (50/60 Hz) 2 rectification circuit 3 smoothing circuit 4 bridge rectification Circuit 5 Smoothing / current compensation circuit 6 Control circuit 7 Active filter circuit 8 Switching input current (Ir) 9 Input average current 10 Rectifying current 11 Active filter circuit 12 Output switching circuit 13 AC line current 14 Average current T Positive half cycle 15 Noise Filter circuit 16 Capacitor input type voltage doubler rectifier circuit 17 Active filter circuit and output switching circuit 18 Inrush prevention circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 商用交流電源を入力とし、整流回路と、
平滑回路と、トランジスタのスイッチング制御によるア
クティブフィルタ回路と、出力用電力スイッチング回路
と、を備えた高周波電源装置において、前記アクティブ
フィルタ回路のスイッチング動作を前記出力用電力スイ
ッチング回路のトランジスタのスイッチング動作にて併
せ行うことにより、スイッチング制御を1つの制御回路
で行うようにしたことを特徴とする高周波電源装置。
1. A rectifier circuit using a commercial AC power supply as an input,
In a high-frequency power supply device including a smoothing circuit, an active filter circuit by switching control of transistors, and an output power switching circuit, switching operation of the active filter circuit is performed by switching operation of transistors of the output power switching circuit. A high-frequency power supply device characterized in that switching control is performed by one control circuit by performing it together.
JP4124823A 1992-05-18 1992-05-18 High frequency power supply Expired - Lifetime JP2622325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4124823A JP2622325B2 (en) 1992-05-18 1992-05-18 High frequency power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4124823A JP2622325B2 (en) 1992-05-18 1992-05-18 High frequency power supply

Publications (2)

Publication Number Publication Date
JPH0630565A true JPH0630565A (en) 1994-02-04
JP2622325B2 JP2622325B2 (en) 1997-06-18

Family

ID=14894993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4124823A Expired - Lifetime JP2622325B2 (en) 1992-05-18 1992-05-18 High frequency power supply

Country Status (1)

Country Link
JP (1) JP2622325B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6212754B1 (en) 1996-12-16 2001-04-10 Ricoh Company, Ltd. Method for sliding a seal with a lip onto a shaft, method for uncurling the lip, and apparatus for sliding the seal thereonto
EP2669404A1 (en) * 2012-05-31 2013-12-04 Enersaver UG Method and system for enhancing operation and efficiency of an AC circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531819A (en) * 1976-06-29 1978-01-10 Sansui Electric Co Power supply
JPS60134776A (en) * 1983-12-23 1985-07-18 Matsushita Electric Works Ltd Power source

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531819A (en) * 1976-06-29 1978-01-10 Sansui Electric Co Power supply
JPS60134776A (en) * 1983-12-23 1985-07-18 Matsushita Electric Works Ltd Power source

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6212754B1 (en) 1996-12-16 2001-04-10 Ricoh Company, Ltd. Method for sliding a seal with a lip onto a shaft, method for uncurling the lip, and apparatus for sliding the seal thereonto
US6223424B1 (en) 1996-12-16 2001-05-01 Ricoh Company, Ltd. Method for sliding a seal with a lip onto a shaft, method for uncurling the lip, and apparatus for sliding the seal thereonto
US6226851B1 (en) 1996-12-16 2001-05-08 Ricoh Company, Ltd. Method for sliding a seal with a lip onto a shaft, method for uncurling the lip, and apparatus for sliding the seal thereonto
EP2669404A1 (en) * 2012-05-31 2013-12-04 Enersaver UG Method and system for enhancing operation and efficiency of an AC circuit

Also Published As

Publication number Publication date
JP2622325B2 (en) 1997-06-18

Similar Documents

Publication Publication Date Title
US5652700A (en) Low cost AC-to-DC converter having input current with reduced harmonics
US5751561A (en) Low cost AC-to-DC converter having input current with reduced harmonics
JP6065262B2 (en) Power supply
KR20030052989A (en) Switching power supply
US8619442B2 (en) Boost-buck power factor correction
US7206209B2 (en) Switching power supply apparatus with error amplification control
JP3798095B2 (en) Switching power supply
JP3038304B2 (en) Switching power supply
JP2622325B2 (en) High frequency power supply
KR940003774B1 (en) Power supply circuit
JP3402031B2 (en) DC power supply
US20030161169A1 (en) Single-stage converter compensating power factor
JP2000116133A (en) Waveform shaping circuit
JP3453465B2 (en) Switching regulator
JP3421305B2 (en) Switching power supply
JP3587907B2 (en) DC power supply
JP4279937B2 (en) Power factor correction circuit
JP3590152B2 (en) DC power supply
JP3461072B2 (en) Switching power supply
JPH0898533A (en) Power-supply circuit
JP3392997B2 (en) Switching regulator
JP3996440B2 (en) Switching power supply
JPH08186982A (en) Dc power supply
JP3291507B2 (en) Inverter device for discharge lamp
JP3235295B2 (en) Power supply

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 16