JPH06302402A - Positive temperature coefficient thermistor - Google Patents

Positive temperature coefficient thermistor

Info

Publication number
JPH06302402A
JPH06302402A JP8754993A JP8754993A JPH06302402A JP H06302402 A JPH06302402 A JP H06302402A JP 8754993 A JP8754993 A JP 8754993A JP 8754993 A JP8754993 A JP 8754993A JP H06302402 A JPH06302402 A JP H06302402A
Authority
JP
Japan
Prior art keywords
temperature coefficient
thermistor
positive temperature
composition
coefficient thermistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8754993A
Other languages
Japanese (ja)
Inventor
Hiroshi Sasaki
宏 佐々木
Hiroshi Inagaki
宏 稲垣
Takuji Okumura
卓司 奥村
Masatoshi Tamura
政利 田村
Katsuhiko Sugisawa
克彦 杉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP8754993A priority Critical patent/JPH06302402A/en
Priority to EP94912679A priority patent/EP0694930A4/en
Priority to PCT/JP1994/000622 priority patent/WO1994024680A1/en
Priority to KR1019950704028A priority patent/KR960701453A/en
Publication of JPH06302402A publication Critical patent/JPH06302402A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a highly reliable thermistor of a low consumption power without generation of Pb vapor. CONSTITUTION:A positive temperature coefficient thermistor is constituted of a barium titanate-calcium titanate semiconductor constituting a thermistor main body 1, whose composition is as follows; (Ba1-x-yCaxYy)Ti(1+z)O3+pSiO2+ qMn, wherein 0.01<=x<=0.2, 0.002<=y<=0.006, 0.001<=z<=0.010, 0.005<=p<=0.03, and 0.0005<=q<=0.0015.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、正特性サーミスタに係
り、特にサーミスタ本体の組成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive temperature coefficient thermistor, and more particularly to a composition of a thermistor body.

【0002】[0002]

【従来の技術】BaTiO遙に、Y,Nd等を0.1〜
0.3at%添加した酸化物半導体は大きな正の温度係数
を有することから、正特性(PTC)サーミスタと呼ば
れる。 この正特性サーミスタは、大きな正の温度係数
を有する温度領域を、Sr,Pb等の添加で調整するこ
とができることから、温度の測定および過電流防止、モ
ータ起動、カラーTV消磁用等の回路素子および低温発
熱ヒータ等、広く様々な分野でなくてはならないものと
なっている。
2. Description of the Related Art Y, Nd, etc. are added to 0.1 to 0.1% of BaTiO 3.
Since the oxide semiconductor added with 0.3 at% has a large positive temperature coefficient, it is called a positive characteristic (PTC) thermistor. Since this positive temperature coefficient thermistor can adjust a temperature range having a large positive temperature coefficient by adding Sr, Pb, etc., it is a circuit element for temperature measurement and overcurrent prevention, motor startup, color TV degaussing, etc. In addition, it has become an essential element in a wide variety of fields such as low-temperature heat generation heaters.

【0003】例えば、このようなサーミスタは、Ba,
Ti,Nd,などの金属の酸化物、炭酸塩、硝酸塩、塩
化物等を焼結し、薄い円柱状等に成形せしめられたサー
ミスタ本体と、その上面と下面に形成されたNiメッキ
層からなる第1の電極層と、この上層に形成された銀を
主成分とする第2の電極層とから構成されている。そし
て、通常、第2の電極層間に電圧を印加して使用され
る。
For example, such a thermistor has Ba,
It consists of a thermistor body formed by sintering oxides, carbonates, nitrates, chlorides, etc. of metals such as Ti, Nd, etc. into a thin columnar shape, and Ni plating layers formed on the upper and lower surfaces thereof. It is composed of a first electrode layer and a second electrode layer formed on the first electrode layer and containing silver as a main component. Then, it is usually used by applying a voltage between the second electrode layers.

【0004】サーミスタは、キュリー温度と呼ばれる温
度を境に、電気抵抗値が103 〜108 倍程度大きくな
る特徴を有しており、実用に際しては室温比抵抗、キュ
リー温度、抵抗温度係数、抵抗変化幅を目的に、より適
切な値をもつように組成、製法を調整して用いられる。
The thermistor has a characteristic that the electric resistance value increases about 10 3 to 10 8 times at a temperature called Curie temperature, and in practical use, room temperature specific resistance, Curie temperature, temperature coefficient of resistance, resistance. It is used by adjusting the composition and manufacturing method so that it has a more appropriate value for the purpose of the range of change.

【0005】ところで従来、消費電力を低減する技術と
して、主成分となるBaTiO3 に、キュリ温度を上昇
させるPbTiO3 とキュリ温度を低下させるSrTi
3とを同時に所定の割合で添加する方法(特公昭63
−28324号、特開平4−170360号、特開平4
−170361号)が提案されている。
Conventionally, as a technique for reducing power consumption, BaTiO 3 as a main component is added to PbTiO 3 for raising the Curie temperature and SrTi for lowering the Curie temperature.
A method of simultaneously adding O 3 and a predetermined ratio (Japanese Patent Publication No. Sho 63).
-28324, JP-A-4-170360, JP-A-4
No. -170361) has been proposed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、このよ
うな正特性サーミスタは、材料中に蒸気圧の高いPbを
含有させる必要があるため、1000℃以上となる焼結
中には、Pb蒸気が大量に発生し、環境に対して有害性
が高いという問題があった。
However, since such a positive temperature coefficient thermistor needs to contain Pb having a high vapor pressure in the material, a large amount of Pb vapor is generated during sintering at 1000 ° C. or higher. The problem was that it was highly harmful to the environment.

【0007】本発明は前記実情に鑑みてなされたもの
で、消費電力が小さく、Pb蒸気の発生がなく信頼性の
高い正特性サーミスタを提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a positive temperature coefficient thermistor which consumes less power, does not generate Pb vapor, and has high reliability.

【0008】[0008]

【課題を解決するための手段】そこで本発明では、サー
ミスタ本体を構成する半導体の組成を以下に示すチタン
酸バリウム−チタン酸カルシウム系半導体で構成したこ
とを特徴とする。 (Ba1-x-y Cax y )Ti(1+z) 3 +p SiO2
+q Mn 0.01≦x ≦0.2 ,0.002 ≦y ≦0.006 ,0.001 ≦z ≦0.
010 ,0.005 ≦p≦0.03 0.0005≦q ≦0.0015 すなわち、従来のチタン酸バリウム−チタン酸ストロン
チウム系半導体においてPbの添加を止め、チタンを化
学的量論比よりも過剰に添加するようにしたことを特徴
とする。
Therefore, the present invention is characterized in that the semiconductor constituting the thermistor body is composed of the following barium titanate-calcium titanate based semiconductor. (Ba 1-xy Ca x Y y ) Ti (1 + z) O 3 + p SiO 2
+ Q Mn 0.01 ≦ x ≦ 0.2, 0.002 ≦ y ≦ 0.006, 0.001 ≦ z ≦ 0.
[0101] 0.005 ≤ p ≤ 0.03 0.0005 ≤ q ≤ 0.0015 That is, in the conventional barium titanate-strontium titanate based semiconductor, the addition of Pb was stopped and titanium was added in excess of the stoichiometric ratio. Characterize.

【0009】[0009]

【作用】本発明者らは組成を変化させて種々の実験を重
ねた結果、上記組成を用いることにより、消費電力の小
さい、正特性サーミスタを得ることが可能となることを
発見した。
As a result of various experiments conducted by changing the composition, the present inventors have found that it is possible to obtain a positive temperature coefficient thermistor with low power consumption by using the above composition.

【0010】上記組成中、Caは結晶粒を微細化し、耐
電圧特性を向上させる効果がある。組成範囲を0.01≦x
≦0.2 としたのは、0.01以下では特性改善の効果がな
く、0.2を越えると素子の比抵抗が大きくなり、実用
性がなくなるためである。
In the above composition, Ca has the effect of refining the crystal grains and improving the withstand voltage characteristics. Composition range 0.01 ≦ x
The reason for setting ≤0.2 is that there is no effect of improving the characteristics when the value is 0.01 or less, and the specific resistance of the element increases when the value exceeds 0.2, and the practicality is lost.

【0011】Yはチタン酸バリウムの半導電性を付与す
る効果がある。比抵抗を実用的値である低い値(10〜
1kΩ・cm)にするため、その組成範囲は0.002 ≦y
≦0.006 の範囲とする必要がある。
Y has the effect of imparting the semiconductivity of barium titanate. The resistivity is a low value (10 to 10) which is a practical value.
1 kΩ · cm), the composition range is 0.002 ≤ y
It must be within the range of ≤0.006.

【0012】化学量論組成よりも過剰なTi量は結晶粒
の粒径、素子の抵抗温度係数に大きな影響を与えるた
め、通電中の消費電力に最も影響する。ここでTiの組
成範囲を0.001 ≦z ≦0.010 としたのは、0.001 以下で
は抵抗温度係数が小さくなるため、また、0.01以上では
結晶粒が異常粒成長し、バリスタ効果により電圧印加時
の素子抵抗が小さくなるため、通電中の消費電力が大き
くなることからであってこのような理由から、上記範囲
を決定した。
[0012] An amount of Ti in excess of the stoichiometric composition has a great influence on the grain size of crystal grains and the temperature coefficient of resistance of the device, and thus has the greatest influence on power consumption during energization. Here, the composition range of Ti is set to 0.001 ≤ z ≤ 0.010 because the temperature coefficient of resistance becomes smaller at 0.001 or less, and the crystal grain grows abnormally at 0.01 or more, and the element resistance during voltage application due to the varistor effect. Is smaller, the power consumption during energization increases, and for this reason, the above range is determined.

【0013】また、SiO2 は焼結温度を低下させ、結
晶粒の異常粒成長を抑制するという効果がある。0.005
≦p≦0.03としたのは、0.005 以下では異常粒成長抑制
効果が不十分であり、0.03以下では逆に結晶粒の異常粒
成長を引き起こす。
Further, SiO 2 has an effect of lowering the sintering temperature and suppressing abnormal grain growth of crystal grains. 0.005
The reason why ≦ p ≦ 0.03 is that the effect of suppressing abnormal grain growth is insufficient at 0.005 or less, and conversely causes abnormal grain growth of crystal grains at 0.03 or less.

【0014】Mnは、キュリー温度以上での抵抗温度係
数を増大させる効果がある。しかし、Mnの添加は比抵
抗をも増大させるため、実用的な素子比抵抗(1kΩ・
cm以下)の範囲で上記効果を得るには、その組成範囲を
0.0005≦q ≦0.0015とする必要がある。
Mn has the effect of increasing the temperature coefficient of resistance above the Curie temperature. However, the addition of Mn also increases the specific resistance, so the practical element specific resistance (1 kΩ ·
To obtain the above effect in the range of (cm or less), the composition range should be
It is necessary to set 0.0005 ≤ q ≤ 0.0015.

【0015】[0015]

【実施例】以下、本発明の実施例について図面を参照し
つつ詳細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0016】実施例1 図1は本発明実施例の正特性サーミスタを示す図であ
る。
Embodiment 1 FIG. 1 is a diagram showing a positive temperature coefficient thermistor according to an embodiment of the present invention.

【0017】この正特性サーミスタは、サーミスタ本体
1の組成を次表に示すような組成比を有し、以下に示す
チタン酸バリウム−チタン酸カルシウム系半導体で構成
したことを特徴とする。
This positive temperature coefficient thermistor is characterized in that the thermistor body 1 has a composition ratio as shown in the following table and is composed of a barium titanate-calcium titanate based semiconductor shown below.

【0018】(Ba1-x-y Cax y )Ti(1+z) 3
+p SiO2 +q Mn 0.01≦x ≦0.2 ,0.002 ≦y ≦0.006 ,0.001 ≦z ≦0.
010 ,0.005 ≦p≦0.03 0.0005≦q ≦0.0015 構成したことを特徴とするものである。
(Ba 1-xy Ca x Y y ) Ti (1 + z) O 3
+ P SiO 2 + q Mn 0.01 ≦ x ≦ 0.2, 0.002 ≦ y ≦ 0.006, 0.001 ≦ z ≦ 0.
010, 0.005 ≤ p ≤ 0.03 0.0005 ≤ q ≤ 0.0015.

【0019】 すなわちこの正特性サーミスタは、チタン酸バリウムを
主成分とする上記組成のサーミスタ本体1と、その上面
と下面に、外周縁からやや入り込んだ位置に端縁がくる
ように形成されたNi蒸着層からなる第1の電極層2
a,2bと、この上層に第1の電極層2a,2bと端縁
が一致するように形成された銀を主成分とする第2の電
極層3a,3bとから構成されている。
[0019] That is, this positive temperature coefficient thermistor is composed of a thermistor body 1 having barium titanate as a main component and having the above composition, and a Ni vapor deposition layer formed on the upper and lower surfaces of the thermistor body so that the edges are slightly intruded from the outer peripheral edge. First electrode layer 2
a, 2b, and second electrode layers 3a, 3b containing silver as a main component, which are formed on the upper layers a, 2b so as to match the edges of the first electrode layers 2a, 2b.

【0020】次にこの正特性サーミスタの製造工程につ
いて説明する。
Next, the manufacturing process of this positive temperature coefficient thermistor will be described.

【0021】まず、平均粒径0.3〜2μm の市販のT
iO2 ,BaCO3 、CaCO3 およびY2 3 の粉末
を前表の割合で配合し湿式混合した後に乾燥し、100
0〜1200℃の温度で4時間仮焼した。得られた仮焼
粉に平均流径1μm のSiO2 およびMn(NO3 2
・6H2 O水溶液を配合し、湿式混合・粉砕した。この
スラリーに有機バインダーを加え、スプレードライヤー
によって造粒した。そして得られた造粒粉を油圧プレス
によって2.5〜3.0g/cm3 の密度になるよう成型し
た後、大気中にて1350℃で1時間焼成し、直径20
mm、厚み2.5mmのチタン酸バリウム系半導体磁器を得
た。この半導体磁器の両端面に、市販のAg電極の印刷
焼付けを行い、比抵抗を測定するとともに消費電力を測
定した。ここで消費電力は図2に示すような測定回路を
用いて測定した。この測定回路では、正特性サーミスタ
10を負荷抵抗11を介して電源12に接続し、スィッ
チ13によってこの接続をオンオフ可能なようにし、か
つこの正特性サーミスタ10に並列に接続された電圧計
14によって正特性サーミスタ10両端の電圧を測定す
るとともに、正特性サーミスタ10に直列に接続された
電流計15によって正特性サーミスタ10に流れる電流
を測定するようにしてなるものである。このようにして
正特性サーミスタ10両端の電圧および、この正特性サ
ーミスタ10に流れる電流を測定し、消費電力を算出す
る。ここで消費電力P(W)は次式で求めた。
First, a commercially available T having an average particle size of 0.3 to 2 μm is used.
Powders of iO 2 , BaCO 3 , CaCO 3 and Y 2 O 3 were blended in the proportions shown in the above table, wet-mixed and then dried,
It was calcined at a temperature of 0 to 1200 ° C. for 4 hours. The calcined powder obtained was added with SiO 2 and Mn (NO 3 ) 2 having an average flow diameter of 1 μm.
・ A 6H 2 O aqueous solution was blended, wet-mixed and pulverized. An organic binder was added to this slurry and granulated by a spray dryer. Then, the obtained granulated powder was molded by a hydraulic press so as to have a density of 2.5 to 3.0 g / cm 3 , and then calcined in the air at 1350 ° C. for 1 hour to give a diameter of 20.
A barium titanate-based semiconductor ceramic having a thickness of 2.5 mm and a thickness of 2.5 mm was obtained. Commercially available Ag electrodes were printed on both end faces of this semiconductor porcelain to measure specific resistance and power consumption. Here, the power consumption was measured using a measuring circuit as shown in FIG. In this measurement circuit, the positive temperature coefficient thermistor 10 is connected to a power source 12 via a load resistance 11, a switch 13 enables this connection to be turned on and off, and a voltmeter 14 connected in parallel to the positive temperature coefficient thermistor 10 allows The voltage across the PTC thermistor 10 is measured, and the current flowing through the PTC thermistor 10 is measured by an ammeter 15 connected in series to the PTC thermistor 10. In this way, the voltage across the PTC thermistor 10 and the current flowing through the PTC thermistor 10 are measured to calculate the power consumption. Here, the power consumption P (W) was calculated by the following equation.

【0022】P(W)=Vp (v)×I(A) 前記表において、組成No.1〜5,8,9は本発明を
示し、組成No.6,7,10,11は比較例を示す。
P (W) = V p (v) × I (A) In the above table, composition No. 1 to 5, 8 and 9 indicate the present invention, and composition No. 6, 7, 10, and 11 show comparative examples.

【0023】組成No.1〜5と、組成No.6,7と
の比較により、過剰TiO2 量が0.001 〜 0.01mol(総
TiO2 量100.1 〜101.0 mol )にて、従来のPbを含
む組成No.11の消費電力(3.0W)と同等以下の
小さい消費電力が得られることがわかる。なお過剰Ti
量が0.001 mol 以下あるいは0.01mol 以上では3.0w
以上の消費電力となる。
Composition No. 1 to 5, and composition No. By comparison with Nos. 6 and 7, the excess TiO 2 amount was 0.001 to 0.01 mol (total TiO 2 amount 100.1 to 101.0 mol), and the conventional composition No. containing Pb was added. It can be seen that a small power consumption equal to or less than the power consumption of 11 (3.0 W) can be obtained. Excess Ti
3.0 w when the amount is 0.001 mol or less or 0.01 mol or more
The above power consumption is achieved.

【0024】また、過剰TiO2 量を0.3mol(総TiO
2 量100.3mol)と固定し、Ca添加量を変化させた場合
(組成No.2,8,9,10)、Ca添加量が20mo
l を越えると比抵抗が急増し、実用的でなくなる。また
Ca添加量が20mol 以下では。比抵抗は1KΩ・cm
以下のものが得られ、消費電力も3.0W以下と小さ
い。
Further, the amount of excess TiO 2 is 0.3 mol (total TiO 2
When the amount of Ca added is fixed (composition No. 2, 8, 9, 10), the amount of Ca added is 20 mo.
If it exceeds l, the specific resistance increases rapidly, making it impractical. When the amount of Ca added is 20 mol or less. Resistivity is 1KΩ · cm
The following are obtained, and the power consumption is as low as 3.0 W or less.

【0025】このようにPbを含有しない組成におい
て、Ba,Ca,Ti,Y,Mn,SiO2 の組成範囲
を適正化することにより、従来Pbを添加しなければ得
られなかった低い消費電力を得ることができ、しかもP
bを含まないため、製造時にPb蒸気が発生するという
問題を解決することができた。
As described above, in the composition not containing Pb, by optimizing the composition range of Ba, Ca, Ti, Y, Mn, and SiO 2 , the low power consumption which could not be obtained without adding Pb in the related art is obtained. Can be obtained, and P
Since b is not contained, the problem that Pb vapor is generated during manufacturing could be solved.

【0026】[0026]

【発明の効果】以上説明してきたように、本発明によれ
ば、サーミスタ本体を構成する半導体の組成をPbを含
有しないチタン酸バリウム−チタン酸カルシウム系半導
体で構成しているため、焼成に際しPb蒸気を発生する
ことがなく、通電中の消費電力の低い正特性サーミスタ
を提供することができる。
As described above, according to the present invention, the composition of the semiconductor forming the thermistor body is composed of barium titanate-calcium titanate-based semiconductor containing no Pb. It is possible to provide a positive temperature coefficient thermistor that does not generate steam and has low power consumption during energization.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例の正特性サーミスタを示す図FIG. 1 is a diagram showing a positive temperature coefficient thermistor according to an embodiment of the present invention.

【図2】本発明実施例の正特性サーミスタの消費電力測
定回路を示す図
FIG. 2 is a diagram showing a power consumption measurement circuit of a positive temperature coefficient thermistor according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 サーミスタ本体 2a,2b 第1の電極層 3a,3b 第2の電極層 10 正特性サーミスタ 11 負荷抵抗 12 電源 13 スィッチ 14 電圧計 15 電流計 1 Thermistor body 2a, 2b First electrode layer 3a, 3b Second electrode layer 10 Positive temperature coefficient thermistor 11 Load resistance 12 Power supply 13 Switch 14 Voltmeter 15 Ammeter

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年5月17日[Submission date] May 17, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0002[Name of item to be corrected] 0002

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0002】[0002]

【従来の技術】BaTiO3 に、Y,Nd等を0.1〜
0.3at%添加した酸化物半導体は大きな正の温度係数
を有することから、正特性(PTC)サーミスタと呼ば
れる。 この正特性サーミスタは、大きな正の温度係数
を有する温度領域を、Sr,Pb等の添加で調整するこ
とができることから、温度の測定および過電流防止、モ
ータ起動、カラーTV消磁用等の回路素子および低温発
熱ヒータ等、広く様々な分野でなくてはならないものと
なっている。
2. Description of the Related Art Y, Nd, etc. are added to BaTiO 3 in an amount of 0.1-0.1%.
Since the oxide semiconductor added with 0.3 at% has a large positive temperature coefficient, it is called a positive characteristic (PTC) thermistor. Since this positive temperature coefficient thermistor can adjust a temperature range having a large positive temperature coefficient by adding Sr, Pb, etc., it is a circuit element for temperature measurement and overcurrent prevention, motor startup, color TV degaussing, etc. In addition, it has become an essential element in a wide variety of fields such as low-temperature heat generation heaters.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Name of item to be corrected] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0005】ところで従来、消費電力を低減する技術と
して、主成分となるBaTiO3 に、キュリー温度を上
昇させるPbTiO3 とキュリー温度を低下させるSr
TiO3 とを同時に所定の割合で添加する方法(特公昭
63−28324号、特開平4−170360号、特開
平4−170361号)が提案されている。
Conventionally, as a technique for reducing power consumption, BaTiO 3 as a main component is added to PbTiO 3 for increasing the Curie temperature and Sr for decreasing the Curie temperature.
There has been proposed a method of simultaneously adding TiO 3 in a predetermined ratio (Japanese Patent Publication No. 63-28324, JP-A-4-170360, and JP-A-4-170361).

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】また、SiO2 は焼結温度を低下させ、結
晶粒の異常粒成長を抑制するという効果がある。0.005
≦p≦0.03としたのは、0.005 以下では、異常粒成長抑
制効果が不十分であり、0.03以上では、逆に結晶粒の異
常粒成長を引き起こすためである。
Further, SiO 2 has an effect of lowering the sintering temperature and suppressing abnormal grain growth of crystal grains. 0.005
The reason for setting ≦ p ≦ 0.03 is that the effect of suppressing abnormal grain growth is insufficient at 0.005 or less, and conversely causes abnormal grain growth of crystal grains at 0.03 or more.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0024[Name of item to be corrected] 0024

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0024】また、過剰TiO2 量を0.3mol(総TiO
2 量100.3mol)と固定し、Ca添加量を変化させた場合
(組成No.2,8,9,10)、Ca添加量が20mo
l を越えると比抵抗が急増し、実用的でなくなる。また
Ca添加量が20mol 以下では、比抵抗は1KΩ・cm
以下のものが得られ、消費電力も3.0W以下と小さ
い。
Further, the amount of excess TiO 2 is 0.3 mol (total TiO 2
When the amount of Ca added is fixed (composition No. 2, 8, 9, 10), the amount of Ca added is 20 mo.
If it exceeds l, the specific resistance increases rapidly, making it impractical. When the amount of Ca added is 20 mol or less, the specific resistance is 1 KΩ · cm.
The following are obtained, and the power consumption is as low as 3.0 W or less.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田村 政利 神奈川県平塚市万田1200 株式会社小松製 作所研究所内 (72)発明者 杉澤 克彦 神奈川県平塚市万田1200 株式会社小松製 作所研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masatoshi Tamura, 1200 Manda, Hiratsuka-shi, Kanagawa, Komatsu Ltd. (72) Inventor, Katsuhiko Sugizawa 1200, Manda, Hiratsuka, Kanagawa, Ltd., Komatsu Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 次式を満たすように形成されたチタン酸
バリウム−チタン酸カルシウム半導体からなるサーミス
タ本体と、 (Ba1-x-y Cax y )Ti(1+z) 3 +p SiO2
+q Mn 0.01≦x ≦0.2 ,0.002 ≦y ≦0.006 ,0.001 ≦z ≦0.
010 ,0.005 ≦p≦0.03 0.0005≦q ≦0.0015 前記サーミスタ本体に取り付けられた給電用の電極とを
具備したことを特徴とする正特性サーミスタ。
1. A thermistor body composed of a barium titanate-calcium titanate semiconductor formed so as to satisfy the following formula, and (Ba 1-xy Ca x Y y ) Ti (1 + z) O 3 + p SiO 2
+ Q Mn 0.01 ≦ x ≦ 0.2, 0.002 ≦ y ≦ 0.006, 0.001 ≦ z ≦ 0.
010, 0.005 ≤ p ≤ 0.03 0.0005 ≤ q ≤ 0.0015 A positive temperature coefficient thermistor comprising: the thermistor body and an electrode for feeding.
JP8754993A 1993-04-14 1993-04-14 Positive temperature coefficient thermistor Pending JPH06302402A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP8754993A JPH06302402A (en) 1993-04-14 1993-04-14 Positive temperature coefficient thermistor
EP94912679A EP0694930A4 (en) 1993-04-14 1994-04-14 Positive characteristic thermistor
PCT/JP1994/000622 WO1994024680A1 (en) 1993-04-14 1994-04-14 Positive characteristic thermistor
KR1019950704028A KR960701453A (en) 1993-04-14 1994-04-14 Static thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8754993A JPH06302402A (en) 1993-04-14 1993-04-14 Positive temperature coefficient thermistor

Publications (1)

Publication Number Publication Date
JPH06302402A true JPH06302402A (en) 1994-10-28

Family

ID=13918075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8754993A Pending JPH06302402A (en) 1993-04-14 1993-04-14 Positive temperature coefficient thermistor

Country Status (1)

Country Link
JP (1) JPH06302402A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8093170B2 (en) 2007-06-14 2012-01-10 Murata Manufacturing Co., Ltd. Semiconductor ceramic material
CN102503414A (en) * 2011-11-09 2012-06-20 中南大学 High-Curie temperature (Tc) lead-free positive temperature coefficient (PTC) thermal sensitive ceramic material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8093170B2 (en) 2007-06-14 2012-01-10 Murata Manufacturing Co., Ltd. Semiconductor ceramic material
CN102503414A (en) * 2011-11-09 2012-06-20 中南大学 High-Curie temperature (Tc) lead-free positive temperature coefficient (PTC) thermal sensitive ceramic material

Similar Documents

Publication Publication Date Title
JP5327556B2 (en) Semiconductor ceramic and positive temperature coefficient thermistor
WO2010067865A1 (en) Semiconductor ceramic and positive temperature coefficient thermistor
EP3127889B1 (en) Semiconductor ceramic composition and ptc thermistor
EP3202746A1 (en) Semiconductor ceramic composition and ptc thermistor
JPH11322415A (en) Barium titanate powder, semiconductor ceramic and semiconductor ceramic element
JPH06302402A (en) Positive temperature coefficient thermistor
WO1994024680A1 (en) Positive characteristic thermistor
JP3554786B2 (en) Semiconductor ceramic, degaussing positive temperature coefficient thermistor, degaussing circuit, and method of manufacturing semiconductor ceramic
JP3039511B2 (en) Semiconductor ceramic and semiconductor ceramic element
JP4058140B2 (en) Barium titanate semiconductor porcelain
JP3166787B2 (en) Barium titanate-based semiconductor porcelain composition
JPH04329601A (en) Ptc thermistor
JPH06349604A (en) Positive characteristic thermistor
JP3598177B2 (en) Voltage non-linear resistor porcelain
JP2588951B2 (en) High temperature PTC thermistor and manufacturing method thereof
JPH11297504A (en) Electronic device
WO2012111385A1 (en) Positive temperature-coefficient thermistor
JP3124896B2 (en) Manufacturing method of semiconductor porcelain
JPH09320811A (en) Ptc thermistor material and manufacture thereof
JPH01143201A (en) Variable positive temperature coefficient resistance(ptcr) element
JPH04144201A (en) Positive temperature coefficient thermistor and manufacture thereof
JPH1112033A (en) Barium lead titanate-based semiconductor ceramic composition
JPH08151261A (en) Semiconductor porcelain having positive resistance temperature characteristic
KR100246298B1 (en) Semiconductive Ceramic
JPH08162301A (en) Semiconductor porcelain having positive resistance temperature characteristic