JPH06301420A - Solar ray tracking device - Google Patents

Solar ray tracking device

Info

Publication number
JPH06301420A
JPH06301420A JP11409593A JP11409593A JPH06301420A JP H06301420 A JPH06301420 A JP H06301420A JP 11409593 A JP11409593 A JP 11409593A JP 11409593 A JP11409593 A JP 11409593A JP H06301420 A JPH06301420 A JP H06301420A
Authority
JP
Japan
Prior art keywords
solar panel
solar
tracking device
receiving tank
heat receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11409593A
Other languages
Japanese (ja)
Inventor
Tsuneo Kume
常生 久米
Sumitoshi Sonoda
澄利 園田
Eiji Yamamoto
栄治 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP11409593A priority Critical patent/JPH06301420A/en
Publication of JPH06301420A publication Critical patent/JPH06301420A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To eliminate the consumption of electric power generated by a photovolatic power generation system and improve the total power generation efficiency of the photovolatic power generation system. CONSTITUTION:The solar ray tracking device which tracks a solar panel mounted on a rack 2 according to the movement of the sun is provided with a bearing 12 for supporting solar panel 1 rotatably around a rotary shaft 11 extending in the south-north direction as an axis and a main actuator 5 composed of a heat receiving tank 4 consisting of a sealed container filled with operating liquid and a piston 3 whose piston rod 31 operates by the pressure of the operating liquid in the heat receiving tank 4 expanding by receiving the radiation heat of the solar ray, so that the solar panel 1 is slanted in the east-west direction through the operation of the main actuator 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、太陽光エネルギを電力
に変換する太陽電池を使用した太陽光発電システム等に
用いられる太陽光追尾装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar tracking device used in a solar power generation system or the like which uses a solar cell for converting solar energy into electric power.

【0002】[0002]

【従来の技術】従来、太陽光追尾装置は、太陽電池を平
板状に配列したソーラパネルを常に太陽に対して直角に
維持して、発電能力を最大にするするために、ソーラパ
ネルの表面に垂直な遮蔽体を設けるとともに、遮蔽体の
周囲に複数箇所に光センサを設け、太陽の方向によって
生じる遮蔽体の影によって各光センサの出力が等しくな
るように、ソーラパネルをサーボモータにより傾動する
ようにしたものが開示されている(例えば、特開平1−
79816号)。
2. Description of the Related Art Conventionally, a solar tracking device has a solar panel, in which solar cells are arranged in a flat plate shape, always maintained at a right angle to the sun to maximize the power generation capacity. A vertical shield is provided, and photosensors are provided at multiple locations around the shield, and the solar panel is tilted by a servomotor so that the output of each photosensor becomes equal due to the shadow of the shield caused by the direction of the sun. The above is disclosed (for example, Japanese Patent Laid-Open No.
79816).

【0003】[0003]

【発明が解決しようとする課題】ところが、従来技術で
は、ソーラパネルをサーボモータにより傾動するため、
太陽光で発電した貴重な電力を消費することになり、太
陽光発電システムの発電効率を低下させるという欠点が
あった。本発明は、電力を使用せずにソーラパネルが太
陽光を追尾するようにして、太陽光発電システムの発電
効率を高めることを目的とするものである。
However, in the prior art, since the solar panel is tilted by the servo motor,
There is a drawback that it consumes valuable electric power generated by sunlight and reduces the power generation efficiency of the solar power generation system. An object of the present invention is to increase the power generation efficiency of a solar power generation system by allowing a solar panel to track sunlight without using electric power.

【0004】[0004]

【課題を解決するための手段】上記問題を解決するた
め、本発明は、架台上に載置したソーラパネルを太陽の
動きに応じて追従させる太陽光追尾装置において、前記
ソーラパネルの南・北方向に伸びる軸を回転軸として回
動し得るように前記架台上に支持する軸受と、作動液を
充満した密閉容器からなる受熱槽と、太陽光の輻射熱を
受けて膨張する前記受熱槽内の前記作動液の圧力によっ
てピストンロッドが動作するピストンとからなる主アク
チュエータを設け、前記主アクチュエータの動作により
前記ソーラパネルを東・西方向に傾動するようにしたも
のである。
In order to solve the above problems, the present invention provides a solar tracking device for causing a solar panel placed on a pedestal to follow the movement of the sun in a south / north direction of the solar panel. In the heat-receiving tank that expands by receiving the radiant heat of sunlight, and a bearing that supports on the pedestal so as to be rotatable about an axis extending in the direction of rotation and a heat-receiving tank that is filled with a working fluid. A main actuator including a piston in which a piston rod operates by the pressure of the hydraulic fluid is provided, and the solar panel is tilted in the east and west directions by the operation of the main actuator.

【0005】[0005]

【作用】上記手段により、太陽光が受熱槽に当たる前の
状態は、受熱槽の作動液の温度が低いため、作動液が収
縮してピストンロッドは下方に下がって、ソーラパネル
は東側に傾斜している。太陽が上昇して受熱槽に太陽光
が当たり出すと、太陽からの入射熱量が増え、作動液の
温度が上昇して膨張する。したがって、ピストンロッド
のストロークが伸びてソーラパネルの東側は押し上げら
れ、ソーラパネルは東側への傾斜角を小さくし、水平の
位置から更に西側へ傾斜して太陽光に追従する。主アク
チュエータの動作時定数を数時間以上に設定してあるの
で、ソーラパネルは全日照時間を通じて、ほぼ太陽の方
位を向くことになる。
By the above means, in the state before the sunlight hits the heat receiving tank, the temperature of the working liquid in the heat receiving tank is low, so the working liquid contracts, the piston rod lowers downward, and the solar panel tilts to the east. ing. When the sun rises and the sunlight hits the heat receiving tank, the amount of incident heat from the sun increases, and the temperature of the hydraulic fluid rises and expands. Therefore, the stroke of the piston rod is extended and the east side of the solar panel is pushed up, the solar panel reduces the inclination angle to the east side, and further inclines to the west side from the horizontal position to follow the sunlight. Since the operation time constant of the main actuator is set to several hours or longer, the solar panel will face almost the direction of the sun throughout the daylight hours.

【0006】[0006]

【実施例】以下、本発明を図に示す実施例について説明
する。図1は本発明の実施例を示す斜視図である。図に
おいて、ソーラパネル1を南向きに太陽光に対してほぼ
垂直に配置し、西側の一辺に回動軸11を設けて、回動
軸11を軸として回動し得るように軸受21を介して架
台2の上に支持してある。ソーラパネル1の東側の一辺
には、架台2に設けたピストン3のピストンロッド31
の先端をピン連結してある。ピストン3の近傍の太陽光
を受け易いところに、作動液を充満した密閉容器からな
る受熱槽4を設け、受熱槽4からピストン3に作動液を
送出する送出管41を設けてある。これにより、受熱槽
4内の作動液が太陽光の輻射熱によって膨張し、受熱槽
4からの作動液の圧力によってピストンロッド31が直
線運動する、太陽熱アクチュエータである主アクチュエ
ータ5を形成している。なお、作動液は熱膨張係数が大
きく、凍結や蒸発がしにくく、熱によって変質しにくい
ものであればよく、例えば、四塩化炭素、マシン油、テ
レピン油などが使用される。また、受熱槽4が透明の容
器である時は、作動液を着色することにより、輻射熱を
吸収し易くして作動液の温度上昇を高くすることができ
る。また、ソーラパネル1は、作動液の温度が外気と同
じ冷却状態で東側に傾くように設定してあり、主アクチ
ュエータ5の動作時定数を数時間以上に設定してある。
ここで、動作を説明すると、太陽光が受熱槽4に当たる
前の状態は、受熱槽4の作動液の温度が低いため、作動
液が収縮してピストン3のピストンロッド31は下方に
下がって、図2(a)に示すように、ソーラパネル1は
東側に傾斜している。太陽が上昇して受熱槽4に太陽光
が当たり出すと、図4(a)に示すように、太陽からの
入射熱量が増え、作動液の温度が上昇して膨張する。し
たがって、ピストンロッド31のストロークは、図4
(c)に示すように伸びてソーラパネル1の東側は押し
上げられ、図2(b)に示すように、ソーラパネル1は
東側への傾斜角を小さくし、水平の位置から更に西側へ
傾斜して太陽光に追従する。主アクチュエータ5の動作
時定数を数時間以上に設定してあるので、ソーラパネル
1は全日照時間を通じて、ほぼ太陽の方位を向くことに
なる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing an embodiment of the present invention. In the figure, a solar panel 1 is arranged in a southward direction substantially perpendicular to sunlight, a rotary shaft 11 is provided on one side on the west side, and a rotary shaft 11 is used as a shaft so as to rotate via a bearing 21. It is supported on the pedestal 2. On the east side of the solar panel 1, the piston rod 31 of the piston 3 provided on the mount 2
The tip of is connected with a pin. A heat receiving tank 4 made of a closed container filled with a working fluid is provided near the piston 3 in a place where it is likely to receive sunlight, and a delivery pipe 41 for delivering the working fluid from the heat receiving vessel 4 to the piston 3 is provided. As a result, the hydraulic fluid in the heat receiving tank 4 expands due to the radiant heat of sunlight, and the piston rod 31 linearly moves due to the pressure of the hydraulic fluid from the heat receiving tank 4 to form the main actuator 5 which is a solar thermal actuator. The hydraulic fluid may have a large coefficient of thermal expansion, is unlikely to freeze or evaporate, and is unlikely to be deteriorated by heat. For example, carbon tetrachloride, machine oil, turpentine oil or the like is used. Further, when the heat receiving tank 4 is a transparent container, the working fluid is colored so that the radiant heat can be easily absorbed and the temperature rise of the working fluid can be increased. Further, the solar panel 1 is set so that the temperature of the working fluid inclines to the east in the same cooling state as the outside air, and the operation time constant of the main actuator 5 is set to several hours or more.
Here, the operation will be described. In the state before sunlight hits the heat receiving tank 4, the temperature of the working liquid in the heat receiving tank 4 is low, so that the working liquid contracts and the piston rod 31 of the piston 3 goes down. As shown in FIG. 2A, the solar panel 1 is inclined to the east side. When the sun rises and the sunlight hits the heat receiving tank 4, as shown in FIG. 4A, the amount of incident heat from the sun increases, and the temperature of the hydraulic fluid rises and expands. Therefore, the stroke of the piston rod 31 is as shown in FIG.
As shown in (c), the east side of the solar panel 1 is pushed up, and as shown in FIG. 2 (b), the solar panel 1 has a small inclination angle to the east side and further tilts to the west side from the horizontal position. To follow the sunlight. Since the operation time constant of the main actuator 5 is set to several hours or longer, the solar panel 1 is oriented almost in the direction of the sun throughout the daylight hours.

【0007】以上の実施例では、ピストン3のストロー
クは作動液の熱時定数に基づいた指数関数的に変化する
ため、図4(a)に示すように、午前中に比べて午後の
動作が緩慢になる傾向を示し、追従動作の直線性が悪く
なるおそれがある。図3はこの問題を解決する第2の実
施例を示す斜視図で、受熱槽4の東側部分42と西側部
分43に分け、西側部分43が東側部分42より輻射熱
吸収能力が大きくなるようにしたものである。例えば、
東側部分42の表面に太陽の輻射熱を減少させるように
着色したり、東側部分42の表面積を西側部分43より
小さくしたりすることにより、西側部分43の輻射熱吸
収能力を大きくすることができる。これにより、午前中
は東側部分42が受ける輻射熱によって作動液の温度が
上昇し、輻射熱吸収能力が緩慢になり始めた正午頃から
西側部分43が東側部分42より大きい輻射熱吸収能力
によって輻射熱を吸収して作動液の温度を上げる。した
がって、作動液が受ける入射熱量は、図4(b)に示す
ように、午後から更に増加して、ピストン3のストロー
クは午後になっても緩慢になることなく変化し、主アク
チュエータ5の追従動作の直線性を改善する。ところ
で、上記実施例の構成では、気温の高い夏期では、受熱
槽内の作動液は午前中でも膨張しているため、ソーラパ
ネルは西向き加減になる。また、気温の低い冬期には午
後になっても大きく膨張しないため、ソーラパネルは東
向き加減になる。図5は季節によって変わる気温の影響
を受けないようにした第3の実施例を示す斜視図であ
る。太陽からの輻射熱を受けず、周囲温度のみによって
作動液が膨張・収縮するようにした補助受熱槽6と、補
助受熱槽6から作動液によって作動するピストン7から
なる第2の太陽熱アクチュエータである補助アクチュエ
ータ8を設け、ソーラパネル1の一方の辺に設けた回動
軸11の一端を、補助アクチュエータ7によって上下さ
せて、南・北方向に傾動するようにしたものである。こ
れにより、回動軸11側が夏期は上昇し、冬期は下降し
て季節によって生じる主アクチュエータ5の東西方向の
特性変動を補償している。また、補助アクチュエータ8
の動作は、夏期はソーラパネル1の仰角を大きくし、冬
期は仰角を小さくするので、南北方向の太陽光を追従す
ることになり、太陽光の受熱効率が更に向上する。な
お、上記実施例ではいずれも、ソーラパネル1の西側の
一辺を回動し得るように支持し、東側の一辺を主アクチ
ュエータ5により上下させる場合について説明したが、
ソーラパネル1の東側の一辺を回動し得るように支持
し、西側の一辺を主アクチュエータ5により上下させる
ようにしてもよい。
In the above embodiment, the stroke of the piston 3 changes exponentially based on the thermal time constant of the hydraulic fluid. Therefore, as shown in FIG. It tends to be slow, and the linearity of the follow-up operation may deteriorate. FIG. 3 is a perspective view showing a second embodiment for solving this problem, which is divided into an east side portion 42 and a west side portion 43 of the heat receiving tank 4 so that the west side portion 43 has a larger radiation heat absorption capacity than the east side portion 42. It is a thing. For example,
By coloring the surface of the east side portion 42 so as to reduce the radiant heat of the sun or by making the surface area of the east side portion 42 smaller than that of the west side portion 43, the radiant heat absorbing capacity of the west side portion 43 can be increased. As a result, in the morning, the temperature of the hydraulic fluid rises due to the radiant heat received by the eastern portion 42, and the westward portion 43 absorbs the radiant heat with a greater radiant heat absorbing ability than the eastern portion 42 around noon when the radiant heat absorbing ability begins to slow down. Raise the temperature of the hydraulic fluid. Therefore, as shown in FIG. 4B, the amount of incident heat received by the hydraulic fluid further increases from the afternoon, and the stroke of the piston 3 changes without slowing in the afternoon, and the following of the main actuator 5 follows. Improves linearity of movement. By the way, in the configuration of the above-described embodiment, in the summer when the temperature is high, the working liquid in the heat receiving tank is expanded even in the morning, so that the solar panel is adjusted to the west. In the cold winter, the solar panel does not expand significantly even in the afternoon, so the solar panel is adjusted to the east. FIG. 5 is a perspective view showing a third embodiment in which the influence of the temperature which changes depending on the season is eliminated. Auxiliary solar heat actuator consisting of an auxiliary heat-receiving tank 6 that is designed to expand and contract the working fluid only by the ambient temperature without receiving radiant heat from the sun, and a piston 7 that is operated by the working fluid from the auxiliary heat-receiving tank 6 An actuator 8 is provided, and one end of a rotary shaft 11 provided on one side of the solar panel 1 is moved up and down by an auxiliary actuator 7 to tilt in the south and north directions. As a result, the rotary shaft 11 side rises in summer and falls in winter to compensate for characteristic fluctuations in the east-west direction of the main actuator 5 caused by the season. In addition, the auxiliary actuator 8
In this operation, since the elevation angle of the solar panel 1 is increased in the summer and the elevation angle is decreased in the winter, the sunlight in the north-south direction is followed, and the heat receiving efficiency of the sunlight is further improved. In each of the above-described embodiments, a case has been described in which the west side of the solar panel 1 is rotatably supported and the east side is moved up and down by the main actuator 5.
The east side of the solar panel 1 may be rotatably supported, and the west side may be moved up and down by the main actuator 5.

【0008】[0008]

【発明の効果】以上述べたように、本発明によれば、太
陽光発電システムで発電した電力を消費することなく、
ソーラパネルをおおむね太陽に向けることができ、さら
に季節によって生じる東西方向の特性変動を補償すると
共に、南北方向の太陽光の追従も可能となるので、太陽
光発電システムの総合発電効率を高める効果がある。
As described above, according to the present invention, without consuming the electric power generated by the solar power generation system,
The solar panel can be directed toward the sun, and in addition to compensating for seasonal characteristic fluctuations in the east-west direction, it is also possible to follow the sunlight in the north-south direction, which has the effect of increasing the overall power generation efficiency of the solar power generation system. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す斜視図である。FIG. 1 is a perspective view showing an embodiment of the present invention.

【図2】本発明の動作を示す説明図である。FIG. 2 is an explanatory diagram showing the operation of the present invention.

【図3】本発明の第2の実施例を示す斜視図である。FIG. 3 is a perspective view showing a second embodiment of the present invention.

【図4】本発明の特性を示すグラフである。FIG. 4 is a graph showing characteristics of the present invention.

【図5】本発明の第3の実施例を示す斜視図である。FIG. 5 is a perspective view showing a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ソーラパネル、11 回転軸、12 軸受、2 架
台、3 ピストン、31 ピストンロッド、4 受熱
槽、41 送出管、42 東側部分、43 西側部分、
5 主アクチュエータ、6補助受熱槽、8 補助アクチ
ュエータ
1 solar panel, 11 rotating shafts, 12 bearings, 2 mounts, 3 pistons, 31 piston rods, 4 heat receiving tanks, 41 delivery pipes, 42 east side part, 43 west side part,
5 main actuators, 6 auxiliary heat receiving tanks, 8 auxiliary actuators

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 架台上に載置したソーラパネルを太陽の
動きに応じて追従させる太陽光追尾装置において、前記
ソーラパネルの南・北方向に伸びる軸を回転軸として回
動し得るように前記架台上に支持する軸受と、作動液を
充満した密閉容器からなる受熱槽と太陽光の輻射熱を受
けて膨張する前記受熱槽内の前記作動液の圧力によって
ピストンロッドが動作するピストンとからなる主アクチ
ュエータとを設け、前記主アクチュエータの動作により
前記ソーラパネルを東・西方向に傾動するようにしたこ
とを特徴とする太陽光追尾装置。
1. A solar tracking device for causing a solar panel mounted on a pedestal to follow the movement of the sun according to the movement of the sun, wherein the axis extending in the north and south directions of the solar panel is rotatable about a rotation axis. Mainly composed of a bearing supported on a pedestal, a heat receiving tank consisting of a closed container filled with a working fluid, and a piston in which a piston rod operates by the pressure of the working fluid in the heat receiving vessel which expands by receiving the radiant heat of sunlight. An solar light tracking device comprising an actuator and tilting the solar panel in the east and west directions by the operation of the main actuator.
【請求項2】 前記受熱槽の西側部分が東側部分より輻
射熱吸収能力が大きくなるようにした請求項1記載の太
陽光追尾装置。
2. The solar tracking device according to claim 1, wherein the west side portion of the heat receiving tank has a larger radiant heat absorption capacity than the east side portion.
【請求項3】 内部に充満した作動液が周囲温度のみに
よって膨張・収縮するようにした補助受熱槽と、前記作
動液によって作動するピストンからなる補助アクチュエ
ータとを設け、前記補助アクチュエータにより前記ソー
ラパネルを南・北方向に傾動するようにした請求項1ま
たは2記載の太陽光追尾装置。
3. A solar panel is provided with the auxiliary heat receiving tank in which the working fluid filled inside expands / contracts only by the ambient temperature, and the auxiliary actuator composed of a piston operated by the working fluid. The solar tracking device according to claim 1, wherein the solar light is tilted in the south and north directions.
JP11409593A 1993-04-16 1993-04-16 Solar ray tracking device Pending JPH06301420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11409593A JPH06301420A (en) 1993-04-16 1993-04-16 Solar ray tracking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11409593A JPH06301420A (en) 1993-04-16 1993-04-16 Solar ray tracking device

Publications (1)

Publication Number Publication Date
JPH06301420A true JPH06301420A (en) 1994-10-28

Family

ID=14628990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11409593A Pending JPH06301420A (en) 1993-04-16 1993-04-16 Solar ray tracking device

Country Status (1)

Country Link
JP (1) JPH06301420A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6617506B2 (en) * 2001-03-29 2003-09-09 Keiji Sasaki Power generation equipment using sunlight
KR100656139B1 (en) * 2004-12-27 2006-12-12 (주)에타솔라 solar cell module including a solar tracking device
KR100780571B1 (en) * 2007-03-05 2007-11-30 주식회사 비제이 피앤에스 A solar tracking device using a suspension mechanism
JP2008243374A (en) * 2007-03-23 2008-10-09 Furukawa Electric Co Ltd:The Solar azimuth tracking device, solar light condensing device, and solar light illumination system using it
CN101814865A (en) * 2010-05-20 2010-08-25 鸿金达能源科技股份有限公司 Sun-tracking light-gathering electric energy generation device
JP2011220447A (en) * 2010-04-09 2011-11-04 Daikin Industries Ltd Actuator unit and system using the same
WO2012073487A1 (en) * 2010-11-30 2012-06-07 ダイキン工業株式会社 Solar panel unit
JP2012253079A (en) * 2011-05-31 2012-12-20 Daikin Ind Ltd Solar light panel unit
WO2013179608A1 (en) 2012-05-31 2013-12-05 ダイキン工業株式会社 Photovoltaic panel unit, photovoltaic power generation system, and method for installing photovoltaic power generation system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6617506B2 (en) * 2001-03-29 2003-09-09 Keiji Sasaki Power generation equipment using sunlight
KR100656139B1 (en) * 2004-12-27 2006-12-12 (주)에타솔라 solar cell module including a solar tracking device
KR100780571B1 (en) * 2007-03-05 2007-11-30 주식회사 비제이 피앤에스 A solar tracking device using a suspension mechanism
JP4615537B2 (en) * 2007-03-23 2011-01-19 古河電気工業株式会社 Solar azimuth tracking device, solar condensing device, and solar lighting system using the same
JP2008243374A (en) * 2007-03-23 2008-10-09 Furukawa Electric Co Ltd:The Solar azimuth tracking device, solar light condensing device, and solar light illumination system using it
JP2011220447A (en) * 2010-04-09 2011-11-04 Daikin Industries Ltd Actuator unit and system using the same
CN101814865A (en) * 2010-05-20 2010-08-25 鸿金达能源科技股份有限公司 Sun-tracking light-gathering electric energy generation device
WO2012073487A1 (en) * 2010-11-30 2012-06-07 ダイキン工業株式会社 Solar panel unit
JP2012117273A (en) * 2010-11-30 2012-06-21 Daikin Ind Ltd Solar cell panel drive system and hot-water supply system
CN103222067A (en) * 2010-11-30 2013-07-24 大金工业株式会社 Solar panel unit
EP2648226A4 (en) * 2010-11-30 2017-06-07 Daikin Industries, Ltd. Solar panel unit
JP2012253079A (en) * 2011-05-31 2012-12-20 Daikin Ind Ltd Solar light panel unit
WO2013179608A1 (en) 2012-05-31 2013-12-05 ダイキン工業株式会社 Photovoltaic panel unit, photovoltaic power generation system, and method for installing photovoltaic power generation system

Similar Documents

Publication Publication Date Title
US4088120A (en) Solar concentrator-collector
Yao et al. A multipurpose dual-axis solar tracker with two tracking strategies
US7964981B2 (en) Solar and wind energy converter
US7240674B2 (en) Solar tracking apparatus
US4022184A (en) Lateral lens arrangement for solar energy conversion devices
US4175391A (en) Self reorienting solar tracker
US4227513A (en) Solar system having improved heliostat and sensor mountings
CN101969278B (en) Apparatus for automatically tracking sunlight in inclination angle direction of battery board in photovoltaic power generation
US10119728B2 (en) Solar energy collection and storage
US10148221B2 (en) Solar energy light collecting device and system thereof
US9897344B2 (en) Solar collector having Fresnel mirrors
US4150663A (en) Solar energy collector and concentrator
KR102095782B1 (en) Solar Electric Generation System with Automatic Angle adjust apparatus according to the Weather
WO2010034038A2 (en) Systems and methods of collecting solar energy including configuration and/or tracking features
JPH06301420A (en) Solar ray tracking device
CN102570911A (en) Sunlight device for automatically tracking inclination angle of solar panel in photovoltaic generation
US11114975B2 (en) Solar tracking system
JP2005090889A (en) Automatic solar follow-up system
Al Harbi et al. Photovoltaic-thermal solar energy experiment in Saudi Arabia
US4204521A (en) Solar energy tracking collector
Holambe et al. Motorless solar tracking system
CN113819545B (en) Wall body
JP3155128U (en) Solar power generator that can be controlled in the direction of the sun without using electricity
KR102025536B1 (en) Solar Electric Generation System with Automatic Angle adjust apparatus according to the Weather
JPH03251659A (en) Solar heat collecting apparatus