JPH0630506A - Feeder controller for ground primary linear motor traffic system - Google Patents

Feeder controller for ground primary linear motor traffic system

Info

Publication number
JPH0630506A
JPH0630506A JP4180654A JP18065492A JPH0630506A JP H0630506 A JPH0630506 A JP H0630506A JP 4180654 A JP4180654 A JP 4180654A JP 18065492 A JP18065492 A JP 18065492A JP H0630506 A JPH0630506 A JP H0630506A
Authority
JP
Japan
Prior art keywords
section
feeder
train
vehicle
sections
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4180654A
Other languages
Japanese (ja)
Inventor
Yoshikazu Iizuka
義和 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4180654A priority Critical patent/JPH0630506A/en
Publication of JPH0630506A publication Critical patent/JPH0630506A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Linear Motors (AREA)
  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)

Abstract

PURPOSE:To provide a feeder controller for ground primary linear motor traffic system through which operating time of train can be shortened without increasing the number of power converters. CONSTITUTION:A linear synchronous motor is formed with a stator laid in a track as the primary and permanent magnets fixed to a vehicle as the secondary. Overlap sections U, W, Y are provided between feeder sections V, X, Z defined by dividing the stator 4 appropriately. Power supply to the overlapped sections is switched selectively between power converters 6V, 6X, 6Z for adjacent feeder sections as a vehicle advances thus connecting the overlapped section with an adjacent feeder section corresponding to the existing position of vehicle and feeding power thereto. This constitution realizes high density operation by solving the problem of shortening the train operating time while satisfying the condition that only one train exists within one feeder section, which can not be solved through conventional fixed feeder system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,地上一次リニアモータ
により車両を走行制御する地上一次リニアモータ交通シ
ステムにおける車両の高密度運行を実現するためのき電
制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a feeder control device for realizing high-density operation of vehicles in a ground primary linear motor traffic system in which a vehicle is controlled by a ground primary linear motor.

【0002】[0002]

【従来の技術】磁気浮上により車両を支持してリニアモ
ータで推進させる交通システムは,高速鉄道への適用だ
けでなく,低騒音,低振動の都市交通手段としても期待
されている。特に,地上一次式のリニアモータは前記の
特長に加えて,車両が軽量化できるのことに伴う小断面
化や低消費電力等の有利性が発揮される。地上一次リニ
アモータで車両を推進させる交通システムでは,軌道に
敷設された固定子を一次側,車両に取り付けられた永久
磁石を二次側としてリニア同期モータ(LSM)を構成
し,固定子巻線に電力変換装置から可変電圧可変周波数
電力を供給して列車の走行が制御される。前記電力変換
装置は電圧降下等の面から決定される距離範囲のき電区
間毎に設置され,1つの電力変換装置は1列車しか制御
できないので,1き電区間には1列車しか入ることがで
きない閉塞式の列車運行方式となっている。従って,通
常駅間を1き電区間として,前方のき電区間に列車が在
線しているときには,後続列車はき電区間手前の駅で停
止するように閉塞が設定される。図2は地上一次リニア
モータ交通システムにおけるき電区間の構成と信号表示
展開図を示しているが,軌道内に敷設された固定子を所
定距離で分割してき電区間20a,20b…を設け,各
き電区間20にそれぞれ電力変換装置21から電力が供
給され,各き電区間20a,20b…毎に駅22a,2
2b…が配置されている。このき電区間20に対応して
信号表示区間が設定される。信号表示区間は1つのき電
区間20を2つに分割して形成され,図2に示す状態で
説明すると,列車23bが在線するき電区間20bの前
方のき電区間20c内に先行列車23aが在線している
ときには,き電区間20bの境界手前の信号表示区間の
信号は0コードに操作されるので,後続列車23bはB
駅22bに停止して,先行列車23aの最後部が前方の
き電区間20cを抜けた時点で出発可能となる。従っ
て,列車の運転間隔は駅間距離以上となり,最小運転時
隔は次式(1)に示すようになる。 最小運転時隔=t1+t2+t3────(1) t1:駅間走行時分(駅間距離による) t2:駅停止時分 t3:列車が駅を出発して最後部が駅出口のき電区間境
界を抜けるまでの時間
2. Description of the Related Art A transportation system in which a vehicle is supported by magnetic levitation and propelled by a linear motor is expected to be applied not only to high-speed railways but also as a low-noise and low-vibration urban transportation means. In particular, in addition to the above-mentioned features, the linear ground type linear motor exhibits advantages such as a small cross section and low power consumption due to the weight reduction of the vehicle. In a traffic system in which a vehicle is propelled by a primary linear motor on the ground, a linear synchronous motor (LSM) is configured with a stator laid on the track as a primary side and a permanent magnet attached to the vehicle as a secondary side, and a stator winding. The train is controlled by supplying variable voltage variable frequency power from the power converter. The power conversion device is installed for each feeding section within a distance range determined in terms of voltage drop, etc. Since one power conversion device can control only one train, only one train can enter one feeding section. It is a closed train operation system that cannot be used. Therefore, when the train is located in the front feeder section with the normal station interval as one feeder section, the block is set so that the following train stops at the station before the feeder section. FIG. 2 shows the configuration of the feeding section and the signal display development view in the terrestrial primary linear motor traffic system. The stator installed in the track is divided by a predetermined distance to provide feeding sections 20a, 20b ... Electric power is supplied from the power converter 21 to each feeder section 20, and stations 22a, 2 are provided for each feeder section 20a, 20b ...
2b ... are arranged. A signal display section is set corresponding to this feeding section 20. The signal display section is formed by dividing one feeding section 20 into two. In the state shown in FIG. 2, the preceding train 23a is placed in the feeding section 20c in front of the feeding section 20b where the train 23b is located. When there is a train, the signal in the signal display section before the boundary of the feeder section 20b is operated to 0 code, so that the succeeding train 23b is B
When the train stops at the station 22b and the last part of the preceding train 23a passes through the front feeding section 20c, the train can be started. Therefore, the train operation interval is more than the distance between stations, and the minimum operation interval is as shown in the following equation (1). Minimum driving interval = t1 + t2 + t3 ───── (1) t1: Running time between stations (depending on the distance between stations) t2: Stopping time at a station t3: Train leaving the station and the last section being the exit station Time to leave the boundary

【0003】[0003]

【発明が解決しようとする課題】上記のように,地上一
次リニアモータ交通システムでは,1き電区間に1列車
という条件があるので,最小運転時隔は上式(1)のよ
うになり,列車の運転間隔は駅間距離以下にすることが
できず,列車の高密度運行ができない課題があった。き
電区間を短く設定すれば高密度運行が可能であるが,き
電区間の増加に伴って電力変換装置の数が増え,コスト
アップが避けられない。本発明は上記課題に鑑みて創案
されたもので,電力変換装置を増やすことなく,運転時
隔を短縮することのできる地上一次リニアモータ交通シ
ステムにおけるき電制御装置を提供することを目的とす
る。
As described above, in the terrestrial primary linear motor transportation system, there is a condition that one train is in one feeding section, so the minimum operating time interval is as shown in the above equation (1). The train operation interval could not be less than the distance between stations, and there was a problem that trains could not operate at high density. High-density operation is possible if the feeding section is set to be short, but the number of power conversion devices increases as the feeding section increases, and cost increases are inevitable. The present invention was devised in view of the above problems, and an object of the present invention is to provide a feeding control device in a ground primary linear motor traffic system that can shorten a driving interval without increasing the number of power conversion devices. .

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明が採用する手段は,軌道内に敷設された固定子
を一次側,車両に取り付けられた永久磁石を二次側とし
てリニア同期モータを形成し,前記固定子を適宜分割し
たき電区間にそれぞれ電力変換装置を配して,該電力変
換装置からそれぞれのき電区間に可変電圧可変周波数電
力を供給して前記車両の走行を制御する地上一次リニア
モータ交通システムにおけるき電制御装置において,前
記各き電区間の間に,隣合う各き電区間と分離されたオ
ーバーラップ区間を設けると共に,該オーバーラップ区
間とこれに隣合うき電区間への接続を選択的に切り換え
る切換手段を設けたことを特徴とする地上一次リニアモ
ータ交通システムのき電制御装置として構成される。
[Means for Solving the Problems] In order to achieve the above object, the means adopted by the present invention is a linear synchronization with a stator laid in a track as a primary side and a permanent magnet attached to a vehicle as a secondary side. A motor is formed, a power converter is arranged in each feeder section where the stator is appropriately divided, and a variable voltage variable frequency power is supplied from the power converter to each feeder section to drive the vehicle. In the feeding control device in the ground primary linear motor traffic system to be controlled, an overlap section separated from each adjacent feeding section is provided between the feeding sections, and the overlapping section is adjacent to the overlapping section. It is configured as a feeder control device for a ground primary linear motor traffic system, which is provided with a switching means for selectively switching a connection to a feeder section.

【0005】[0005]

【作用】本発明によれば,各き電区間の間にオーバーラ
ップ区間を設けて,このオーバーラップ区間への電力変
換装置からの電力供給を,車両の進行に対応して両側に
隣接するき電区間の電力変換装置から選択的に切り換え
ることにより,オーバーラップ区間は車両の在線位置に
応じて隣接するき電区間に接続されて電力供給を受け
る。従って,このオーバーラップ区間を駅位置に設置す
れば,該オーバーラップ区間に車両が進入して停止する
までは,進行してきたき電区間の電力変換装置に接続さ
れていたオーバーラップ区間への電力供給を,停止後,
進行方向側のき電区間の電力変換装置に接続されるよう
切り換えれば,後方駅に停止中の後続車両は先行列車の
前方駅出発の如何にかかわらず出発することができる。
上記構成により,最小運転時隔は駅間走行時分に等しく
することができ,先に(1)式で示したt2(駅停止時
分)とt3(列車が駅を出発して最後部が駅出口のき電
区間境界を抜けるまでの時間)とを省略することがで
き,時隔短縮が可能となる。
According to the present invention, the overlap section is provided between the feeding sections, and the electric power supplied from the power conversion device to the overlap section is adjacent to both sides corresponding to the progress of the vehicle. By selectively switching from the power converter of the power supply section, the overlap section is connected to the adjacent power supply section according to the position of the on-rail line of the vehicle to receive power supply. Therefore, if this overlap section is installed at the station position, power is supplied to the overlap section connected to the power conversion device in the advancing feeder section until the vehicle enters the stop section and stops. After stopping,
By switching to connect to the power converter in the feeder section on the traveling direction side, the following vehicle stopped at the rear station can leave regardless of whether the preceding train leaves the front station.
With the above configuration, the minimum operating time interval can be made equal to the running time between stations, and t2 (station stop time) and t3 (the train leaves the station and the last part is shown in equation (1)). It is possible to omit the time until the train exits the boundary of the feeder section at the station exit) and shorten the time interval.

【0006】[0006]

【実施例】以下,添付図面を参照して本発明を具体化し
た実施例につき説明し,本発明の理解に供する。尚,以
下の実施例は本発明を具体化した一例であって,本発明
の技術的範囲を限定するものではない。ここに,図1は
本発明の実施例に係るき電制御装置の構成とオーバーラ
ップ区間の接続状態の変化並びに速度コードの変化を示
す模式図である。本実施例に示す地上一次リニアモータ
交通システムは,軌道内に敷設された固定子を一次側,
車両に取り付けられた永久磁石を二次側として地上一次
リニア同期モータが形成されており,前記固定子は駅間
で分割されてき電区間を構成し,各き電区間に電力変換
装置から可変電圧可変周波数の電力を供給して,き電区
間に在線する車両を推進させると共に,速度制御して車
両の運行を制御するように構成されている。尚,以下の
説明において,前記車両は複数車両が連結運転されるも
のとして,列車と呼称する。図1において,列車5a,
5b,5c──に取り付けられた永久磁石と,軌道内に
き電区間V,X,Z──及びオーバーラップ区間U,
W,Y──として適宜距離で分割された固定子4とによ
ってリニア同期モータが構成されており,各き電区間
V,X,Z──にそれぞれ電力変換装置6V,6X,6
Z──が接続されて可変電圧可変周波数の電力が供給さ
れる。前記オーバーラップ区間U,W,Y──にはそれ
ぞれ1組の接続スイッチa,b(1a,1b,2a,2
b,3a,3b──)が設けられ,この選択スイッチ
a,bを交互に選択的に開閉することにより,隣合うき
電区間の電力変換装置から該オーバーラップ区間に電力
が供給される。例えば,オーバーラップ区間Wに対する
電力は,接続スイッチ2aをONにした場合には電力変
換装置6Vから供給され,接続スイッチ2bをONにし
た場合には電力変換装置6Xから供給される。これらオ
ーバーラップ区間U,W,Y──は,駅7U,7W,7
Y──位置に配置されている。上記構成におけるオーバ
ーラップ区間U,W,Yの接続状態の変化を,図1に示
すオーバーラップ区間の接続状態と速度コードの変化を
示す各状態A,B,C,Dを用いて説明する。以下の説
明は列車5a,5b,5cの運行に伴うオーバーラップ
区間Wの接続状態と速度コードとの変化を中心に示して
いる。 (1)オーバーラップ区間Wに列車5aが進入して駅7
Wに停車したとき,状態Aに示すように,それまでオー
バーラップ区間Wに接続されていた電力変換装置6Vを
接続スイッチ2aをOFFにして切り離す。 (2)オーバーラップ区間Yに先行列車5bが進入して
駅7Yに停車したとき,それまでオーバーラップ区間Y
に接続されていた電力変換装置6Xを接続スイッチ3a
をOFFにして切り離す。 (3)上記2つの接続スイッチ2a,3aがOFFにな
っていることを条件として,接続スイッチ2bをONに
してオーバーラップ区間Wを電力変換装置6Xに接続す
る。さらに,接続スイッチ2bのONを条件として,速
度コードを0から80コードに変更する(状態B)。こ
の操作によりオーバーラップ区間Wはき電区間Xと接続
されるので,列車5aは駅7Wから出発可能な状態にな
る。 (4)列車5aが駅7Wを出発してオーバーラップ区間
Wを抜け,き電区間Xに進入したら,接続スイッチ2b
をOFFにして,オーバーラップ区間Wをき電区間Xか
ら切り離す。この接続スイッチ2bのOFFを条件とし
て,オーバーラップ区間Wの速度コードを80コードか
らNコード(無信号)に変更する。(状態C) (5)後続列車5cがオーバーラップ区間Uを抜けて,
き電区間Vに進入したら,接続スイッチ1bをOFFに
する。接続スイッチ1bと2bとがOFFになっている
ことを条件として,接続スイッチ2aをONにする。ま
た,接続スイッチ2aがONになったことを条件とし
て,速度コードをNコードから0コードに変更する。こ
の操作により,き電区間Vとオーバーラップ区間Wとが
接続されるので,後続列車5cは先行する列車5aの進
行状態の如何にかかわらずオーバーラップ区間Wへ進入
して駅7Wに停止することができる。 上記のように列車5a,5b,5cの進行に対応して,
オーバーラップ区間U,W,Yの接続は前後に隣合うき
電区間V,X,Zに選択的に切り換えられ,き電区間
V,X,Zをオーバーラップ区間U,W,Yの長さ分だ
け列車5a,5b,5cの進行方向に延長させることが
できる。従って,従来のき電区間が駅間の距離で固定さ
れた固定き電方式の構成であるとき,1き電区間に1列
車の条件を満たすためには,列車間隔は駅間距離以下に
できず,列車運行時間の短縮化が困難であった課題を解
決することができる。即ち,従来構成による最小運転時
隔=t1+t2+t3のうち,t2(駅停止時分)とt
3(列車が駅を出発して最後部が駅出口のき電区間境界
を抜けるまでの時間)とが省略でき,最小運転時隔は駅
間走行時分(t1)のみとなり,列車運行間隔の短縮を
図ることができる。
Embodiments of the present invention will be described below with reference to the accompanying drawings for the understanding of the present invention. The following embodiments are examples of embodying the present invention and do not limit the technical scope of the present invention. FIG. 1 is a schematic diagram showing the configuration of the feeder control device according to the embodiment of the present invention, the change in the connection state in the overlap section, and the change in the speed code. In the ground primary linear motor transportation system shown in this embodiment, the stator installed in the track is used for the primary side,
A terrestrial primary linear synchronous motor is formed with the permanent magnet attached to the vehicle as the secondary side, and the stator constitutes an incoming section divided between stations, and a variable voltage from the power converter to each feeding section It is configured to supply electric power of a variable frequency to propel a vehicle existing in the feeder section and to control the operation of the vehicle by speed control. In addition, in the following description, the vehicle is referred to as a train as a plurality of vehicles are connected and operated. In FIG. 1, the train 5a,
Permanent magnets attached to 5b and 5c, and feeding sections V, X, Z in the orbit and overlapping sections U,
A linear synchronous motor is constituted by the stator 4 divided by W and Y as appropriate according to the distance, and the power converters 6V, 6X and 6 are respectively provided in the feeding sections V, X and Z.
Z-- is connected to supply power of variable voltage and variable frequency. One set of connection switches a and b (1a, 1b, 2a, 2) is provided in each of the overlapping sections U, W, Y.
b, 3a, 3b) are provided, and by selectively opening / closing the selection switches a, b, electric power is supplied from the power converters in the adjacent feeding sections to the overlapping section. For example, the power for the overlap section W is supplied from the power converter 6V when the connection switch 2a is turned on, and is supplied from the power converter 6X when the connection switch 2b is turned on. These overlapping sections U, W, Y-are at stations 7U, 7W, 7
It is located in the Y-position. The change in the connection state of the overlap sections U, W, and Y in the above configuration will be described using the connection state of the overlap section and the states A, B, C, and D showing the change of the speed code shown in FIG. The following description mainly shows changes in the connection state and the speed code of the overlap section W due to the operation of the trains 5a, 5b, 5c. (1) Train 5a enters the overlap section W and stops at station 7
When the vehicle is stopped at W, as shown in the state A, the power conversion device 6V that has been connected to the overlap section W is disconnected by turning off the connection switch 2a. (2) When the preceding train 5b enters the overlap section Y and stops at the station 7Y, the overlap section Y until then
Connected to the power converter 6X connected to the switch 3a
Turn off and disconnect. (3) On condition that the two connection switches 2a and 3a are off, the connection switch 2b is turned on to connect the overlap section W to the power conversion device 6X. Further, the speed code is changed from 0 code to 80 code under the condition that the connection switch 2b is turned on (state B). By this operation, the overlap section W is connected to the feeding section X, so that the train 5a is ready to depart from the station 7W. (4) When the train 5a leaves the station 7W, exits the overlap section W, and enters the feeder section X, the connection switch 2b
Is turned off and the overlap section W is separated from the feeding section X. The speed code of the overlap section W is changed from 80 code to N code (no signal) on condition that the connection switch 2b is turned off. (State C) (5) The succeeding train 5c leaves the overlap section U,
When entering the feeding section V, the connection switch 1b is turned off. The connection switch 2a is turned on on condition that the connection switches 1b and 2b are turned off. Further, the speed code is changed from the N code to the 0 code on condition that the connection switch 2a is turned on. By this operation, the feeder section V and the overlap section W are connected, so that the succeeding train 5c must enter the overlap section W and stop at the station 7W regardless of the progress state of the preceding train 5a. You can As mentioned above, in response to the progress of the trains 5a, 5b, 5c,
The connection of the overlapping sections U, W, Y is selectively switched to the feeding sections V, X, Z adjacent to each other in the front and rear, and the feeding sections V, X, Z are lengths of the overlapping sections U, W, Y. It can be extended in the traveling direction of the trains 5a, 5b, 5c by the amount. Therefore, when the conventional feeder section has a fixed feeder system configuration that is fixed by the distance between stations, the train interval can be less than the station distance in order to satisfy the condition of one train per feeder section. Therefore, it is possible to solve the problem that it was difficult to shorten the train operation time. That is, of the minimum operation time interval = t1 + t2 + t3 in the conventional configuration, t2 (station stop time) and t
3 (the time it takes for the train to leave the station and to leave the last part of the station exiting the feeder section boundary) can be omitted, and the minimum operating time is only the running time between stations (t1). It can be shortened.

【0007】[0007]

【発明の効果】以上の説明の通り本発明によれば,各き
電区間の間にオーバーラップ区間を設けて,このオーバ
ーラップ区間への電力変換装置からの電力供給を,両側
に隣接するき電区間の電力変換装置から選択的に切り換
え供給できるように構成される。このオーバーラップ区
間を駅位置に設置すれば,該オーバーラップ区間に車両
が進入して停止するまでは,進行してきたき電区間の電
力変換装置に接続されていたオーバーラップ区間への電
力供給を,停止後,進行方向側のき電区間の電力変換装
置に接続されるよう切り換えれば,後方の駅に停止中の
後続車両は先行列車の前方駅出発の如何にかかわらず出
発することができる。従って,従来のき電区間が駅間の
距離で固定された固定き電方式の構成であるとき,1き
電区間に1列車の条件を満たすためには,列車間隔は駅
間距離以下にできず,列車運行時間の短縮化が困難であ
った課題を解決することができ,高密度運行を実現する
地上一次リニアモータ交通システムのき電制御装置を提
供することができる。
As described above, according to the present invention, the overlap section is provided between the feeding sections, and the power supply from the power conversion device to the overlap section is adjacent to both sides. It is configured such that it can be selectively switched and supplied from the power conversion device in the power section. If this overlap section is installed at the station position, the electric power is supplied to the overlap section connected to the power conversion device of the incoming section until the vehicle enters the stop section and stops. If the vehicle is switched to be connected to the power conversion device in the feeding section on the traveling direction side after the stop, the following vehicle stopped at the rear station can leave regardless of whether the preceding train departs from the front station. Therefore, when the conventional feeder section has a fixed feeder system configuration that is fixed by the distance between stations, the train interval can be less than the station distance in order to satisfy the condition of one train per feeder section. Therefore, it is possible to solve the problem that it was difficult to shorten the train operation time, and to provide a feeder control device for a ground primary linear motor traffic system that realizes high-density operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例に係るき電制御装置の構成と
オーバーラップ区間への電力供給の切り換え状態及び速
度信号表示を示す模式図。
FIG. 1 is a schematic diagram showing a configuration of a feeder control device according to an embodiment of the present invention, a switching state of power supply to an overlap section, and a speed signal display.

【図2】 従来例に係るき電制御装置の構成と速度信号
表示を示す模式図。
FIG. 2 is a schematic diagram showing a configuration and speed signal display of a feeder control device according to a conventional example.

【符号の説明】[Explanation of symbols]

1a,1b,2a,2b,3a,3b──接続スイッチ
(切換手段) 4──固定子 5a,5b,5c──列車(車両) 6V,6X,6Z──電力変換装置 7U,7W,7Y──駅 V,X,Z──き電区間 U,W,Y──オーバーラップ区間
1a, 1b, 2a, 2b, 3a, 3b --- connection switch (switching means) 4 --- stator 5a, 5b, 5c --- train (vehicle) 6V, 6X, 6Z --- power converter 7U, 7W, 7Y --Stations V, X, Z ---- Feeding section U, W, Y ---- Overlap section

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 軌道内に敷設された固定子を一次側,車
両に取り付けられた永久磁石を二次側としてリニア同期
モータを形成し,前記固定子を適宜分割したき電区間に
それぞれ電力変換装置を配して,該電力変換装置からそ
れぞれのき電区間に可変電圧可変周波数電力を供給して
前記車両の走行を制御する地上一次リニアモータ交通シ
ステムにおけるき電制御装置において, 前記各き電区間の間に,隣合う各き電区間と分離された
オーバーラップ区間を設けると共に,該オーバーラップ
区間とこれに隣合うき電区間への接続を選択的に切り換
える切換手段を設けたことを特徴とする地上一次リニア
モータ交通システムのき電制御装置。
1. A linear synchronous motor is formed with a stator laid in a track as a primary side and a permanent magnet mounted on a vehicle as a secondary side, and the stator is divided into power supply sections each of which is appropriately divided. In the feeding control device in the ground primary linear motor transportation system for arranging a device to supply the variable voltage variable frequency power from the power conversion device to each feeding section to control the traveling of the vehicle, Between the sections, an overlap section separated from each adjacent feeder section is provided, and a switching means for selectively switching the connection between the overlap section and the adjacent feeder section is provided. Feeder control device for ground primary linear motor traffic system.
JP4180654A 1992-07-08 1992-07-08 Feeder controller for ground primary linear motor traffic system Pending JPH0630506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4180654A JPH0630506A (en) 1992-07-08 1992-07-08 Feeder controller for ground primary linear motor traffic system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4180654A JPH0630506A (en) 1992-07-08 1992-07-08 Feeder controller for ground primary linear motor traffic system

Publications (1)

Publication Number Publication Date
JPH0630506A true JPH0630506A (en) 1994-02-04

Family

ID=16086986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4180654A Pending JPH0630506A (en) 1992-07-08 1992-07-08 Feeder controller for ground primary linear motor traffic system

Country Status (1)

Country Link
JP (1) JPH0630506A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043463A1 (en) * 2005-10-12 2007-04-19 Central Japan Railway Company Acceleration device
CN113442732A (en) * 2020-03-24 2021-09-28 中车唐山机车车辆有限公司 Traction system of magnetic suspension train and rail train

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043463A1 (en) * 2005-10-12 2007-04-19 Central Japan Railway Company Acceleration device
JP2007106217A (en) * 2005-10-12 2007-04-26 Central Japan Railway Co Accelerator
US8028953B2 (en) 2005-10-12 2011-10-04 Central Japan Railway Company Accelerating device
CN113442732A (en) * 2020-03-24 2021-09-28 中车唐山机车车辆有限公司 Traction system of magnetic suspension train and rail train
CN113442732B (en) * 2020-03-24 2022-07-26 中车唐山机车车辆有限公司 Traction system of magnetic suspension train and rail train

Similar Documents

Publication Publication Date Title
US7173387B2 (en) Arrangement having at least one long-stator linear motor, for operating magnetically levitated vehicles
EP0068328B1 (en) Power supply system for a linear motor
US7362014B2 (en) Method and arrangement for operating a magnetically levitated vehicle
US6411049B1 (en) Method and apparatus for operating a magnet vehicle
US20080006172A1 (en) Linear synchronous motor power control system and methods
US4721892A (en) Power supply apparatus for linear motor
US20090205531A1 (en) Magnetic levitation train provided with a contactless inductive transmission device for a magnetic levitation vehicle railway
US6087790A (en) Section switching process for railway systems with a long stator linear motor
WO2018218942A1 (en) Power supply system of maglev train
JPH0630506A (en) Feeder controller for ground primary linear motor traffic system
JP3207934B2 (en) Power supply system for linear motor
JP2006335289A (en) Electricity feeding method and device to electric drive vehicle
JPH02228293A (en) Conducting system for linear motor
CN111890945B (en) Traction control system of medium-high speed maglev train
CN113479069A (en) Bilateral series power supply system and method for high-speed magnetic levitation traffic
JPH01248905A (en) Split feeder circuit for superconducting magnetic levitation railroad
JPH11355913A (en) Propelling coil feeding circuit for railway of magnetic levitation system
JPH11127505A (en) Method for stopping plural running bodies in linear traveling device
JP2645821B2 (en) Train propulsion power supply
JP2001157312A (en) Carrier car driven by linear motor
JP2989253B2 (en) Block control method and block control device for ground driven primary maglev railway
JPH0763201B2 (en) Power supply device for linear motor
JPS6328202A (en) Controller for electric vehicle
JPH072000A (en) Driving electric power supply system for linear motor car
CN115913051A (en) Linear motor driving system connected in series