JPH06297421A - Production of partially porous ceramic and fluid bearing obtained from partially porous ceramic - Google Patents

Production of partially porous ceramic and fluid bearing obtained from partially porous ceramic

Info

Publication number
JPH06297421A
JPH06297421A JP8985093A JP8985093A JPH06297421A JP H06297421 A JPH06297421 A JP H06297421A JP 8985093 A JP8985093 A JP 8985093A JP 8985093 A JP8985093 A JP 8985093A JP H06297421 A JPH06297421 A JP H06297421A
Authority
JP
Japan
Prior art keywords
porous
foam
ceramic
slurry
compressive strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8985093A
Other languages
Japanese (ja)
Other versions
JP3210478B2 (en
Inventor
Yukio Takano
幸夫 高野
Takayuki Hirota
孝之 広田
Ryuichi Kojo
隆一 古城
Atsunobu Une
篤暢 宇根
Munenori Kanai
宗統 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Toto Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd, Nippon Telegraph and Telephone Corp filed Critical Toto Ltd
Priority to JP08985093A priority Critical patent/JP3210478B2/en
Publication of JPH06297421A publication Critical patent/JPH06297421A/en
Application granted granted Critical
Publication of JP3210478B2 publication Critical patent/JP3210478B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/0615Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances the burned-out substance being a monolitic element having approximately the same dimensions as the final article, e.g. a porous polyurethane sheet or a prepreg obtained by bonding together resin particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Sliding-Contact Bearings (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To easily and integrally mold partially porous ceramic having a porous part complicated in shape by forming a composite structure wherein porous foam having specific values in compression strength at drying time and wetting time is included in a ceramic molded object by cast molding to bake the same. CONSTITUTION:As porous foam 1, one wherein 25% compression strengths at drying and wetting times are respectively 1-50kgf/cm<2> and 0.5-8kgf/cm<2> and the 25% compression strength ratio at the drying and wetting times is 1.0 or more is used and, for example, open-cell porous polyvinyl formal is designated. This foam is processed into a desired shape to be impregnated with a ceramic molding slurry 2. This foam is transferred to a water absorbable mold 3 and the mold 3 is filled with the slurry 2. After demolding, the formed object is dried and processed to be baked. This porous foam 1 can be subjected to precise cutting processing at a drying time and has hardness capable of holding its self-shape at a wetting time and flexibility capable of absorbing deformation at the time of drying shrinkage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セラミック緻密質体中
に多孔質部を設けてなる部分多孔質セラミックの製造方
法、及びこの製造方法によって得られる流体軸受けに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a partially porous ceramic in which a porous portion is provided in a ceramic dense body, and a fluid bearing obtained by this manufacturing method.

【0002】[0002]

【従来の技術】部分多孔質部材の作製については従来多
くの試みがなされており、例えば特開昭55−6072
0号公報には、緻密質部を多孔質部と別個に作製してこ
れらを接合する方法が記載されており、また特開昭61
−44779号公報等には、セラミック形成用スラリー
を含浸させた有機質多孔体を用いる方法が記載されてい
る。
2. Description of the Related Art Many attempts have hitherto been made for producing a partially porous member, for example, JP-A-55-6072.
Japanese Unexamined Patent Publication No. 0 (1999) describes a method in which a dense part and a porous part are produced separately and these are joined together.
No. 44779 discloses a method of using an organic porous body impregnated with a ceramic forming slurry.

【0003】[0003]

【発明が解決しようとする課題】しかし、上述の特開昭
55−60720号公報に記載の方法では接合部の加工
に手間がかかること、また複雑な形状の多孔質部は作製
できないこと等の難点があった。また特開昭61−44
779号公報に記載の有機質多孔体を用いる技術につい
ては、多孔体が軟質のものの場合は精密な加工が困難で
あり、また型枠内で成形する際に変形が生ずるため精度
を要する部分多孔体の作製はできなかった。
However, in the method described in JP-A-55-60720 described above, it takes time and labor to process the joint portion, and it is impossible to produce a porous portion having a complicated shape. There were difficulties. Also, JP-A-61-44
Regarding the technique of using the organic porous body described in Japanese Patent Publication No. 779, it is difficult to perform precise processing when the porous body is a soft one, and deformation occurs when molding in the mold, and thus a partial porous body that requires precision. Could not be produced.

【0004】また、前記多孔体が硬質である場合は乾燥
時の精密加工については問題ないが、湿潤時にもこの硬
度が保たれるため、脱型した成形体を乾燥する際に生ず
る収縮に追随できず、このため亀裂が発生するという難
点があった。
Further, if the porous body is hard, there is no problem in precision processing during drying, but since this hardness is maintained even when wet, the shrinkage that occurs during drying of the demolded molded body follows. However, there was a problem that cracks were generated.

【0005】本発明は、従来の技術が有するこのような
問題点に鑑みてなされたものであり、その目的とすると
ころは、乾燥時には精密な切削加工に耐える強度を有
し、湿潤時には自身の形状を保持できる硬さ及び乾燥収
縮時の変形を吸収できる柔軟さを保有する多孔性フォー
ムを使用して、複雑形状の多孔質部を有する部分多孔質
セラミックを容易に一体成形できる方法、及びこの製造
方法によって得られる流体軸受けを提供することにあ
る。
The present invention has been made in view of the above problems of the prior art. The object of the present invention is to have a strength that can withstand precision cutting when dry and to have its own strength when wet. A method for easily integrally molding a partially porous ceramic having a complicatedly shaped porous portion by using a porous foam having a hardness capable of retaining a shape and a flexibility capable of absorbing a deformation during drying shrinkage, and It is to provide a fluid bearing obtained by a manufacturing method.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
本発明の部分多孔質セラミックの製造方法は、セラミッ
ク成形体中に多孔性フォームを内包する複合構造体を泥
漿鋳込法により成形し、これを焼成することで緻密質セ
ラミック中の一部に多孔質部分を有するセラミックを製
造する方法において、前記多孔性フォームとして、乾燥
時の25%圧縮強度が1乃至50kgf/cm2、湿潤
時の25%圧縮強度が0.5乃至8kgf/cm2、且
つ乾燥時25%圧縮強度と湿潤時25%圧縮強度との比
が少なくとも1.0より大きい多孔性フォームを用い
る。このような性質を有する多孔性フォームとしては、
連続気孔を有する多孔質のポリビニルホルマール(以後
PVFと略記する。)が好適である。
In order to solve the above-mentioned problems, a method for producing a partially porous ceramics of the present invention is to form a composite structure containing a porous foam in a ceramic molded body by a slurry casting method, In a method for producing a ceramic having a porous portion in a part of a dense ceramic by firing the same, the porous foam has a 25% compressive strength of 1 to 50 kgf / cm 2 when dried and a wet foam when wet. A porous foam having a 25% compressive strength of 0.5 to 8 kgf / cm 2 and a ratio of 25% compressive strength when dry to 25% compressive strength when wet is greater than at least 1.0 is used. As the porous foam having such properties,
Porous polyvinyl formal having continuous pores (hereinafter abbreviated as PVF) is suitable.

【0007】なお、前記25%圧縮強度とは、50mm
×50mm×厚さ30mmの試験片を圧縮速度0.5m
m/分で圧縮し、厚さが3/4(25%圧縮)になるに
要した荷重(kgf/cm2)を意味する。
The 25% compressive strength is 50 mm.
X 50 mm x 30 mm thick test piece, compression speed 0.5 m
It means the load (kgf / cm 2 ) required for the thickness to be 3/4 (25% compression) when compressed at m / min.

【0008】[0008]

【作用】本発明の製造方法においては、乾燥時は精密な
切削加工に耐える強度を有し、湿潤時には自身の形状を
保持できる硬さ及び乾燥収縮時の変形を吸収できる柔軟
さを有する多孔性フォームを使用する。
In the manufacturing method of the present invention, the porosity is such that it has the strength to withstand precision cutting when dry, the hardness that allows it to retain its shape when wet, and the flexibility that can absorb the deformation during drying shrinkage. Use a form.

【0009】[0009]

【実施例】以下に本発明の実施例を添付図面に基づいて
説明する。図1は本発明の製造法の一例を示す工程図で
ある。同図(a)において、先ず多孔性フォーム1を所
望の形状に加工する。多孔性フォーム1は乾燥時及び湿
潤時の25%圧縮強度が夫々1〜50kgf/cm2
好ましくは2〜20kgf/cm2、及び0.5〜8k
gf/cm2、好ましくは1〜4.5kgf/cm2であ
り、かつ乾燥時25%圧縮強度と湿潤時25%圧縮強度
との比が少なくとも1.0より大きく、好ましくは2.
0より大きいフォームである。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a process drawing showing an example of the manufacturing method of the present invention. In FIG. 1A, first, the porous foam 1 is processed into a desired shape. The porous foam 1 has a 25% compressive strength of 1 to 50 kgf / cm 2 when dry and when wet,
Preferably 2 to 20 kgf / cm 2 , and 0.5 to 8 k
gf / cm 2 , preferably 1 to 4.5 kgf / cm 2 and the ratio of 25% compressive strength when dry to 25% compressive strength when wet is greater than at least 1.0, preferably 2.
It is a form greater than zero.

【0010】上述の乾燥時25%圧縮強度が1kgf/
cm2未満の場合は、柔らかすぎるために精密な加工が
できず、50kgf/cm2を超える場合は加工時の負
荷が大きくなる。また湿潤時の前記強度が0.5未満の
場合はスラリー湿潤時に自形を保持することが困難とな
り、一方、湿潤時の前記強度が8kgf/cm2を超え
るか、または乾燥時と湿潤時の25%圧縮強度比が1.
0以下の場合は成形体乾燥時に亀裂発生の原因となる。
The above-mentioned dry 25% compressive strength is 1 kgf /
If it is less than cm 2 , it is too soft to perform precise processing, and if it exceeds 50 kgf / cm 2 , the processing load becomes large. When the strength when wet is less than 0.5, it becomes difficult to maintain the self-shape when the slurry is wet, while the strength when wet exceeds 8 kgf / cm 2 , or when the strength is wet and dry. The 25% compressive strength ratio is 1.
If it is 0 or less, cracks may be generated when the molded body is dried.

【0011】このような条件を満足するフォームの例と
してはPVFによって形成される連続気泡を有する多孔
質体が挙げられる。このPVF多孔性フォームのうち、
特に高ホルマール化(ホルマール化度70%以上)され
た気孔率80%以上のものが好ましい。
An example of a foam that satisfies such conditions is a porous body having open cells formed of PVF. Of this PVF porous foam,
Particularly, those having a high formalization (formalization degree of 70% or more) and a porosity of 80% or more are preferable.

【0012】次に、図1(b)に示すように多孔性フォ
ーム1をセラミック形成用のスラリー2中に浸漬する。
すると多孔性フォーム1の連続気泡部にスラリー2が含
浸される。スラリー2は、例えばアルミナ、チタニア、
シリカ、ジルコニア等の金属酸化物の微粉末、ムライ
ト、コージェライト等の複合酸化物、窒化ケイ素、炭化
ケイ素等の非酸化物、或いはアルミニウム、銅、チタ
ン、シリコン等の金属の微粉末の単独或いは混合物を水
等の媒体に分散させてスラリー状としたものである。上
記含浸の効率を上げるために、界面活性剤によって多孔
性フォーム1表面の濡れ性を改善することが好ましい。
また、スラリー含浸中の多孔性フォーム1を真空引きし
て、スラリー2を連続気泡中に引き込む手段を採ること
も好ましい。
Next, as shown in FIG. 1 (b), the porous foam 1 is immersed in a slurry 2 for forming a ceramic.
Then, the slurry 2 is impregnated into the open-cell portion of the porous foam 1. The slurry 2 is, for example, alumina, titania,
Silica, fine powder of metal oxide such as zirconia, mullite, composite oxide such as cordierite, non-oxide such as silicon nitride and silicon carbide, or fine powder of metal such as aluminum, copper, titanium and silicon, alone or The mixture is dispersed in a medium such as water to form a slurry. In order to increase the impregnation efficiency, it is preferable to improve the wettability of the surface of the porous foam 1 with a surfactant.
Further, it is also preferable to adopt a means of drawing the porous foam 1 under slurry impregnation into vacuum to draw the slurry 2 into the open cells.

【0013】前記連続気泡中へのスラリー2の含浸効率
は、気泡の大きさ、即ち気泡の孔径及びスラリー2の粘
性に大きく影響される。多孔性フォーム1としてホルマ
ール化度70%以上の平均孔径の異なるPVF4種を用
い、スラリー2としてアルミナ微粉末を水に分散させて
スラリー化したもの(粘性50〜1000cP)を用い
た例を下記(表1)に示す。この表から明らかなよう
に、平均孔径が大きくなるほどスラリー2の粘性に対す
る鋳込み性(セラミック多孔質部分の成形性)の許容範
囲が広くなる。
The impregnation efficiency of the slurry 2 into the open cells is greatly influenced by the size of the cells, that is, the pore size of the cells and the viscosity of the slurry 2. An example of using, as the porous foam 1, PVF4 species having different average pore diameters with a degree of formalization of 70% or more, and slurry 2 in which fine alumina powder is dispersed in water to form a slurry (viscosity 50 to 1000 cP) is described below ( It is shown in Table 1). As is clear from this table, the larger the average pore size, the wider the allowable range of the castability (formability of the ceramic porous portion) with respect to the viscosity of the slurry 2.

【0014】[0014]

【表1】 [Table 1]

【0015】上記のスラリー2を含浸した多孔性フォー
ム1を、次に図1(c)に示すように吸水性型3内の所
望の場所に設置し、更に同図(d)のようにスラリー2
を充填する。この型3は、スラリー2の水分を適度に吸
収して脱型可能な成形体を得られるものがよく、例えば
石膏型を使用することが好ましい。また、多孔性フォー
ム1をスラリーに含浸させずに吸水性型3内に設置し、
スラリーを充填する方法、吸水性型3内にスラリーを充
填した後にスラリーを含浸させた多孔体を浸漬する方法
などによっても部分多孔質セラミックの成形が可能であ
る。
The porous foam 1 impregnated with the above-mentioned slurry 2 is then placed in a desired location in the water-absorbent mold 3 as shown in FIG. 1 (c), and further the slurry is prepared as shown in FIG. 1 (d). Two
To fill. The mold 3 is preferably a mold that can absorb the moisture of the slurry 2 appropriately to obtain a demoldable molded body, and for example, a gypsum mold is preferably used. In addition, the porous foam 1 was placed in the water absorbing mold 3 without being impregnated with the slurry,
The partially porous ceramics can be formed by a method of filling the slurry, a method of filling the slurry in the water absorbing mold 3 and then immersing the porous body impregnated with the slurry.

【0016】次に同図(e)のように脱型して40〜1
10℃で24時間程度乾燥し、その後にこの未焼成セラ
ミック4及び未焼成セラミック含浸の多孔性フォーム1
からなる生成形体5の加工を行う。本発明に係る多孔性
フォーム1は、湿潤時にも自形が崩れない程度の強度を
有し、一方、適度の柔軟性をも有するため乾燥時の未焼
成セラミックの収縮に追随することができる。従って生
成形体5に亀裂や剥離が生ずることがない。
Next, as shown in FIG. 2 (e), the mold is removed and 40 to 1
The green ceramic 4 and the green ceramic-impregnated porous foam 1 are dried at 10 ° C. for about 24 hours, and then dried.
The green body 5 consisting of is processed. The porous foam 1 according to the present invention has such strength that the self-shape does not collapse even when it is wet, and also has appropriate flexibility, so that it can follow the shrinkage of the unfired ceramic during drying. Therefore, the green body 5 is not cracked or peeled.

【0017】次に、1000〜2200℃(例えば炭化
ケイ素の場合は2100℃前後)で焼成を行うことによ
り、多孔性フォーム1は熱分解して除去される。この
際、多孔質部7は緻密部6に追随して収縮するため、収
縮率の差による焼成割れは生じない。最後に高精度の研
削加工を施して、同図(f)に示すような緻密部6及び
多孔質部7からなる部分多孔体8を完成する。
Next, the porous foam 1 is thermally decomposed and removed by firing at 1000 to 2200 ° C. (for example, about 2100 ° C. in the case of silicon carbide). At this time, since the porous portion 7 shrinks following the dense portion 6, firing cracking due to the difference in shrinkage does not occur. Finally, high precision grinding is performed to complete the partially porous body 8 including the dense portion 6 and the porous portion 7 as shown in FIG.

【0018】本発明の部分多孔質セラミックの製造方法
の例を更に詳細に説明する。実施例1〜4 多孔性フォーム1として、50mm×50mm×厚さ3
0mmの前記(表1)と同じPVF4種を使用し、スラ
リー2も前記と同じくアルミナ微粉末を原料とするスラ
リー(粘性100cP)を用い、更に、吸水性型3は内
径70mm×70mm×深さ50mmの石膏型を使用
し、前記乾燥時及び湿潤時の25%強度、乾/湿比、乾
燥時のフォーム加工性、鋳込成形後の多孔体部寸法精
度、及び乾燥工程における亀裂の発生具合を調べた。こ
の結果を下記(表2)に示す。(表2)から明らかなよ
うに、これらのPVFはいずれも本発明の製造方法に係
る多孔性フォーム1として好適に使用できる。
An example of the method for producing a partially porous ceramic of the present invention will be described in more detail. Examples 1 to 4 As the porous foam 1, 50 mm x 50 mm x thickness 3
The same PVF 4 species as in the above (Table 1) of 0 mm was used, the slurry 2 also used the slurry (viscosity 100 cP) made of alumina fine powder as the above, and further, the water absorbing mold 3 had an inner diameter of 70 mm × 70 mm × depth. Using a 50 mm gypsum mold, 25% strength when dry and wet, dry / wet ratio, foam workability during dry, dimensional accuracy of porous body portion after cast molding, and crack generation in the drying process I checked. The results are shown below (Table 2). As is clear from (Table 2), any of these PVFs can be preferably used as the porous foam 1 according to the production method of the present invention.

【0019】[0019]

【表2】 [Table 2]

【0020】比較例1〜17 多孔性フォーム1として、軟質ウレタンフォーム(比較
例1〜4)、低ホルマール化PVF多孔体(比較例5〜
7)、ポリビニルアルコール製のスポンジであって気泡
径が小さいもの(比較例8)及び気泡径が大きいもの
(比較例9)、更には多孔体カーボン(垂直方向、即ち
カーボン繊維の配向面に垂直な方向に荷重を掛けて25
%強度を測定したもの:比較例10〜13、及び平行方
向、即ちカーボン繊維の配向面に平行な方向に荷重を掛
けて25%強度を測定したもの:比較例14〜17)を
使用した以外は実施例1と同様の方法で加工性、寸法精
度及び亀裂を調べた。この結果を下記(表3)に示し
た。なお多孔体カーボンについては、乾燥時と湿潤時と
の強度が全く変らないため、湿潤時強度及び乾/湿は空
欄としてある。
Comparative Examples 1 to 17 As the porous foam 1, a flexible urethane foam (Comparative Examples 1 to 4) and a low formalized PVF porous body (Comparative Example 5 to 5).
7), a polyvinyl alcohol sponge having a small cell diameter (Comparative Example 8) and a large cell diameter (Comparative Example 9), and further porous carbon (vertical direction, that is, perpendicular to the carbon fiber orientation plane). 25 in the right direction
% Strength measured: Comparative Examples 10 to 13 and 25% strength measured by applying a load in the parallel direction, that is, in the direction parallel to the orientation surface of the carbon fiber: Comparative Examples 14 to 17) In the same manner as in Example 1, the workability, dimensional accuracy and cracks were examined. The results are shown below (Table 3). Since the strength of the porous carbon does not change at all when it is dry and when it is wet, the wet strength and dry / wet are blank.

【0021】[0021]

【表3】 [Table 3]

【0022】上記(表3)から明らかなように、軟質ウ
レタンフォームは乾燥時であっても柔軟性があるために
加工性が悪い。低ホルマール化PVF多孔体及びスポン
ジは湿潤強度が小さいため、鋳込成形後の多孔体の寸法
精度が不良となる。一方、多孔体カーボンは硬くて加工
性は良好なものの、柔軟性に欠けるため成形体の乾燥工
程において亀裂を生ずる。
As is clear from the above (Table 3), the flexible urethane foam has poor processability because it is flexible even when dried. Since the low formalized PVF porous body and sponge have low wet strength, the dimensional accuracy of the porous body after cast molding becomes poor. On the other hand, although porous carbon is hard and has good workability, it lacks flexibility, and thus cracks occur during the drying process of the molded body.

【0023】本発明に基づいて製造された部分多孔質セ
ラミックは、前記のように精密加工が可能なため、例え
ば流体軸受け(スライド、パッド、スピンドル等)等の
流体(空気、油等)吹き出し部品、気泡発生装置等の流
体吹き出し部品、真空チャック等の流体吸入部品、噴水
等のための液体吹き出し部品、フィルター等の液体吸入
部品、石鹸泡を発生させる等のための気液混合吹き出し
部品、表札等のディスプレー(文字、絵部分を多孔質部
で鮮明に形成する)等多種類の用途がある。
Since the partially porous ceramics manufactured according to the present invention can be precisely processed as described above, for example, a fluid (air, oil, etc.) blowing component such as a fluid bearing (slide, pad, spindle, etc.). , Fluid discharge parts such as bubble generators, fluid suction parts such as vacuum chucks, liquid discharge parts such as fountains, liquid suction parts such as filters, gas-liquid mixture discharge parts for generating soap bubbles, nameplates There are various types of applications such as displays (form characters and pictures clearly with a porous part).

【0024】上記流体軸受けの例を図2に示す。同図に
おいて、(a)は側面から見た部分断面図、(b)は
(a)のA−A線における断面図である。軸受け部9は
基体である緻密部10、及びエアー吹き出し部を構成す
る多孔質部11の組合わせによって形成されており、多
孔質部11には、図示しない外部ポンプからシャフト1
2にエアーを供給するための複数の吸気孔13が穿設さ
れている。本発明の製造方法による部分多孔質セラミッ
クは精密加工が可能なため、このような軸受け部9とシ
ャフト12との間隙を精度よく保持できる流体軸受けを
作製することが可能である。
An example of the above fluid bearing is shown in FIG. In the figure, (a) is a partial cross-sectional view seen from the side, and (b) is a cross-sectional view taken along the line AA of (a). The bearing portion 9 is formed by a combination of a dense portion 10 which is a base body and a porous portion 11 which constitutes an air blowing portion, and the porous portion 11 is connected to the shaft 1 from an external pump (not shown).
A plurality of intake holes 13 for supplying air to 2 are provided. Since the partially porous ceramic according to the manufacturing method of the present invention can be precisely processed, it is possible to manufacture a fluid bearing that can accurately maintain such a gap between the bearing portion 9 and the shaft 12.

【0025】また図3は、真空チャックの例を示す斜視
図である。同図(a)乃至(c)において、真空チャッ
ク14は緻密部15およびこの緻密部15に包囲されて
形成された多孔質部16からなり、多孔質部16は図示
しない真空ポンプに接続されている。このような真空チ
ャック14は、(a)或いは(b)に示した円盤状であ
れば、例えばウェハの回転塗装のためのスピンナー用真
空チャック等に用いることができる。また(c)に示し
た長方形のものは、同じくウェハの搬送等に用いること
ができる。なお、真空ポンプの代りにエアー供給ポンプ
を接続すれば、非接触型搬送装置の搬送プレートとして
用いることも可能である。
FIG. 3 is a perspective view showing an example of a vacuum chuck. 1A to 1C, the vacuum chuck 14 includes a dense portion 15 and a porous portion 16 surrounded by the dense portion 15, and the porous portion 16 is connected to a vacuum pump (not shown). There is. Such a vacuum chuck 14 can be used, for example, as a vacuum chuck for a spinner for spin coating a wafer as long as it has the disk shape shown in (a) or (b). The rectangular shape shown in (c) can also be used for wafer transfer and the like. If an air supply pump is connected instead of the vacuum pump, it can be used as a transfer plate of a non-contact type transfer device.

【0026】[0026]

【発明の効果】以上に説明した如く、本発明の部分多孔
質セラミックの製造方法によれば、乾燥時には複雑形状
に精密加工することが可能な硬さを示し、湿潤時には自
形を保持できる硬さと、セラミック形成用スラリーの乾
燥収縮に追随できる柔軟さを合わせ持つ多孔体フォーム
を使用しているため、精密加工が可能で、しかも乾燥
時、焼成時には亀裂や剥離を生じない部分多孔質セラミ
ックを作製することができる。
As described above, according to the method for producing a partially porous ceramics of the present invention, a hardness that allows precision machining into a complicated shape when dry and a hardness that can maintain the self-shape when wet are obtained. And a porous material foam that has flexibility that can follow the drying shrinkage of the slurry for forming ceramics, it is possible to perform precision processing, and yet to create a partially porous ceramic that does not crack or peel during drying and firing. Can be made.

【0027】また、本発明の流体軸受けは、前記多孔性
フォームとして乾燥時の25%圧縮強度が1乃至50k
gf/cm2、湿潤時の25%圧縮強度が0.5乃至8
kgf/cm2、乾燥時25%圧縮強度と湿潤時25%
圧縮強度との比が少なくとも1.0より大きい多孔性フ
ォームを用いて形成されるため、亀裂や剥離がなくまた
精密に加工された優秀な軸受けである。
The fluid bearing of the present invention has a 25% compressive strength of 1 to 50 k when dried as the porous foam.
gf / cm 2 , 25% compressive strength when wet is 0.5 to 8
kgf / cm 2 , 25% compressive strength when dry and 25% when wet
Since it is formed by using a porous foam having a ratio to the compressive strength of at least 1.0, it is an excellent bearing which is free from cracks and peeling and is precisely processed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造法の一例を示す工程図FIG. 1 is a process chart showing an example of a manufacturing method of the present invention.

【図2】本発明の製造法によって作製した流体軸受けの
一例を示す部分断面図(a)、及び(a)のA−A線に
おける断面図(b)
FIG. 2 is a partial cross-sectional view (a) showing an example of a fluid bearing manufactured by the manufacturing method of the present invention, and a cross-sectional view taken along line AA of (a) (b).

【図3】同、真空チャックの例を示す斜視図FIG. 3 is a perspective view showing an example of the same vacuum chuck.

【符号の説明】[Explanation of symbols]

1…多孔性フォーム、2…スラリー、3…吸水性型、
6,10,15…緻密部、7,11,16…多孔質部、
8…部分多孔体、9…軸受け部、12…シャフト、13
…吸気孔、14…真空チャック。
1 ... Porous foam, 2 ... Slurry, 3 ... Water absorbing type,
6, 10, 15 ... Dense portion, 7, 11, 16 ... Porous portion,
8 ... Partial porous body, 9 ... Bearing part, 12 ... Shaft, 13
... intake hole, 14 ... vacuum chuck.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F16C 33/24 A 6814−3J (72)発明者 広田 孝之 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内 (72)発明者 古城 隆一 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内 (72)発明者 宇根 篤暢 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 (72)発明者 金井 宗統 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical indication location F16C 33/24 A 6814-3J (72) Inventor Takayuki Hirota 2-1-1 Nakajima, Kitakyushu, Kitakyushu, Fukuoka No. Totoki Co., Ltd. (72) Inventor Ryuichi Furushiro 2-1-1 Nakajima, Kokurakita-ku, Kitakyushu, Fukuoka Prefecture Totoki Co., Ltd. (72) Atsunobu Une 1-1-1 Uchisai-cho, Chiyoda-ku, Tokyo No. 6 Nihon Telegraph and Telephone Corp. (72) Inventor Sosuke Kanai 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corp.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 セラミック成形体中に多孔性フォームを
内包する複合構造体を泥漿鋳込法により成形し、これを
焼成することで緻密質セラミック中の一部に多孔質部分
を有するセラミックを製造する方法において、前記多孔
性フォームは、乾燥時の25%圧縮強度が1乃至50k
gf/cm2、湿潤時の25%圧縮強度が0.5乃至8
kgf/cm2、且つ乾燥時25%圧縮強度と湿潤時2
5%圧縮強度との比が少なくとも1.0より大きいこと
を特徴とする部分多孔質セラミックの製造方法。
1. A composite structure in which a porous foam is included in a ceramic molded body is molded by a slurry casting method, and is fired to produce a ceramic having a porous portion in a part of a dense ceramic. In the method, the porous foam has a 25% compressive strength when dried of 1 to 50 k.
gf / cm 2 , 25% compressive strength when wet is 0.5 to 8
kgf / cm 2 , and 25% compressive strength when dry and 2 when wet
A method for producing a partially porous ceramic, characterized in that the ratio to 5% compressive strength is at least greater than 1.0.
【請求項2】 前記多孔性フォームは、連続気孔を有す
る多孔質ポリビニルホルマールであることを特徴とする
請求項1記載の部分多孔質セラミックの製造方法。
2. The method for producing a partially porous ceramic according to claim 1, wherein the porous foam is a porous polyvinyl formal having continuous pores.
【請求項3】 セラミック成形体中に多孔性フォームを
内包する複合構造体が泥漿鋳込法によって成形され、こ
の複合構造体が焼成されてなる、緻密質セラミック中の
一部に多孔質部分を有する流体軸受けにおいて、この流
体軸受けの多孔質部分は、前記多孔性フォームとして、
乾燥時の25%圧縮強度が1乃至50kgf/cm2
湿潤時の25%圧縮強度が0.5乃至8kgf/c
2、乾燥時25%圧縮強度と湿潤時25%圧縮強度と
の比が少なくとも1.0より大きい多孔性フォームを用
いて形成されたことを特徴とする流体軸受け。
3. A composite structure, in which a porous foam is included in a ceramic molded body, is molded by a slurry casting method, and the composite structure is fired to form a porous portion in a part of a dense ceramic. In the fluid bearing having, the porous portion of the fluid bearing is, as the porous foam,
25% compressive strength when dried is 1 to 50 kgf / cm 2 ,
25% compressive strength when wet is 0.5 to 8 kgf / c
A fluid bearing characterized in that it is formed using a porous foam having a ratio of m 2 of 25% compressive strength when dry and 25% compressive strength when wet of at least 1.0.
JP08985093A 1993-04-16 1993-04-16 Method for producing partially porous ceramic and fluid bearing obtained by this method Expired - Fee Related JP3210478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08985093A JP3210478B2 (en) 1993-04-16 1993-04-16 Method for producing partially porous ceramic and fluid bearing obtained by this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08985093A JP3210478B2 (en) 1993-04-16 1993-04-16 Method for producing partially porous ceramic and fluid bearing obtained by this method

Publications (2)

Publication Number Publication Date
JPH06297421A true JPH06297421A (en) 1994-10-25
JP3210478B2 JP3210478B2 (en) 2001-09-17

Family

ID=13982260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08985093A Expired - Fee Related JP3210478B2 (en) 1993-04-16 1993-04-16 Method for producing partially porous ceramic and fluid bearing obtained by this method

Country Status (1)

Country Link
JP (1) JP3210478B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10103354A (en) * 1996-09-27 1998-04-21 Nippon Steel Corp Hydrostatic gas bearing
US6341421B1 (en) 1999-04-08 2002-01-29 Toshiba Kikai Kabushiki Kaisha Production method of porous static-pressure air bearing
US7288222B2 (en) 2000-03-31 2007-10-30 Toto Ltd. Method of producing a carbide sintered compact
CN114746659A (en) * 2019-12-07 2022-07-12 雅科贝思私人有限公司 Ultralow-profile aerostatic bearing and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10103354A (en) * 1996-09-27 1998-04-21 Nippon Steel Corp Hydrostatic gas bearing
US6341421B1 (en) 1999-04-08 2002-01-29 Toshiba Kikai Kabushiki Kaisha Production method of porous static-pressure air bearing
US7288222B2 (en) 2000-03-31 2007-10-30 Toto Ltd. Method of producing a carbide sintered compact
CN114746659A (en) * 2019-12-07 2022-07-12 雅科贝思私人有限公司 Ultralow-profile aerostatic bearing and manufacturing method thereof
CN114746659B (en) * 2019-12-07 2024-05-24 雅科贝思私人有限公司 Ultra-low profile aerostatic bearing and manufacturing method thereof

Also Published As

Publication number Publication date
JP3210478B2 (en) 2001-09-17

Similar Documents

Publication Publication Date Title
KR100567634B1 (en) Corrosion resistant members
JP4176278B2 (en) Ceramic porous body and method for producing the same
JP2005026593A (en) Ceramic product, corrosion-resistant member, and method of manufacturing ceramic product
US20070051220A1 (en) Positioning method and device for columnar structure
JP4908263B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
CN108069720B (en) Silicon nitride gradient porous capillary core for loop heat pipe and preparation method thereof
JP4718397B2 (en) Manufacturing method of vacuum suction device
US8585960B2 (en) Method for producing sintered body, and sintered body
WO2018038031A1 (en) Method for molding ceramic material, method for producing ceramic article, and ceramic article
TW201630729A (en) Composite refractory and method for manufacturing the same
EP0300681A1 (en) Shaping molds and shaping of ceramic bodies by using such shaping molds
JPH06297421A (en) Production of partially porous ceramic and fluid bearing obtained from partially porous ceramic
KR101149350B1 (en) The porous ceramics materials with double-layered pore structure for vacuum chuck and method for manufacturing the same
JP2000264755A (en) Production of ceramic porous body
CN112694335B (en) Diamond-silicon carbide substrate and preparation method and application thereof
JP5103346B2 (en) Method for producing ceramic molded body and method for producing ceramic member
KR100430460B1 (en) Glass-like carbon and method for producing the same, magnetic recording medium container plate, and plasma-
JP2020186151A (en) METHOD FOR PRODUCING SiC SINTERED MEMBER
JP4468059B2 (en) Hydrostatic bearing device
JPH09177783A (en) Porous ceramics static pressure gas bearing and its manufacture
JP2012071547A (en) Method for manufacturing ceramic product and casting mold for molding ceramic
JPS62103105A (en) Slip casting molding die
JP3377872B2 (en) Ceramic molding composition
JP4352761B2 (en) Press mold and molding method using the same
CN117602959A (en) Hollow runner silicon carbide sucker base and preparation method thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010703

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees