JPH0629821B2 - Multi-function differential pressure sensor - Google Patents

Multi-function differential pressure sensor

Info

Publication number
JPH0629821B2
JPH0629821B2 JP58169198A JP16919883A JPH0629821B2 JP H0629821 B2 JPH0629821 B2 JP H0629821B2 JP 58169198 A JP58169198 A JP 58169198A JP 16919883 A JP16919883 A JP 16919883A JP H0629821 B2 JPH0629821 B2 JP H0629821B2
Authority
JP
Japan
Prior art keywords
pressure
chamber
thin portion
pressure chamber
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58169198A
Other languages
Japanese (ja)
Other versions
JPS6061637A (en
Inventor
嶋田  智
重幸 小堀
寛治 川上
幸夫 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58169198A priority Critical patent/JPH0629821B2/en
Publication of JPS6061637A publication Critical patent/JPS6061637A/en
Publication of JPH0629821B2 publication Critical patent/JPH0629821B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0092Pressure sensor associated with other sensors, e.g. for measuring acceleration or temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L13/00Devices or apparatus for measuring differences of two or more fluid pressure values

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Measuring Fluid Pressure (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は複合機能形差圧センサに係り、特に静圧影響が
ない温度補正された差圧信号を得るのに好適な複合機能
形差圧センサに関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-function differential pressure sensor, and more particularly to a multi-function differential pressure sensor suitable for obtaining a temperature-compensated differential pressure signal that is not affected by static pressure. It is about.

〔発明の背景〕[Background of the Invention]

差圧と温度とを検出するようにした差圧センサには多く
の例が見られる。第1図は現在用いられている差圧伝送
器の原理構造の一例を示す縦断面図である。筐体2には
内部に部屋が形成され、出力信号を外部に取りだすため
のリード線群4を設けた耐圧気密端子が取り付けられて
いる。筐体の対称な位置には連通孔が形成され、この連
通孔を覆うように対称的にシールダイアフラム6,6′
が設けられている。この分野では周知のように、連通孔
を遮断するようにしてシリコン基板1がシリコンに近い
熱膨張係数を持つ、例えばパイレックスガラスなどの固
定板を介してステンレスである筐体本体に溶着される。
室5,5′には封入液が封入され、それぞれ低圧側の静
圧P及び高圧側の静圧P+ΔPが印加され、シリコン基
板1に圧力を伝達する。なお、室5,5′をそれぞれ低
圧室、高圧室と呼ぶ。
There are many examples of differential pressure sensors that detect differential pressure and temperature. FIG. 1 is a vertical sectional view showing an example of the principle structure of a differential pressure transmitter currently used. A chamber is formed inside the housing 2, and a pressure-proof airtight terminal provided with a lead wire group 4 for taking out an output signal to the outside is attached. A communication hole is formed at a symmetrical position of the housing, and the sealing diaphragms 6, 6'are symmetrically covered so as to cover the communication hole.
Is provided. As is well known in this field, the silicon substrate 1 is welded to a casing body made of stainless steel through a fixing plate such as Pyrex glass having a thermal expansion coefficient close to that of silicon so as to block the communication hole.
A filling liquid is filled in the chambers 5 and 5 ', and a static pressure P on the low pressure side and a static pressure P + ΔP on the high pressure side are applied to the chambers 5 and 5', and the pressure is transmitted to the silicon substrate 1. The chambers 5 and 5'are referred to as a low pressure chamber and a high pressure chamber, respectively.

シリコン基板1の薄肉部11上には差圧ΔPに感応する
半導体ゲージ抵抗群111が、また、固定厚肉部12に
は温度に感応する半導体ゲージ抵抗121がそれぞれ拡
散法で形成してある。これらのゲージ抵抗は高い静圧P
には不感応に作られており、それぞれ筐体2に設けた耐
圧気密端子3からリード線群4を介して外部回路に接続
してある。したがって、半導体ゲージ抵抗群111から
差圧ΔP、また、半導体ゲージ抵抗121から温度Tに
比例する信号を得て、外部回路からは温度補償された差
圧信号を得ることができる。
A semiconductor gauge resistor group 111 sensitive to the differential pressure ΔP is formed on the thin portion 11 of the silicon substrate 1, and a semiconductor gauge resistor 121 sensitive to the temperature is formed on the fixed thick portion 12 by a diffusion method. These gauge resistances have high static pressure P
Are made insensitive, and are connected to an external circuit from the pressure-proof airtight terminals 3 provided on the housing 2 via the lead wire group 4. Therefore, it is possible to obtain a differential pressure ΔP from the semiconductor gauge resistance group 111, a signal proportional to the temperature T from the semiconductor gauge resistance 121, and a temperature-compensated differential pressure signal from the external circuit.

しかし、差圧伝送器の薄肉部11の両側に加わる静圧P
は、通常100気圧以上と高いため、両側の低圧室5、
高圧室5′内の封入液の収縮量の不整や筐体2の変形が
シリコン基板1を変形させるので、それにともない半導
体ゲージ抵抗群111の抵抗値が変化する。したがっ
て、差圧による信号に静圧影響による信号が重畳され、
正確な差圧信号が得られなくなる。すなわち、静圧影響
を受け、誤差を生ずる結果となる。この静圧誤差を防止
するためには、低圧室5、高圧室5′の封入液の液量を
厳密に一致させたり、筐体2を静圧Pによって変形しな
いように剛性の大きいものとしなければならず、設計、
製作上の大きな制約となり、差圧伝送器の小形化、低コ
スト化の障害となっていた。
However, the static pressure P applied to both sides of the thin portion 11 of the differential pressure transmitter
Is usually higher than 100 atm, so the low pressure chambers 5 on both sides are
The irregularity of the contraction amount of the enclosed liquid in the high-pressure chamber 5'and the deformation of the housing 2 deform the silicon substrate 1, so that the resistance value of the semiconductor gauge resistor group 111 changes accordingly. Therefore, the signal due to the static pressure is superimposed on the signal due to the differential pressure,
An accurate differential pressure signal cannot be obtained. That is, the static pressure influences the result, resulting in an error. In order to prevent this static pressure error, the amounts of the filled liquids in the low pressure chamber 5 and the high pressure chamber 5'must be exactly equal to each other, or the housing 2 should have a high rigidity so as not to be deformed by the static pressure P. Design,
This has become a major limitation in manufacturing, and has been an obstacle to downsizing and cost reduction of the differential pressure transmitter.

これに対し、静圧影響を補償するため、筐体外部の大気
圧を基準圧力とする相対圧形の静圧センサを設けた例が
ある。
On the other hand, there is an example in which a relative pressure type static pressure sensor that uses the atmospheric pressure outside the housing as a reference pressure is provided in order to compensate for the influence of static pressure.

しかしながら、相対圧形の静圧センサでは、センサ部に
筐体外部の大気を導入するため、筐体内部のセンサ部と
外部とを接続するための導通管を設けることが必要とな
る。そのため構造が複雑となり、導通管と筐体との接続
部などに100気圧以上の高圧が長時間加わると信頼性
が低下したり、圧力による導通管の変形がセンサ部に影
響を及ぼし測定精度が低下するなどの問題がある。
However, in the relative pressure type static pressure sensor, since the atmosphere outside the housing is introduced into the sensor portion, it is necessary to provide a conducting tube for connecting the sensor portion inside the housing and the outside. Therefore, the structure becomes complicated, reliability deteriorates when a high pressure of 100 atm or more is applied to a connecting portion between the conducting tube and the housing for a long time, and deformation of the conducting tube due to pressure affects the sensor unit, resulting in measurement accuracy. There are problems such as deterioration.

〔発明の目的〕[Object of the Invention]

本発明は上記に鑑みてなされたもので、その目的とする
ところは、通常100気圧という高い静圧のかかる流体
の圧力の測定に使用される複合機能形差圧センサにおい
て、小形化をはかることができ、しかも静圧検出特性に
優れ、かつ、温度補償された高精度な差圧信号ばかりで
なく、静圧信号をも得ることのできるディジタル化され
た複合機能形センサを提供することにある。
The present invention has been made in view of the above, and an object thereof is to miniaturize a multi-function differential pressure sensor used for measuring the pressure of a fluid to which a high static pressure of 100 atm is normally applied. It is an object of the present invention to provide a digital compound function sensor capable of obtaining a static pressure signal as well as a temperature-compensated high-precision differential pressure signal which is excellent in static pressure detection characteristics. .

〔発明の概要〕[Outline of Invention]

本発明の1つの特徴は、内部に部屋が形成され、出力信
号を取り出すための気密端子が取り付けられた筐体、該
筐体の対称的な位置に設けられ、前記部屋と連通して筐
体に設けられた連通孔を覆うシールダイアフラム、該シ
ールダイアフラムと前記筐体との間及び前記筐体の内部
の前記部屋に封入された封入液、前記連通孔を遮断する
ようにして前記筐体に固着された基板及び該基板の一部
に設けたセンサ素子を有して、通常100気圧のような
高静圧がかかる流体の圧力の測定に使用される複合機能
形差圧センサにおいて、 前記基板の断面を一体形のE形形状となし、その二つの
固定厚肉部と一つの薄肉部と筐体の一部により一つの測
定圧力室を形成して前記連通孔を介して前記ダイアフラ
ムによって密封し、前記二つの固定厚肉部の一つと他の
別の固定厚肉部と他の薄肉部と前記筐体の他の一部とで
基準圧力室を形成し、該基準圧力室は、その薄肉部の厚
さを前記測定圧力の前記薄肉部の厚さとほぼ同一に、し
かも該薄肉部の平面に前記高静圧が前記封入液を介して
作用するのに耐えるように前記測定圧力室に比較して小
さな密封室にして前記部屋に形成されるものであり、 前記基板の同一平面で前記基準圧力室の前記薄肉部の平
面に静圧センサ素子を、前記測定圧力室の前記薄肉部の
平面に差圧センサ素子を設け、かつ前記高静圧が前記封
入液を介して作用する、前記基板の平面であって、前記
平面と同一平面をなす面に温度センサ素子を設け、 前記同一平面に設置された前記3つのセンサ素子からの
アナログ信号をディジタル信号に変換するA−D変換器
と、該A−D変換器からの出力信号を入力し、静圧と温
度の影響を取り除いた、差圧に依存した出力信号と静圧
に比例した出力信号とを演算するディジタル演算手段と
を備えた ことを特徴とする複合機能形差圧センサにある。
One of features of the present invention is that a room is formed inside and a case to which an airtight terminal for taking out an output signal is attached, a case provided at a symmetrical position of the case, and a case communicating with the room is provided. A seal diaphragm covering the communication hole provided in the housing, a sealed liquid sealed in the chamber between the seal diaphragm and the housing and inside the housing, and in the housing so as to block the communication hole. A multi-function differential pressure sensor having a fixed substrate and a sensor element provided on a part of the substrate, which is used for measuring the pressure of a fluid to which a high static pressure such as 100 atmospheric pressure is normally applied. Has an integral E-shaped cross section, and one fixed pressure portion is formed by the two fixed thick portions, one thin portion and a part of the housing, and is sealed by the diaphragm through the communication hole. And one of the two fixed thick parts And another fixed thick wall portion, another thin wall portion, and another portion of the housing to form a reference pressure chamber, and the reference pressure chamber has a thickness of the thin wall portion as the measured pressure. The thickness of the thin portion is approximately the same as the thickness of the thin portion, and a sealed chamber smaller than the measurement pressure chamber is formed so as to withstand the high static pressure acting on the flat surface of the thin portion through the filled liquid. Is formed, the static pressure sensor element on the plane of the thin portion of the reference pressure chamber in the same plane of the substrate, the differential pressure sensor element is provided on the plane of the thin portion of the measurement pressure chamber, and A temperature sensor element is provided on a surface of the substrate on which a high static pressure acts via the enclosed liquid and which is coplanar with the surface, and the temperature sensor element is provided on the same plane. An AD converter for converting an analog signal into a digital signal, and the AD converter. And a digital operation means for calculating an output signal dependent on the differential pressure and an output signal proportional to the static pressure by removing the effects of the static pressure and temperature from the output signal from the device. It is a multi-function differential pressure sensor.

本発明の他の特徴は、三つの厚肉部と二つの薄肉部を有
する半導体基板と、該半導体基板を二つの外方厚肉部に
おいて両側から保持する固定板とによって一つの薄肉部
の両側に圧力室を形成し、該圧力室に封入液を封入し、
かつ該薄肉部には前記固定板に設けたそれぞれの導通孔
を介して高圧低圧の二つの圧力が作用するものであり、 該圧力室にはそれぞれ固定電極が設けられ、該薄肉部の
両側に作用する圧力の差を該薄肉部と前記固定電極との
間の静電容量の差によって検出する通常100気圧のよ
うな高静圧がかかる流体の圧力の測定に使用される複合
機能形差圧センサにおいて、 前記基板の片側断面を一体形のE形形状となし、前記二
つの外方厚肉部の一つと中央厚肉部と前記一つの薄肉部
と前記固定板の一方とによって、圧力室を一方の測定圧
力室となし、 前記二つの外方厚肉部の他方と前記中央厚肉部と他の別
の薄肉部と前記一方の固定板とで基準圧力室を形成し、
該基準圧力室は、該薄肉部の平面に前記高静圧が前記封
入液を介して作用するのに耐えるように前記測定圧力室
に比較して小さな密封室に前記基板と一方の固定板との
間に形成されるものであり、 該基準圧力室に対向して、前記圧力室の他方と連通し、
ここに封入した封入液の作用を受ける、前記二つの外方
厚肉部の他方と前記基準圧力室を形成する前記薄肉部と
他方の固定板とで形成される導圧室を設け、 前記基準圧力室に別の固定電極を配設し、 これらの固定電極と前記基板とから取り出されるアナロ
グ信号と封入液温度に対応する温度信号とをディジタル
信号に変換するA−D変換器と、該A−D変換器からの
出力信号を入力し、静圧と温度の影響を取り除いた、差
圧に依存した出力信号と静圧に比例した信号とを演算す
るディジタル演算手段とを備えた ことを特徴とする複合機能形差圧センサにある。
Another feature of the present invention is that both sides of one thin portion are formed by a semiconductor substrate having three thick portions and two thin portions, and a fixing plate that holds the semiconductor substrate from both sides at the two outer thick portions. To form a pressure chamber, and fill the pressure chamber with a fill liquid,
In addition, two pressures of high pressure and low pressure act on the thin portion through the respective through holes provided in the fixed plate, and fixed electrodes are provided in the pressure chambers, respectively, and both sides of the thin portion are provided. A multi-function differential pressure used to measure the pressure of a fluid to which a high static pressure such as 100 atm is detected by detecting the difference in acting pressure by the difference in capacitance between the thin portion and the fixed electrode. In the sensor, one side cross section of the substrate is formed into an integral E shape, and the pressure chamber is formed by one of the two outer thick portions, the central thick portion, the one thin portion, and one of the fixing plates. With one of the measurement pressure chamber, the other of the two outer thick parts, the central thick part and another thin part and the one fixing plate to form a reference pressure chamber,
The reference pressure chamber is a sealing chamber that is smaller than the measurement pressure chamber so as to withstand the high static pressure acting on the flat surface of the thin portion through the filled liquid. Between the pressure chamber and the other of the pressure chambers, facing the reference pressure chamber,
A pressure guide chamber formed by the other of the two outer thick portions and the thin portion forming the reference pressure chamber and the other fixing plate, which is subjected to the action of the enclosed liquid enclosed here, is provided. Another fixed electrode is arranged in the pressure chamber, and an A-D converter for converting an analog signal taken out from the fixed electrode and the substrate and a temperature signal corresponding to the temperature of the enclosed liquid into a digital signal, and the A-D converter. The output signal from the -D converter is input, and a digital calculation means for calculating an output signal dependent on the differential pressure and a signal proportional to the static pressure, in which influences of static pressure and temperature are removed, are provided. And a multi-function differential pressure sensor.

〔発明の実施例〕Example of Invention

以下本発明を第2図〜第4図に示した実施例を用いて詳
細に説明する。
The present invention will be described in detail below with reference to the embodiments shown in FIGS.

第2図は本発明の複合機能形差圧センサの原理構造の一
実施例を示す縦断面図で、半導体ゲージ形差圧伝送器の
場合を示してあり、第1図について説明した対応構成に
ついては詳細な説明を省略して、説明を進める。第2図
において、10はシリコン単結晶で作ったセンサ基板
(シリコンダイアフラム)で、センサ基板10の固定厚
肉部12は、筐体2に図示のように気密固定してある。
3は筐体2に設けたガラス耐圧気密端子で、センサ基板
10に設けた後述するそれぞれのゲージ抵抗からの信号
をリード線4を通して外部へ取り出すものである。筐体
2の両側には、該筐体の対称な位置で、部屋に連通する
連通孔15,15′を覆うシールダイアフラム6,6′
が気密に固着してあり、センサ基板10で2分された低
圧室5、高圧室5′内にはシリコン油などの封入液16
が封入してある。7,7′はセンサ基板10に差圧Δ
P,静圧Pを加えるための筐体2を挟むフランジであ
る。
FIG. 2 is a vertical cross-sectional view showing one embodiment of the principle structure of the multi-function differential pressure sensor of the present invention, showing the case of a semiconductor gauge type differential pressure transmitter. Regarding the corresponding configuration described in FIG. Omits the detailed description and proceeds with the description. In FIG. 2, 10 is a sensor substrate (silicon diaphragm) made of silicon single crystal, and the fixed thick portion 12 of the sensor substrate 10 is airtightly fixed to the housing 2 as shown in the figure.
Reference numeral 3 denotes a glass pressure-proof airtight terminal provided on the housing 2 for taking out signals from respective gauge resistors, which will be described later, provided on the sensor substrate 10 through lead wires 4 to the outside. Sealing diaphragms 6, 6'on both sides of the housing 2 cover the communication holes 15, 15 'communicating with the room at symmetrical positions of the housing.
Is airtightly adhered, and a low pressure chamber 5 and a high pressure chamber 5'divided by the sensor substrate 10 are filled with a filling liquid 16 such as silicon oil.
Is enclosed. 7, 7'is the differential pressure Δ on the sensor substrate 10.
P is a flange sandwiching the housing 2 for applying static pressure P.

センサ基板10の中央部は薄肉部11としてあり、両側
の低圧室5、高圧室5′内の封入液の圧力差、すなわ
ち、差圧ΔPに応じて変形するようにしてあり、薄肉部
11上には、その変形を電気信号に変換する差圧検出用
半導体ゲージ抵抗群111を拡散により形成し、さら
に、薄膜リード端子111aを蒸着してある。また、セ
ンサ基板10の外方固定厚肉部12の一部分を図示のよ
うに固定側から凹状に加工して薄肉部13を形成してあ
り、薄肉部13の上面に静圧(絶対圧)検出用半導体ゲ
ージ抵抗131を拡散により形成し、さらに、薄膜リー
ド端子131aを蒸着してある。この場合、空間132
は外方固定厚肉部12と中央厚肉部12′と薄肉部13
と筐体の一部とで密封され、真空または大気圧の空気が
封入されて前記低圧室に比べて小さな基準圧力室として
構成される。この中には封入液が侵入しないようにして
あるから、ゲージ抵抗131は、基準圧力室の基準圧力
に体する高圧室5′内の封入液の圧力(ΔP≪Pである
ため、P≒P+ΔP)を測定することになる。第2図か
らわかるように、センサ基板10の断面は全体としてE
形の形状をなし、薄肉部11と薄肉部13を同意にエッ
チングして形成するので、これらの部分の厚みはほぼ等
しい。両薄肉部の厚みを等しくすることにより、量産的
な加工が容易になり、センサを小型化でき、前述のよう
に基準圧力室132を小さな密封室に構成するのに役立
つ。従って、静圧検出特性に優れた静圧センサが構成さ
れる。また、センサ基板10の外方固定厚肉部12″の
他の一部分を図示のように外周から加工して薄肉部14
を形成し、薄肉部14の上面に温度検出用半導体ゲージ
抵抗141を拡散により形成し、更に、薄膜リード端子
141aを蒸着してある。薄肉部14としたのは、熱容
量を小さくするためと、筐体2の静圧による変形の影響
を受けないようにするためであり、しかも、空間142
は高圧室5′に連通させてあるから薄肉部14が静圧
P,差圧ΔPによる曲げ変形を生ずることがない。5′
を低圧室、5を高圧室としても同じ効果が得られる。総
称して「測定圧力室」として呼ぶ。
The central portion of the sensor substrate 10 is a thin portion 11, which is deformed according to the pressure difference between the low pressure chamber 5 and the high pressure chamber 5 ′ on both sides, that is, the pressure difference ΔP. A differential pressure detecting semiconductor gauge resistance group 111 for converting the deformation into an electric signal is formed by diffusion, and a thin film lead terminal 111a is further vapor-deposited. Further, a part of the outer fixed thick portion 12 of the sensor substrate 10 is processed into a concave shape from the fixed side as shown in the figure to form a thin portion 13, and a static pressure (absolute pressure) is detected on the upper surface of the thin portion 13. A semiconductor gauge resistor 131 for use is formed by diffusion, and a thin film lead terminal 131a is further vapor-deposited. In this case, the space 132
Is an outer fixed thick wall portion 12, a central thick wall portion 12 ', and a thin wall portion 13.
And a part of the housing are sealed, and air of vacuum or atmospheric pressure is enclosed to form a reference pressure chamber smaller than the low pressure chamber. Since the filled liquid is prevented from entering the inside, the gauge resistance 131 has the pressure of the filled liquid in the high-pressure chamber 5'corresponding to the reference pressure of the reference pressure chamber (since ΔP << P, P≈P + ΔP). ) Will be measured. As can be seen from FIG. 2, the cross section of the sensor substrate 10 is E as a whole.
Since the thin-walled portion 11 and the thin-walled portion 13 are formed by etching in agreement, the thicknesses of these portions are substantially equal. By making the thicknesses of both thin portions equal, mass-production processing becomes easy, the sensor can be downsized, and it is useful for forming the reference pressure chamber 132 into a small sealed chamber as described above. Therefore, a static pressure sensor having excellent static pressure detection characteristics is constructed. Also, another portion of the outer fixed thick portion 12 ″ of the sensor substrate 10 is processed from the outer periphery as shown in the drawing to form a thin portion 14
Is formed, the temperature detecting semiconductor gauge resistor 141 is formed on the upper surface of the thin portion 14 by diffusion, and the thin film lead terminal 141a is vapor-deposited. The thin portion 14 is provided to reduce the heat capacity and to prevent the housing 2 from being affected by the deformation of the housing 2 due to the static pressure.
Is communicated with the high pressure chamber 5 ', the thin-walled portion 14 will not be bent and deformed by the static pressure P and the differential pressure ΔP. 5 '
The same effect can be obtained by using the low pressure chamber and the high pressure chamber. Collectively referred to as "measurement pressure chamber".

なお、(100)面のシリコン単結晶板にp形の不純物
であるボロンを拡散してゲージ抵抗を形成する場合に
は、ピエゾ抵抗係数がほぼ零となる〈100〉軸に沿っ
てゲージ抵抗を配列するようにすれば、わずかな変形が
伝達されたときに、それらは電気信号としてあらわれな
いようになるので、温度検出用半導体ゲージ抵抗141
は、このようにして形成してある。
When a gauge resistance is formed by diffusing boron, which is a p-type impurity, into a silicon single crystal plate having a (100) plane, the gauge resistance is set along the <100> axis where the piezoresistance coefficient is almost zero. By arranging them, when slight deformations are transmitted, they do not appear as an electric signal, so that the semiconductor gauge resistor 141 for temperature detection is used.
Are formed in this way.

センサ基板10は、従来同様、シリコンに近い熱膨張係
数を持つパイレックスガラスなどの固定板を介して筐体
本体に溶着される。
The sensor substrate 10 is welded to the housing body via a fixing plate such as Pyrex glass having a thermal expansion coefficient similar to that of silicon as in the conventional case.

第3図は本発明の複合機能形差圧センサの検出信号処理
フローの一実施例を示す構成図である。センサ基板10
の薄肉部11の両側にそれぞれ圧力P,P+ΔPが加わ
ると、差圧検出用半導体ゲージ抵抗群111は差圧ΔP
を検出し、その信号はリード端子111a、リード線4
aを経てA−D変換器20に入力される。一方、薄肉部
13の静圧検出用半導体ゲージ抵抗131は静圧Pを検
出し、また、薄肉部14の温度検出用半導体ゲージ抵抗
141は温度Tを検出し、それぞれの信号は、リード端
子131a,リード線4aおよびリード端子141a,
リード線4cを経てそれぞれA−D変換器20に入力さ
れる。A−D変換器は、これらの信号をA−D変換して
CPU30に与える。CPU30で所要の演算を行い、
静圧Pの影響を除去し、かつ、温度Tによる影響を補正
した差圧ΔPに正確に比例した差圧信号を作る。40は
CPU30での演算に必要なデータや演算プログラムを
記憶させてあるメモリである。上記差圧信号は表示装置
50に表示され、また、D−A変換器60でD−A変換
される。それらの信号は、切替装置70を設けることに
より、差圧ΔPのみに正確に比例した差圧信号として表
示71されるほか、静圧Pや温度Tに比例した信号とし
て表示72、73、又は伝送される。
FIG. 3 is a block diagram showing an embodiment of a detection signal processing flow of the multi-function differential pressure sensor of the present invention. Sensor board 10
When pressures P and P + ΔP are applied to both sides of the thin-walled portion 11, the differential pressure detecting semiconductor gauge resistor group 111 is applied to the differential pressure ΔP.
Is detected, and the signal is the lead terminal 111a and the lead wire 4
It is input to the AD converter 20 via a. On the other hand, the static pressure detecting semiconductor gauge resistor 131 of the thin portion 13 detects the static pressure P, and the temperature detecting semiconductor gauge resistor 141 of the thin portion 14 detects the temperature T. Each signal is a lead terminal 131a. , Lead wire 4a and lead terminal 141a,
It is input to the AD converter 20 via the lead wires 4c. The A-D converter A-D converts these signals and gives them to the CPU 30. CPU30 performs the required calculation,
The effect of static pressure P is eliminated and the effect of temperature T is corrected to create a differential pressure signal that is exactly proportional to differential pressure ΔP. Reference numeral 40 is a memory in which data and calculation programs necessary for calculation in the CPU 30 are stored. The differential pressure signal is displayed on the display device 50 and is D / A converted by the D / A converter 60. By providing the switching device 70, these signals are displayed 71 as a differential pressure signal that is exactly proportional to only the differential pressure ΔP, and also displayed as signals proportional to the static pressure P and the temperature T 72, 73, or transmitted. To be done.

上記した本発明の実施例は、次のような効果を有する。The above-described embodiment of the present invention has the following effects.

(1)固定厚肉部12と他の固定厚肉部12′と薄肉部
13と筐体2の一部とで基準圧力室132を形成し、該
基準圧力室は、その薄肉部13の厚さを測定圧力室、例
えば低圧室5の薄肉部11の厚さとほぼ同一に、しかも
該薄肉部の平面に通常100気圧というような高静圧が
封入液16を介して作用するのに耐えるように前記測定
圧力室に比較して小さな密封室に形成するものであるか
ら、相対圧形の静圧センサのようにセンサ部と筐体外部
とをつなぐ導通管などを設ける必要がなく、構造が簡単
で、前述した高静圧にも耐えて信頼性が高く、静圧検出
特性に優れた静圧センサを構成できる。
(1) The fixed thick wall portion 12, the other fixed thick wall portion 12 ′, the thin wall portion 13 and a part of the housing 2 form a reference pressure chamber 132, and the reference pressure chamber has the thickness of the thin wall portion 13. The thickness is approximately the same as the thickness of the thin-walled portion 11 of the measurement pressure chamber, for example, the low-pressure chamber 5, and yet a high static pressure of 100 atm is usually applied to the plane of the thin-walled portion through the filled liquid 16. Since it is formed in a sealed chamber that is smaller than the measurement pressure chamber, it is not necessary to provide a conducting pipe or the like that connects the sensor unit and the outside of the housing like a relative pressure type static pressure sensor, and the structure is It is possible to construct a static pressure sensor that is simple, has high reliability withstanding the above-mentioned high static pressure, and has excellent static pressure detection characteristics.

(2)上記のように静圧検出特性に優れた静圧センサを
用いるため、100気圧以上という高圧においても筐体
2の静圧Pによる変形などに起因する静圧影響が補正さ
れた差圧ΔPに比例した出力を得ることができる。
(2) Since the static pressure sensor having excellent static pressure detection characteristics is used as described above, the differential pressure in which the influence of static pressure caused by deformation of the housing 2 due to the static pressure P is corrected even at a high pressure of 100 atmospheric pressure or more. An output proportional to ΔP can be obtained.

(3)周囲温度Tが変化すると、差圧ΔPや静圧Pを検
出するゲージ抵抗111や131の特性が変化するが、
温度検出用半導体ゲージ抵抗141の出力を用いて温度
補償できるので、温度影響のない差圧ΔPに正確に比例
した出力のほか、静圧Pに正確に比例した出力をも得る
ことができる。
(3) When the ambient temperature T changes, the characteristics of the gauge resistors 111 and 131 that detect the differential pressure ΔP and the static pressure P change.
Since temperature compensation can be performed by using the output of the semiconductor gauge resistor 141 for temperature detection, not only an output that is accurately proportional to the differential pressure ΔP without temperature influence but also an output that is accurately proportional to the static pressure P can be obtained.

(4)各半導体ゲージ抵抗111、131、141は同
一半導体プロセスによって形成でき、また、センサ基板
10の薄肉加工は、半導体微細加工技術を用いれば一度
に容易に行うことができ、かつ、センサの小形化が可能
であり、基準圧力室132を低圧室5に比べて小さな密
封室に構成するのに有効である。
(4) The semiconductor gauge resistors 111, 131, 141 can be formed by the same semiconductor process, and the thin processing of the sensor substrate 10 can be easily performed at one time by using the semiconductor fine processing technology, and the sensor The size can be reduced, and it is effective to form the reference pressure chamber 132 into a sealed chamber smaller than the low pressure chamber 5.

第4図は本発明の他の実施例を示し、第2図に示す実施
例に対応した要部を断面図として示す。第2図において
は、差圧ΔP、静圧P、温度Tを検出するのに半導体ゲ
ージ抵抗を用いるようにしてあるが、第4図において
は、これらを静電容量センサに代えてある。第4図にお
いて、100はシリコン単結晶などの弾性体よりなり、
外方厚肉部112、112″、中央厚肉部112′と薄
肉部1001、1002とを形成したセンサ基板、10
1、102は筐体の一部をなし、センサ基板100を挾
持するシリコンの熱膨張係数に近い熱膨張係数のパイレ
ックスガラスよりなる固定板であり、固定板101、1
02には、それぞれセンサ基板100の差圧検出用薄肉
部1001の両側に対向する位置に薄膜蒸着の固定電極
1011、1021とこれらからのリード線1012、
1022とが埋め込んである。薄肉部1001と固定電
極1011および1021との間に形成した圧力室10
15、1025には封入液1016を封入し、固定板1
01、102にそれぞれ設けた導圧口1013、102
3より導通孔1014、1014′を通じて圧力P,P
+ΔPを導いてある。なお、圧力室1015と1025
の断面形状は薄肉部1001に関して対称であるため、
どちらが、高圧室あるは低圧室でもよく、両者を総称し
て「測定圧力室」と呼ぶ。また、センサ基板100の右
側には静圧(絶対圧)検出用薄肉部1002が形成てあ
り、第4図からわかるようにセンサ基板100の断面の
下側はE形形状をなしている。薄肉部1002の片側に
設けた導圧室103はその左側で圧力室1015と連通
しているため、薄肉部1002には導圧口1013より
導入された圧力が封入液1016を介してかかる。他方
の片側は2つの厚肉部112、112′と静圧検出用の
薄肉部1002と固定板102で囲まれた基準圧力室1
04とし、ここを真空(または大気圧)の密封室として
ある。第2図に示す第1の実施例と同様に基準圧力室1
04は圧力室1025に比べて小さく形成されている。
基準圧力室104の中には固定板102の薄肉部100
2に対向する部分に薄膜蒸着の固定電極1024とこれ
からのリード線1032とが埋め込んである。1003
はセンサ基板100に接続したリード線である。したが
って、リード線1003と1012および1022との
間では差圧ΔPに応動して静電容量変化が起こり、リー
ド線1003と1032との間では静圧Pに応動して静
電容量変化が起こる。また、電極1011および102
1と薄肉部1001との間に封入された封入液1016
の誘電率が温度によって変化するので、これを利用して
封入液温度に対応する温度信号を得ることができる。
FIG. 4 shows another embodiment of the present invention, and shows a main part corresponding to the embodiment shown in FIG. 2 as a sectional view. In FIG. 2, a semiconductor gauge resistor is used to detect the differential pressure ΔP, the static pressure P, and the temperature T, but in FIG. 4, these are replaced with capacitance sensors. In FIG. 4, 100 is an elastic body such as silicon single crystal,
A sensor substrate having an outer thick portion 112, 112 ″, a central thick portion 112 ′, and thin portions 1001, 1002.
Reference numerals 1 and 102 denote fixing plates 101, 1 that form a part of the housing and are made of Pyrex glass having a coefficient of thermal expansion close to that of silicon that holds the sensor substrate 100.
02, fixed electrodes 1011 and 1021 for thin film deposition and lead wires 1012 from these electrodes are provided at positions facing both sides of the differential pressure detecting thin portion 1001 of the sensor substrate 100, respectively.
1022 is embedded. Pressure chamber 10 formed between thin portion 1001 and fixed electrodes 1011 and 1021
15 and 1025 are filled with a filling liquid 1016, and the fixing plate 1
01, 102 pressure guide ports 1013, 102 respectively provided
3 through the through holes 1014, 1014 ', pressure P, P
It leads to + ΔP. The pressure chambers 1015 and 1025
Since the cross-sectional shape of is symmetric with respect to the thin portion 1001,
Either of them may be a high pressure chamber or a low pressure chamber, and both are collectively referred to as a "measurement pressure chamber". Further, a thin portion 1002 for detecting static pressure (absolute pressure) is formed on the right side of the sensor substrate 100, and as shown in FIG. 4, the lower side of the cross section of the sensor substrate 100 has an E shape. Since the pressure guiding chamber 103 provided on one side of the thin portion 1002 communicates with the pressure chamber 1015 on the left side, the pressure introduced from the pressure guiding port 1013 is applied to the thin portion 1002 via the enclosed liquid 1016. The other side is a reference pressure chamber 1 surrounded by two thick-walled portions 112, 112 ', a thin-walled portion 1002 for static pressure detection, and a fixed plate 102.
04, which is a vacuum (or atmospheric pressure) sealed chamber. Similar to the first embodiment shown in FIG. 2, the reference pressure chamber 1
04 is formed smaller than the pressure chamber 1025.
In the reference pressure chamber 104, the thin portion 100 of the fixed plate 102 is provided.
A fixed electrode 1024 for thin film deposition and a lead wire 1032 to be formed in the future are embedded in a portion opposed to 2. 1003
Is a lead wire connected to the sensor substrate 100. Therefore, a capacitance change occurs between the lead wires 1003 and 1012 and 1022 in response to the pressure difference ΔP, and a capacitance change occurs between the lead wires 1003 and 1032 in response to the static pressure P. Also, the electrodes 1011 and 102
1 and a thin liquid 1001 enclosed liquid 1016
Since the permittivity of is changed with temperature, this can be used to obtain a temperature signal corresponding to the temperature of the filled liquid.

本実施例によれば、静圧センサを静電容量方式の絶対圧
形としたため、第2図の半導体ゲージ抵抗を用いた圧力
検出方式の場合と同様、センサ部と筐体外部とをつなぐ
導通管などを設ける必要がなく、構造が簡単で、100
気圧以上という高圧においても信頼性および静圧検出特
性に優れた静圧センサを構成できる効果がある。また、
第2図の場合と同様、センサ基板100の薄肉加工は、
半導体微細加工技術を用いれば容易に行うことができ、
かつ、差圧検出装置の小形化が可能であり、基準圧力室
104を圧力室1025に比べて小さな密封室に構成す
るのに有効である。
According to the present embodiment, since the static pressure sensor is the capacitance type absolute pressure type, as in the case of the pressure detection system using the semiconductor gauge resistance of FIG. 2, there is continuity between the sensor unit and the outside of the housing. No need to install pipes, simple structure, 100
There is an effect that a static pressure sensor having excellent reliability and static pressure detection characteristics can be configured even at a high pressure of atmospheric pressure or more. Also,
As in the case of FIG. 2, thinning the sensor substrate 100
This can be easily done using semiconductor microfabrication technology,
In addition, the differential pressure detecting device can be downsized, and it is effective to configure the reference pressure chamber 104 as a sealed chamber smaller than the pressure chamber 1025.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば、構造が簡単で、
基準圧力室を測定圧力室に比較して小さな、かつ密封室
にしたことによって信頼性及び静圧検出特性に優れた静
圧センサを用いて、差圧センサの静圧影響を補償でき、
100気圧以上という高圧においても静圧影響がなく、
かつ、温度補償された高精度な差圧信号及び静圧信号を
も得ることのできるディジタル化された複合機能形セン
サを提供することができる。
As described above, according to the present invention, the structure is simple,
By using a static pressure sensor that is smaller than the measurement pressure chamber and has a sealed chamber that is smaller than the measurement pressure chamber, the static pressure sensor with excellent reliability and static pressure detection characteristics can be used to compensate for the static pressure effect of the differential pressure sensor.
There is no static pressure effect even at high pressure of 100 atm or more,
Further, it is possible to provide a digitized compound function sensor capable of obtaining a highly accurate temperature-compensated differential pressure signal and static pressure signal.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来の差圧伝送器の原理構造の一例を示す縦断
面図、第2図は、本発明の複合機能形差圧センサの原理
構造の一実施例を示す縦断面図、第3図は本発明の複合
機能形差圧センサの検出信号処理フローの一実施例を示
す構成図、第4図は本発明の他の実施例を示し、第2図
に示す実施例の要部断面図である。 2……筐体、5……低圧室、5′……高圧室、6,6′
……シールダイアフラム、7,7′……フランジ、10
……センサ基板、11,13,14……薄肉部、12…
…固定厚肉部、111……差圧検出用半導体ゲージ抵抗
群、131……静圧検出用半導体ゲージ、141……温
度検出用半導体ゲージ抵抗、20……A−D変換器、3
0……CPU、70……切換装置、71……差圧ΔPに
比例した差圧信号表示、72……静圧Pに比例した信号
表示、73……温度Tに比例した信号表示。
FIG. 1 is a vertical sectional view showing an example of the principle structure of a conventional differential pressure transmitter, and FIG. 2 is a vertical sectional view showing an example of the principle structure of a multi-function differential pressure sensor of the present invention. FIG. 4 is a block diagram showing an embodiment of a detection signal processing flow of the multi-function differential pressure sensor of the present invention, FIG. 4 shows another embodiment of the present invention, and a cross section of the essential part of the embodiment shown in FIG. It is a figure. 2 ... Casing, 5 ... Low-pressure chamber, 5 '... High-pressure chamber, 6, 6'
... Seal diaphragm, 7,7 '... Flange, 10
...... Sensor substrate, 11, 13, 14 ...... Thin-walled part, 12 ...
... fixed thick portion, 111 ... differential pressure detection semiconductor gauge resistance group, 131 ... static pressure detection semiconductor gauge, 141 ... temperature detection semiconductor gauge resistance, 20 ... A-D converter, 3
0 ... CPU, 70 ... Switching device, 71 ... Differential pressure signal display proportional to differential pressure ΔP, 72 ... Signal display proportional to static pressure P, 73 ... Signal display proportional to temperature T.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川上 寛治 茨城県日立市幸町3丁目1番1号 株式会 社日立製作所日立研究所内 (72)発明者 高橋 幸夫 茨城県勝田市市毛882番地 株式会社日立 製作所那珂工場内 (56)参考文献 特開 昭56−137238(JP,A) 特開 昭56−40735(JP,A) 特開 昭57−91431(JP,A) 特開 昭53−58279(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kanji Kawakami 3-1-1, Saiwaicho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Yukio Takahashi 882, Ichige Ichika, Katsuta-shi, Ibaraki Stock Hitachi, Ltd. Naka factory (56) Reference JP-A-56-137238 (JP, A) JP-A-56-40735 (JP, A) JP-A-57-91431 (JP, A) JP-A-53-58279 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】内部に部屋が形成され、出力信号を取り出
すための気密端子が取り付けられた筐体、該筐体の対称
的な位置に設けられ、前記部屋と連通して筐体に設けら
れた連通孔を覆うシールダイアフラム、該シールダイア
フラムと前記筐体との間及び前記筐体の内部の前記部屋
に封入された封入液、前記連通孔を遮断するようにして
前記筐体に固着された基板及び該基板の一部に設けたセ
ンサ素子を有して、通常100気圧のような高静圧がか
かる流体の圧力の測定に使用される複合機能形差圧セン
サにおいて、 前記基板の断面を一体形のE形形状となし、その二つの
固定厚肉部と一つの薄肉部と筐体の一部により一つの測
定圧力室を形成して前記連通孔を介して前記ダイアフラ
ムによって密封し、前記二つの固定厚肉部の一つと他の
別の固定厚肉部と他の薄肉部と前記筐体の他の一部とで
基準圧力室を形成し、該基準圧力室は、その薄肉部の厚
さを前記測定圧力の前記薄肉部の厚さとほぼ同一に、し
かも該薄肉部の平面に前記高静圧が前記封入液を介して
作用するのに耐えるように前記測定圧力室に比較して小
さな密封室にして前記部屋に形成されるものであり、 前記基板の同一平面で前記基準圧力室の前記薄肉部の平
面に静圧センサ素子を、前記測定圧力室の前記薄肉部の
平面に差圧センサ素子を設け、かつ前記高静圧が前記封
入液を介して作用する、前記基板の平面であって、前記
平面と同一平面をなす面に温度センサ素子を設け、 前記同一平面に設置された前記3つのセンサ素子からの
アナログ信号をディジタル信号に変換するA−D変換器
と、該A−D変換器からの出力信号を入力し、静圧と温
度の影響を取り除いた、差圧に依存した出力信号と静圧
に比例した出力信号とを演算するディジタル演算手段と
を備えた ことを特徴とする複合機能形差圧センサ。
1. A housing having a room formed therein, to which an airtight terminal for extracting an output signal is attached, provided at a symmetrical position of the housing, and provided in the housing in communication with the room. A sealing diaphragm covering the communication hole, a sealed liquid sealed between the seal diaphragm and the housing and in the chamber inside the housing, and fixed to the housing so as to block the communication hole. A multi-function differential pressure sensor, which has a substrate and a sensor element provided on a part of the substrate and is used for measuring the pressure of a fluid to which a high static pressure such as 100 atm is usually applied, An integral E-shape, one fixed pressure portion is formed by the two fixed thick portions, one thin portion and a part of the housing, and the measurement pressure chamber is sealed by the diaphragm through the communication hole, One of the two fixed thick parts and another of the other A fixed thick portion, another thin portion, and another part of the casing form a reference pressure chamber, and the reference pressure chamber has a thickness of the thin portion and a thickness of the thin portion of the measurement pressure. Almost the same, and in order to withstand the high static pressure acting on the flat surface of the thin portion through the filled liquid, a sealed chamber smaller than the measurement pressure chamber is formed in the chamber. There is a static pressure sensor element on the flat surface of the thin portion of the reference pressure chamber on the same plane of the substrate, a differential pressure sensor element is provided on the flat surface of the thin portion of the measurement pressure chamber, and the high static pressure is A temperature sensor element is provided on the plane of the substrate that acts through the filled liquid and is flush with the plane, and analog signals from the three sensor elements placed on the same plane are converted into digital signals. From the A-D converter and the A-D converter A multi-function type characterized by including a digital operation means for inputting a force signal and removing an effect of static pressure and temperature, and calculating an output signal dependent on the differential pressure and an output signal proportional to the static pressure. Differential pressure sensor.
【請求項2】特許請求の範囲第1項に記載した複合機能
形差圧センサにおいて、 前記ディジタル演算手段は、温度に比例した出力信号を
も演算する ことを特徴とする複合機能形差圧センサ。
2. A multi-function differential pressure sensor according to claim 1, wherein the digital computing means also computes an output signal proportional to temperature. .
【請求項3】三つの厚肉部と二つの薄肉部を有する半導
体基板と、該半導体基板を二つの外方厚肉部において両
側から保持する固定板とによって一つの薄肉部の両側に
圧力室を形成し、該圧力室に封入液を封入し、かつ該薄
肉部には前記固定板に設けたそれぞれの導通孔を介して
高圧低圧の二つの圧力が作用するものであり、 該圧力室にはそれぞれ固定電極が設けられ、該薄肉部の
両側に作用する圧力の差を該薄肉部と前記固定電極との
間の静電容量の差によって検出する通常100気圧のよ
うな高静圧がかかる流体の圧力の測定に使用される複合
機能形差圧センサにおいて、 前記基板の片側断面を一体形のE形形状となし、前記二
つの外方厚肉部の一つと中央厚肉部と前記一つの薄肉部
と前記固定板の一方とによって、圧力室を一方の測定圧
力室となし、 前記二つの外方厚肉部の他方と前記中央厚肉部と他の別
の薄肉部と前記一方の固定板とで基準圧力室を形成し、
該基準圧力室は、該薄肉部の平面に前記高静圧が前記封
入液を介して作用するのに耐えるように前記測定圧力室
に比較して小さな密封室に前記基板と一方の固定板との
間に形成されるものであり、 該基準圧力室に対向して、前記圧力室の他方と連通し、
ここに封入した封入液の作用を受ける、前記二つの外方
厚肉部の他方と前記基準圧力室を形成する前記薄肉部と
他方の固定板とで形成される導圧室を設け、 前記基準圧力室に別の固定電極を配設し、 これらの固定電極と前記基板とから取り出されるアナロ
グ信号と封入液温度に対応する温度信号とをディジタル
信号に変換するA−D変換器と、該A−D変換器からの
出力信号を入力し、静圧と温度の影響を取り除いた、差
圧に依存した出力信号と静圧に比例した信号とを演算す
るディジタル演算手段とを備えた ことを特徴とする複合機能形差圧センサ。
3. Pressure chambers on both sides of one thin portion by means of a semiconductor substrate having three thick portions and two thin portions, and a fixing plate for holding the semiconductor substrate from both sides at the two outer thick portions. Is formed, and an enclosed liquid is enclosed in the pressure chamber, and two pressures of high pressure and low pressure act on the thin portion through the respective through holes provided in the fixing plate. Are provided with fixed electrodes, respectively, and a high static pressure such as 100 atm is usually applied to detect a difference in pressure acting on both sides of the thin portion by a difference in capacitance between the thin portion and the fixed electrode. In a multi-function differential pressure sensor used for measuring fluid pressure, one side cross-section of the substrate is formed into an integral E-shape, and one of the two outer thick parts, a central thick part and the one One thin chamber and one of the fixing plates The pressure chamber and without, to form a reference pressure chamber between the two other with the central thick portion of the outer thick portion and another separate thin portion and said one of the fixed plate,
The reference pressure chamber is a sealing chamber that is smaller than the measurement pressure chamber so as to withstand the high static pressure acting on the flat surface of the thin portion through the filled liquid. Between the pressure chamber and the other of the pressure chambers, facing the reference pressure chamber,
A pressure guide chamber formed by the other of the two outer thick portions and the thin portion forming the reference pressure chamber and the other fixing plate, which is subjected to the action of the enclosed liquid enclosed here, is provided. Another fixed electrode is arranged in the pressure chamber, and an A-D converter for converting an analog signal taken out from the fixed electrode and the substrate and a temperature signal corresponding to the temperature of the enclosed liquid into a digital signal, and the A-D converter. The output signal from the -D converter is input, and a digital calculation means for calculating an output signal dependent on the differential pressure and a signal proportional to the static pressure, in which influences of static pressure and temperature are removed, are provided. Multi-function differential pressure sensor.
JP58169198A 1983-09-16 1983-09-16 Multi-function differential pressure sensor Expired - Lifetime JPH0629821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58169198A JPH0629821B2 (en) 1983-09-16 1983-09-16 Multi-function differential pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58169198A JPH0629821B2 (en) 1983-09-16 1983-09-16 Multi-function differential pressure sensor

Publications (2)

Publication Number Publication Date
JPS6061637A JPS6061637A (en) 1985-04-09
JPH0629821B2 true JPH0629821B2 (en) 1994-04-20

Family

ID=15882024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58169198A Expired - Lifetime JPH0629821B2 (en) 1983-09-16 1983-09-16 Multi-function differential pressure sensor

Country Status (1)

Country Link
JP (1) JPH0629821B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008542717A (en) * 2005-05-26 2008-11-27 ローズマウント インコーポレイテッド Pressure sensor using a compressible sensor body

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01141328A (en) * 1987-11-27 1989-06-02 Hitachi Ltd Differential pressure transmitter
EP0331772A1 (en) * 1988-03-08 1989-09-13 Dräger Nederland B.V. Differential pressure meter for bidirectional flows of gas
JPH027539U (en) * 1988-06-29 1990-01-18
JPH0288921A (en) * 1988-09-27 1990-03-29 Yamatake Honeywell Co Ltd Pressure correcting type differential pressure transmitter
JP2689744B2 (en) * 1990-03-19 1997-12-10 株式会社日立製作所 Compound sensor, compound transmitter and plant system using the same
KR100411476B1 (en) * 2001-09-24 2003-12-18 주식회사코닉스 Method for manufacturing capacitance type vacuum sensor and vacuum detecting device by using the same
JP2003315193A (en) * 2002-04-24 2003-11-06 Denso Corp Pressure sensor
US7047811B2 (en) * 2003-02-18 2006-05-23 Ashcroft Inc. Pressure measurement
JP2005291946A (en) * 2004-03-31 2005-10-20 Masaki Esashi Optical fiber sensor
US7267011B2 (en) * 2005-10-03 2007-09-11 Delphi Technologies, Inc. Device for invasively measuring fluid pressure
JP5965165B2 (en) * 2012-03-14 2016-08-03 アズビル株式会社 Differential pressure transmitter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640735A (en) * 1979-09-10 1981-04-17 Toshiba Corp Transmitter for differential pressure
JPS56137238A (en) * 1980-03-31 1981-10-27 Toshiba Corp Differential pressure transmitter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008542717A (en) * 2005-05-26 2008-11-27 ローズマウント インコーポレイテッド Pressure sensor using a compressible sensor body

Also Published As

Publication number Publication date
JPS6061637A (en) 1985-04-09

Similar Documents

Publication Publication Date Title
US6295875B1 (en) Process pressure measurement devices with improved error compensation
US6647794B1 (en) Absolute pressure sensor
US7503221B2 (en) Dual span absolute pressure sense die
US7775117B2 (en) Combined wet-wet differential and gage transducer employing a common housing
US5483834A (en) Suspended diaphragm pressure sensor
JPH01141328A (en) Differential pressure transmitter
US5959213A (en) Semiconductor differential pressure measuring device
EP0545319B1 (en) Semiconductor pressure sensor having double diaphragm structure
JP2597042B2 (en) Differential pressure measuring device
EP0164413A1 (en) Pressure transducer.
JPH0629821B2 (en) Multi-function differential pressure sensor
KR20010032103A (en) Micromechanical differential pressure sensor device
JP4540775B2 (en) Servo capacitive vacuum sensor
JPH10197316A (en) Density correction-type liquid level detecting device
US11359985B2 (en) Oil filled transducers with isolated compensating capsule
US7073400B2 (en) Sensor for measuring pressure in a sealed volume
JP3080212B2 (en) Semiconductor differential pressure measuring device
JPH05172676A (en) Differential pressure measuring device
JP2009002925A (en) Capacitance pressure detecting device
JPH05187948A (en) Measuring device of differential pressure
JPH0797058B2 (en) Semiconductor pressure transducer
JPH0749280A (en) Semiconductor differential pressure measuring device
JPH05142077A (en) Differential pressure measuring device
JPH08261856A (en) Differential pressure detection device