JPH06293998A - Insoluble iridium oxide coated electrode and its production - Google Patents

Insoluble iridium oxide coated electrode and its production

Info

Publication number
JPH06293998A
JPH06293998A JP5104899A JP10489993A JPH06293998A JP H06293998 A JPH06293998 A JP H06293998A JP 5104899 A JP5104899 A JP 5104899A JP 10489993 A JP10489993 A JP 10489993A JP H06293998 A JPH06293998 A JP H06293998A
Authority
JP
Japan
Prior art keywords
titanium
iridium oxide
layer
electrode
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5104899A
Other languages
Japanese (ja)
Inventor
Takashi Nakamori
孝 中森
Motonori Tamura
元紀 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5104899A priority Critical patent/JPH06293998A/en
Publication of JPH06293998A publication Critical patent/JPH06293998A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To supply an iridium oxide insoluble electrode capable of preventing the oxidation of the titanium base material by applying a titanium nitride layer and an iridium oxide layer on the surface of a base material provided with titanium metal or a titanium metal layer. CONSTITUTION:This electrode is an insoluble iridium oxide coated electrode made by applying the titanium nitride layer and further the iridium oxide layer on the surface of the base material using titanium metal or the base material provided with the titanium metal layer so that the thickness of the each layer is <=20mum and the titanium nitride and the iridium oxide are coated by treating the coating film by ion plating method to melt and vaporize metal titanium and metal iridium. As a result, an iridium oxide electrode having long service life compared with a conventional iridium oxide single layer is supplied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電気めっきなどに使
用する不溶性電極に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insoluble electrode used for electroplating and the like.

【0002】[0002]

【従来の技術】一般に金属材の電気めっきに際しては、
不溶性電極を使用し、陰極たる被めっき材の表面に、Z
n、Sn、Ni、Cr、Cuなどの金属を析出すること
が行われている。
2. Description of the Related Art Generally, when electroplating a metal material,
Using an insoluble electrode, Z on the surface of the material to be plated that is the cathode
Metals such as n, Sn, Ni, Cr and Cu are deposited.

【0003】また金属の電気精錬に際し、精錬浴中にて
不溶性電極を使用し、Mn、Zn、Cuなどの金属を析
出することが行われている。
In electrorefining metals, insoluble electrodes are used in a refining bath to deposit metals such as Mn, Zn and Cu.

【0004】これらの不溶性電極として、最も一般的に
使用されているものとして、PbもしくはPb系合金が
あげられる。
The most commonly used insoluble electrodes are Pb and Pb-based alloys.

【0005】この電極は、電気めっき浴、電気精錬浴、
特に硫酸溶液中では、通電処理時その表面にPbO2
生成する。このPbO2は、不溶性電極の機能を発揮し
ているが、生成したPbO2と基材のPbとの付着力が
弱く、電解溶液中に混入し、めっき不良、あるいは精錬
金属へ不溶物として混入し純度の低下を生じてしまう。
This electrode is used in electroplating baths, electrorefining baths,
Particularly in a sulfuric acid solution, PbO 2 is produced on the surface of the solution during the energization treatment. This PbO 2 exerts the function of an insoluble electrode, but the adhesion between the PbO 2 produced and the Pb of the base material is weak, and it mixes in the electrolytic solution, causes poor plating, or mixes in the refined metal as an insoluble matter. However, the purity is lowered.

【0006】そこでその対策として、電気めっき浴、電
気精錬浴、特に硫酸溶液中で最も電気化学的に安定であ
る白金族酸化物である酸化イリジウムを、基材のバルブ
金属(Ti、Ta、Zr等、不働態皮膜を形成し、耐食
性が優れ、破壊電圧の高い性質を持つ金属)の表面に被
覆した電極が、特公昭48―3954号公報に開示され
ている。
Therefore, as a countermeasure, iridium oxide, which is a platinum group oxide, which is the most electrochemically stable in an electroplating bath, an electrorefining bath, and a sulfuric acid solution is used as a base valve metal (Ti, Ta, Zr). Japanese Patent Publication No. 48-3954 discloses an electrode in which a passivation film is formed and the surface of a metal having excellent corrosion resistance and high breakdown voltage is coated.

【0007】さらに基材の金属の酸化抑制、あるいは密
着性を向上させるために中間層にTa25等を添加した
酸化イリジウムの皮膜を設け、その上に酸化イリジウム
層を形成した不溶性電極を使用する方法が、特公昭46
―21884号公報、特開昭63―235493号公報
に記載されている。
Further, in order to suppress the oxidation of the metal of the base material or to improve the adhesiveness, an intermediate layer is provided with a film of iridium oxide to which Ta 2 O 5 or the like is added, and an insoluble electrode having an iridium oxide layer formed thereon is formed. The method to use is
-218884 and JP-A-63-235493.

【0008】これらの公報に開示されている塗布焼き付
け法による酸化イリジウム不溶性電極は、低電流密度
(〜100A/dm2)では長時間の使用が可能である
が、高電流密度下、特に硫酸溶液中200A/dm2
通電すると、3000〜4000時間で急激な電圧上昇
が起こり電極が使用不可能となる。
The iridium oxide insoluble electrodes prepared by the coating and baking method disclosed in these publications can be used for a long time at a low current density (-100 A / dm 2 ), but under a high current density, especially a sulfuric acid solution. When a current of 200 A / dm 2 is applied, a sharp voltage rise occurs in 3000 to 4000 hours and the electrode becomes unusable.

【0009】この理由は、塗布焼き付け法の酸化イリジ
ウム皮膜の場合、成膜時に大気中で処理するため気孔が
多数あり、また電極として使用する場合、長時間の通電
によりジュール熱によって電極の温度が上昇し、基材金
属と酸化イリジウム層との熱膨張差によって亀甲状クラ
ックも多数発生する。
The reason for this is that the iridium oxide film formed by the coating and baking method has a large number of pores because it is processed in the atmosphere during film formation, and when it is used as an electrode, the temperature of the electrode is increased by Joule heat due to long-time energization. As a result, a large number of hexagonal cracks are generated due to the difference in thermal expansion between the base metal and the iridium oxide layer.

【0010】この気孔とクラックが原因となり基材金属
への直接通電が起こり、基材金属の腐食、あるいは基材
金属表面に絶縁性酸化物皮膜が増加することによって、
結果として電圧上昇を引き起こし、電極としての機能を
失ってしまう。
Due to the porosity and cracks, direct current is applied to the base metal, corrosion of the base metal or increase of the insulating oxide film on the surface of the base metal causes
As a result, the voltage rises and the function as an electrode is lost.

【0011】電極機能を長時間にわたり維持するために
は、気孔、クラックのない均質皮膜を作製することが必
要である。
In order to maintain the electrode function for a long period of time, it is necessary to prepare a homogeneous film having no pores or cracks.

【0012】従来特公昭46―21884号公報、日本
写真学会誌[Vol.51,No.1,p.3(198
8)]にイリジウム金属をスパッタリングするとともに
基板近傍で酸化させる反応性スパッタ法及び反応性蒸着
法が開示されている。
Conventional Japanese Patent Publication No. Sho 46-21884, Journal of the Photographic Society of Japan [Vol. 51, No. 1, p. 3 (198
8)], a reactive sputtering method and a reactive vapor deposition method in which iridium metal is sputtered and oxidized near the substrate are disclosed.

【0013】しかし、この方法で得られた酸化イリジウ
ム皮膜を設けた不溶性電極は、硫酸溶液中で100A/
dm2の低電流密度での通電により短時間で電圧上昇に
より通電できなくなってしまう。
However, the insoluble electrode provided with the iridium oxide film obtained by this method is 100 A / in a sulfuric acid solution.
Due to the energization at a low current density of dm 2 , it becomes impossible to energize due to the voltage increase in a short time.

【0014】この理由としては、前記のスパッタリング
法及び蒸着法によって形成される酸化イリジウム皮膜
は、厚膜化(0.1μm以上)した場合に剥離しやす
く、また厚膜を成膜しようとすると時間がかかるなど工
程上の困難のため、作製できる最適膜厚が100〜10
00Åと非常に薄いものである。
The reason for this is that the iridium oxide film formed by the above-mentioned sputtering method and vapor deposition method is easily peeled off when it is made thick (0.1 μm or more), and when it is tried to form a thick film, it takes time. The optimum film thickness that can be produced is 100 to 10 due to process difficulties such as taking
It is very thin, 00Å.

【0015】そして酸化イリジウム皮膜が薄いため、僅
かなピンホールなどの欠陥が存在することにより、その
欠陥部から基材金属が酸化され、電圧上昇により通電で
きなくなるものと考えられる。
Since the iridium oxide film is thin, it is considered that the presence of slight defects such as pinholes causes the base metal to be oxidized from the defective portions and the current cannot be applied due to the voltage increase.

【0016】このため、特願平4―18395号報にあ
るように高緻密質で均質な皮膜を生成できるイオンプレ
ーティング法を用いて成膜が行われている。
Therefore, as described in Japanese Patent Application No. 4-18395, film formation is carried out by using an ion plating method capable of forming a highly dense and uniform film.

【0017】しかし、PVD法により形成される皮膜の
多くは基材と皮膜の密着性が十分ではなく、めっき液中
で剥離することもあった。
However, most of the films formed by the PVD method do not have sufficient adhesion between the substrate and the film, and sometimes peeled off in the plating solution.

【0018】この理由の一つとして皮膜の膜内部圧縮応
力が非常に高いためであると考えられる。
It is considered that one of the reasons for this is that the film has a very high compressive stress inside the film.

【0019】また、製造過程においてイオンプレーティ
ング法の場合、酸素雰囲気中で被覆を行うため初期段階
で基材であるチタン金属が酸化され、僅かではあるが絶
縁層である酸化チタンを形成し、電極全体の抵抗を上げ
ることにより、電極としての特性が劣ってしまうことも
あった。
Further, in the case of the ion plating method in the manufacturing process, since the coating is performed in an oxygen atmosphere, the titanium metal which is the base material is oxidized in the initial stage to form a small amount of titanium oxide which is an insulating layer, If the resistance of the entire electrode is increased, the characteristics as an electrode may be deteriorated.

【0020】[0020]

【発明が解決しようとする課題】本発明は、チタン基板
の表面にイオンプレーティング法により酸化イリジウム
を形成させるに際し、チタン基材の酸化を防止し、電極
としての寿命を向上させることが目的である。
The object of the present invention is to prevent oxidation of the titanium base material and improve the life of the electrode when forming iridium oxide on the surface of the titanium substrate by the ion plating method. is there.

【0021】[0021]

【課題を解決するための手段】本発明は、チタン金属基
材表面上またはチタン金属層を設けた基材表面上に窒化
チタンのセラミック層、その表面上に酸化イリジウムの
セラミック層が被覆され、各被覆層の厚みが20ミクロ
ン以下であることを特徴とする不溶性酸化イリジウム被
覆電極であり、また、密閉容器内において、金属チタン
を溶解、蒸発させ、イオンプレーティング法によりバイ
アスを印可したチタン電極基材上に窒素雰囲気中で窒化
チタン層を被覆した後、さらに金属イリジウムを溶解、
蒸発させ、イオンプレーティング法により酸素雰囲気中
で酸化イリジウムを被覆し、基材上に窒化チタン/酸化
イリジウム順で被覆することを特徴とする不溶性酸化イ
リジウム被覆電極の製造方法である。
According to the present invention, a titanium nitride ceramic layer is coated on a titanium metal substrate surface or a substrate surface provided with a titanium metal layer, and an iridium oxide ceramic layer is coated on the surface. An insoluble iridium oxide-coated electrode, characterized in that each coating layer has a thickness of 20 μm or less, and a titanium electrode in which a metallic titanium is dissolved and evaporated in a closed container and a bias is applied by an ion plating method. After coating the titanium nitride layer on the base material in a nitrogen atmosphere, further melt the metal iridium,
A method for producing an insoluble iridium oxide-coated electrode, which comprises vaporizing and coating iridium oxide in an oxygen atmosphere by an ion plating method, and coating the substrate in the order of titanium nitride / iridium oxide.

【0022】本発明は、電極基材であるチタン金属を酸
化させないために酸化イリジウム皮膜を直接被覆しない
で窒化チタン層を設けたことが特徴である。
The present invention is characterized in that a titanium nitride layer is provided without directly coating the iridium oxide film in order not to oxidize titanium metal which is the electrode base material.

【0023】イオンプレーティング法で酸化イリジウム
を成膜する場合、酸素雰囲気中で金属イリジウムを溶解
させ酸化イリジウムを生成させるので、基材であるチタ
ン金属の表面が酸化されてしまうことがある。
When iridium oxide is formed by the ion plating method, metal iridium is dissolved in an oxygen atmosphere to generate iridium oxide, so that the surface of the titanium metal as a base material may be oxidized.

【0024】このことにより、皮膜と基材の界面に絶縁
層である酸化チタンができ通電を妨げてしまう。
As a result, titanium oxide, which is an insulating layer, is formed at the interface between the film and the base material, which impedes energization.

【0025】そこで、本発明は基材表面に窒化チタン層
を設けた。このことにより基材表面の酸化を防ぐことに
なった。
Therefore, in the present invention, a titanium nitride layer is provided on the surface of the base material. This prevented oxidation of the substrate surface.

【0026】この窒化チタン層を設けた理由は次の通り
である。まず、チタンと窒化チタンを室温から500℃
での酸化のための自由エネルギーで比較するとチタンの
方が酸化しやすい。
The reason for providing this titanium nitride layer is as follows. First, titanium and titanium nitride are heated from room temperature to 500 ° C.
Titanium is more likely to be oxidized than the free energy for oxidation at.

【0027】よって酸化イリジウムを被覆するときにチ
タン表面上よりは窒化チタン表面上の方が基材の酸化を
防止できると考えられる。
Therefore, it is considered that when the iridium oxide is coated, the oxidation of the substrate can be prevented more on the titanium nitride surface than on the titanium surface.

【0028】また、電極であるので、抵抗率を考えると
電極基材であるチタンは42〜47μΩ・cmであるの
に対し、そのチタンが酸化した場合の酸化チタンは10
13Ω・cm以上で電極自体の抵抗が高くなるという問題
があるが、窒化チタンは22〜30μΩ・cmであるの
で問題はない。
Further, since it is an electrode, when the resistivity is taken into consideration, titanium as an electrode base material has a resistance of 42 to 47 μΩ · cm, whereas titanium oxide when the titanium is oxidized has a titanium oxide content of 10 to 10.
There is a problem that the resistance of the electrode itself becomes high at 13 Ω · cm or more, but there is no problem because titanium nitride has a resistance of 22 to 30 μΩ · cm.

【0029】次に耐食性はチタンと窒化チタンは酸化の
自由エネルギーから考えても窒化チタンの方が優れてい
る。
Regarding titanium and titanium nitride, titanium nitride is superior in terms of corrosion resistance from the viewpoint of free energy of oxidation.

【0030】よって、チタン基材界面に窒素雰囲気中で
窒化チタンを被覆し、その表面上に酸化イリジウムを被
覆することとした。
Therefore, the titanium base material interface is coated with titanium nitride in a nitrogen atmosphere, and the surface thereof is coated with iridium oxide.

【0031】この皮膜はイオンプレーティング法により
成膜されるが、各被覆層の皮膜の厚さは20μm以下で
ある。
This coating is formed by an ion plating method, and the coating thickness of each coating layer is 20 μm or less.

【0032】この理由として、20μmを超えた場合、
イオンプレーティング法によって成膜された皮膜は組織
が柱状晶になり脆くなるからである。
The reason for this is that when the thickness exceeds 20 μm,
This is because the film formed by the ion plating method has a columnar structure and becomes brittle.

【0033】また、チタンとの熱膨張率を考慮し、チタ
ン基材に直接酸化イリジウムを被覆したときよりも、窒
化チタンを被覆したときの方が皮膜と基材の密着性が向
上し、窒化チタンと酸化イリジウムの密着性に関しては
チタンと窒化チタンの密着性と同等の結果が得られるこ
とが本発明者の研究でわかった。このことにより通電中
に剥離することなく電極寿命が向上する。
Further, in consideration of the coefficient of thermal expansion with titanium, when the titanium base material is directly coated with iridium oxide, the adhesion between the coating and the base material is improved, and the nitridation is improved. It has been found by the study of the present inventor that the adhesion between titanium and iridium oxide is similar to that between titanium and titanium nitride. This improves the electrode life without peeling during energization.

【0034】また、製造方法はイオンプレーティング法
を用い、好ましくは2個の蒸発源坩堝を備えており、ま
ず金属チタンを蒸発、溶解して、バイアスを印可したチ
タン基材上に窒素雰囲気中で窒化チタンを被覆し、次に
別の坩堝で金属イリジウムを蒸発、溶解して、バイアス
を印可した窒化チタン被覆基材上に酸素雰囲気中で酸化
イリジウムを成膜させるのである。
The manufacturing method uses an ion plating method, and preferably has two evaporation source crucibles. First, titanium metal is evaporated and melted, and a titanium base material on which a bias is applied is exposed in a nitrogen atmosphere. Titanium nitride is coated with, then metal iridium is evaporated and melted in another crucible, and iridium oxide is deposited on the biased titanium nitride-coated substrate in an oxygen atmosphere.

【0035】しかし、1個のみしか蒸発源坩堝が使えな
い場合は最初に窒化チタンを被覆し、次に坩堝内の蒸発
源をイリジウムと交換して酸化イリジウム層を被覆して
も良い。
However, when only one evaporation source crucible can be used, titanium nitride may be first coated, and then the evaporation source in the crucible may be replaced with iridium to coat the iridium oxide layer.

【0036】また、処理温度としてはイリジウムが金属
に拡散しない温度、つまり700℃以下で成膜するのが
最適である。
Further, as the processing temperature, the film is optimally formed at a temperature at which iridium does not diffuse into the metal, that is, 700 ° C. or less.

【0037】[0037]

【作用】本発明のような皮膜にすることによりイオンプ
レーティング法で酸化イリジウム皮膜を被覆する場合、
電極基材のチタン表面に絶縁物である酸化チタンを生成
させることがなくなり、電極としての機能を劣化させる
ことがなくなる。
When the iridium oxide film is coated by the ion plating method by forming the film as in the present invention,
Titanium oxide, which is an insulator, is not generated on the titanium surface of the electrode base material, and the function as an electrode is not deteriorated.

【0038】またチタンと窒化チタン、窒化チタンと酸
化イリジウムの両者の密着性がチタンと酸化イリジウム
の密着性より良いので、基材と皮膜の高密着被覆ができ
電極寿命が向上する。
Since the adhesion between titanium and titanium nitride and between titanium nitride and iridium oxide is better than that between titanium and iridium oxide, a highly adherent coating of the base material and the coating can be achieved and the electrode life is improved.

【0039】[0039]

【実施例】本発明の以下実施例により詳細に説明する。
また、不溶性電極の評価方法は以下に説明する方法によ
り行った。
EXAMPLES The following examples of the present invention will be described in detail.
Moreover, the evaluation method of the insoluble electrode was performed by the method described below.

【0040】評価方法 電極の耐溶性評価は、作成した電極を陽極に用い、陰極
に白金板を使用し、60℃、5wt%硫酸溶液中、電気
密度200A/dm2で通電腐食試験を行った。
Evaluation Method To evaluate the solubility of the electrode, the prepared electrode was used as an anode and a platinum plate was used as a cathode, and a galvanic corrosion test was conducted in a 5 wt% sulfuric acid solution at 60 ° C. at an electric density of 200 A / dm 2 . .

【0041】これは、電圧初期値20Vからの変化を測
定し、35Vまでの電圧上昇の通電時間により評価し
た。抵抗率は4端子法を用い、密着力はスクラッチテス
ターで測定した。
This was evaluated by measuring the change from the initial voltage value of 20V and the energization time of the voltage increase up to 35V. The resistivity was measured by the 4-terminal method, and the adhesion was measured by a scratch tester.

【0042】基材 150×10×2mmのTi基材を用い、その表面を蓚
酸で予め洗浄した。
Base Material A Ti base material of 150 × 10 × 2 mm was used, and the surface thereof was previously washed with oxalic acid.

【0043】試料作成法 基材表面上に、イオンプレーティング法により酸化イリ
ジウム皮膜を成膜した。この成膜法の詳細を以下に記
す。
Sample Preparation Method An iridium oxide film was formed on the surface of the substrate by the ion plating method. Details of this film forming method will be described below.

【0044】[0044]

【実施例1】蒸発源が入る坩堝を別々に2個用いて、被
覆前にチタンとイリジウムを別々の坩堝に挿入してお
く。
Example 1 Two crucibles each containing an evaporation source are separately used, and titanium and iridium are inserted into separate crucibles before coating.

【0045】そして第1層として窒化チタンを被覆する
場合は、電子ビームでチタンを溶解・蒸発させ、さらに
坩堝直上のイオン化電極により、40V・60Aの条件
でイオン化させ、チタン基材をチタンと対向して設置
し、窒素雰囲気下でバイアス電圧500V、成膜速度3
0Å/secで窒化チタンを被覆する。
When titanium nitride is coated as the first layer, titanium is melted and evaporated by an electron beam, and further ionized by an ionization electrode directly above the crucible under the conditions of 40 V and 60 A, so that the titanium base material faces the titanium. Installed at a bias voltage of 500 V and a deposition rate of 3 in a nitrogen atmosphere.
Titanium nitride is coated at 0Å / sec.

【0046】続いて第2層としての酸化イリジウムを被
覆する場合は、電子ビームでイリジウムを溶解・蒸発さ
せ、さらに坩堝直上のイオン化電極により、50V・1
0Aの条件でイオン化させ、窒化チタン被覆基材をイリ
ジウムと対向して設置し、酸素雰囲気下でバイアス電圧
500V、成膜速度10Å/secで酸化イリジウムを
被覆した。
Subsequently, when iridium oxide is coated as the second layer, iridium is dissolved and evaporated by an electron beam, and further 50 V.1 is applied by an ionization electrode directly above the crucible.
Ionization was carried out under the condition of 0 A, the titanium nitride coated substrate was placed facing iridium, and iridium oxide was coated at a bias voltage of 500 V and a film forming rate of 10 Å / sec in an oxygen atmosphere.

【0047】これは基材から中間層は窒化チタン、表面
は酸化イリジウムの二層膜である。なおこのときの窒素
雰囲気は4×10-4Torr、酸素雰囲気は8×10-4
Torr、成膜温度を500℃した。
This is a two-layer film consisting of a base material, an intermediate layer of titanium nitride, and a surface of iridium oxide. At this time, the nitrogen atmosphere is 4 × 10 −4 Torr and the oxygen atmosphere is 8 × 10 −4.
Torr and the film forming temperature were 500 ° C.

【0048】[0048]

【比較例(酸化イリジウム単層)】坩堝にイリジウムを
挿入し、電子ビームで溶解して蒸発させ、さらに坩堝直
上のイオン化電極により、50V・10Aの条件でイオ
ン化させた。
[Comparative Example (Iridium Oxide Single Layer)] Iridium was inserted into a crucible, melted and evaporated by an electron beam, and further ionized under conditions of 50 V and 10 A by an ionization electrode directly above the crucible.

【0049】そして、チタン基材をイリジウムと対向し
て設置し、酸素雰囲気下でバイアス電圧500V、成膜
速度10Å/secで酸化イリジウムを被覆した。なお
このときの酸素雰囲気は8×10-4Torr、成膜温度
を500℃した。
Then, a titanium base material was placed opposite to iridium, and was coated with iridium oxide in an oxygen atmosphere at a bias voltage of 500 V and a film formation rate of 10 Å / sec. At this time, the oxygen atmosphere was 8 × 10 −4 Torr and the film forming temperature was 500 ° C.

【0050】結果 上記の試験結果を第1表にまとめて示す。この結果より
実施例は比較例より基材と皮膜の密着性が向上し、酸化
チタンの影響がなくなるため抵抗率も小さく、通電時間
も長くなることがわかった。
Results The above test results are summarized in Table 1. From these results, it was found that the examples have improved adhesion between the base material and the film and have less effect of titanium oxide than the comparative examples, so that the resistivity is small and the energization time is long.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【発明の効果】本発明はイオンプレーティング法で酸化
イリジウムを被覆する場合、従来技術では基材のチタン
が表面が酸化して通電を妨げ電極機能として劣化させた
状況においても、基材表面が酸化することなく、また皮
膜が剥離して使用できなかった状況においても、剥離す
ること無しに過酷な使用状況でも耐え得る酸化イリジウ
ム被覆電極である。
According to the present invention, when iridium oxide is coated by the ion plating method, in the prior art, the surface of the base material is deteriorated even when titanium of the base material oxidizes the surface to impede energization and deteriorate as an electrode function. It is an iridium oxide-coated electrode that can withstand harsh usage conditions without being peeled off even if it cannot be used due to peeling of the film without being oxidized.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 チタン金属基材表面上またはチタン金属
層を設けた基材表面上に窒化チタンのセラミック層、そ
の表面上に酸化イリジウムのセラミツク層が被覆され、
各被覆層の厚みが20ミクロン以下であることを特徴と
する不溶性酸化イリジウム被覆電極。
1. A titanium nitride ceramic layer on a titanium metal substrate surface or a substrate surface provided with a titanium metal layer, and an iridium oxide ceramic layer on the surface thereof.
An insoluble iridium oxide-coated electrode, wherein each coating layer has a thickness of 20 μm or less.
【請求項2】 密閉容器内において、金属チタンを溶
解、蒸発させ、イオンプレーティング法によりバイアス
を印可したチタン電極基材上に窒素雰囲気中で窒化チタ
ン層を被覆した後、さらに金属イリジウムを溶解、蒸発
させ、イオンプレーティング法により酸素雰囲気中で酸
化イリジウムを被覆し、基材上に窒化チタン/酸化イリ
ジウム順で被覆することを特徴とする不溶性酸化イリジ
ウム被覆電極の製造方法。
2. In a closed container, titanium metal is dissolved and evaporated, a titanium electrode base material to which a bias is applied by an ion plating method is coated with a titanium nitride layer in a nitrogen atmosphere, and then metal iridium is further dissolved. A method for producing an insoluble iridium oxide-coated electrode, which comprises evaporating, coating iridium oxide in an oxygen atmosphere by an ion plating method, and coating the substrate in the order of titanium nitride / iridium oxide.
JP5104899A 1993-04-08 1993-04-08 Insoluble iridium oxide coated electrode and its production Withdrawn JPH06293998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5104899A JPH06293998A (en) 1993-04-08 1993-04-08 Insoluble iridium oxide coated electrode and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5104899A JPH06293998A (en) 1993-04-08 1993-04-08 Insoluble iridium oxide coated electrode and its production

Publications (1)

Publication Number Publication Date
JPH06293998A true JPH06293998A (en) 1994-10-21

Family

ID=14392998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5104899A Withdrawn JPH06293998A (en) 1993-04-08 1993-04-08 Insoluble iridium oxide coated electrode and its production

Country Status (1)

Country Link
JP (1) JPH06293998A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068059A (en) * 2007-09-12 2009-04-02 Sanyo Shinku Kogyo Kk Electrode for electrolysis
KR20130096725A (en) * 2010-09-17 2013-08-30 다나카 기킨조쿠 고교 가부시키가이샤 Electrolysis electrode, positive electrode for producing ozone electrolysis, positive electrode for producing persulfate electrolysis, and positive electrode for chromium electrolytic oxidation
CN104988535A (en) * 2015-05-22 2015-10-21 东南大学 Mixed metal oxide coating electrode and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068059A (en) * 2007-09-12 2009-04-02 Sanyo Shinku Kogyo Kk Electrode for electrolysis
KR20130096725A (en) * 2010-09-17 2013-08-30 다나카 기킨조쿠 고교 가부시키가이샤 Electrolysis electrode, positive electrode for producing ozone electrolysis, positive electrode for producing persulfate electrolysis, and positive electrode for chromium electrolytic oxidation
US9353448B2 (en) 2010-09-17 2016-05-31 Tanaka Kikinzoku Kogyo K.K. Electrolytic electrode, anode for electrolytic production of ozone, anode for electrolytic production of persulfuric acid and anode for electrolytic oxidation of chromium
CN104988535A (en) * 2015-05-22 2015-10-21 东南大学 Mixed metal oxide coating electrode and preparation method thereof

Similar Documents

Publication Publication Date Title
EP0034408B2 (en) A method of forming an anticorrosive coating on a metal electrode substrate
EP0052986B1 (en) Electrode, method of manufacturing an electrode and electrolytic cell using such an electrode
JP4032068B2 (en) Titanium material used in fuel cell separators
JP2761751B2 (en) Electrode for durable electrolysis and method for producing the same
NO120227B (en)
JPH06293998A (en) Insoluble iridium oxide coated electrode and its production
JP4516628B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP2549962B2 (en) Iridium oxide insoluble electrode and method for producing the same
JPH06294000A (en) Insoluble iridium oxide coated electrode and its production
JPH06293999A (en) Insoluble iridium oxide coated electrode and its production
JPH06235097A (en) Electrode coated with insoluble iridium oxide
JPH07258897A (en) Insoluble electrode and its production
JPH05209299A (en) Insoluble electrode and its production
JPH07166350A (en) Iridium electrode substrate and insoluble iridium oxide electrode using the same
JPH1161496A (en) Insoluble electrode and its production
JP3436763B2 (en) Sputtering target material
JPH07278812A (en) Production of insoluble iridium oxide coated electrode
JP3079765B2 (en) Materials for electrical contacts
JPH0681198A (en) Insoluble electrode and its production
JPH0649695A (en) Insoluble electrode and its production
JPH01150000A (en) Insoluble anode for electroplating
JPH06306669A (en) High durable electrode for electrolysis and production thereof
JPH06228783A (en) Platinum coating film electrode and production thereof
JPH06128781A (en) High durable electrode for electrolysis
JPH04214899A (en) Insoluble electrode

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000704