JPH06293778A - Silanamine derivative and its production - Google Patents

Silanamine derivative and its production

Info

Publication number
JPH06293778A
JPH06293778A JP5078344A JP7834493A JPH06293778A JP H06293778 A JPH06293778 A JP H06293778A JP 5078344 A JP5078344 A JP 5078344A JP 7834493 A JP7834493 A JP 7834493A JP H06293778 A JPH06293778 A JP H06293778A
Authority
JP
Japan
Prior art keywords
group
carbon atoms
substituted
derivative
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5078344A
Other languages
Japanese (ja)
Inventor
Hisayuki Kawamura
久幸 川村
Chishio Hosokawa
地潮 細川
Tadashi Kusumoto
正 楠本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP5078344A priority Critical patent/JPH06293778A/en
Publication of JPH06293778A publication Critical patent/JPH06293778A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a new compound suitable for a hole transfer material, etc., for organic electroluminescence element, photosensitive material for electrophotography, etc. CONSTITUTION:A compound of formula I [Ar<1> is (substituted)6-20C aryl or (substituted)3-10C heteroaromatic group; Ar<2> is (substituted)7-20C aryl or (substituted)3-10C heteroaromatic group; Ar<3> is (alkyl-substituted)6-20C aryl], e.g. N-triphenylsilil-N-phenyl-1-naphthylamine. The compound of formula I can be produced by the condensation reaction of an amine of formula II with a halogenated silane of formula III.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、有機エレクトロルミネ
ッセンス素子(以下、有機EL素子という)や電子写真
感光体等で用いられる正孔輸送材料として好適なシラナ
ミン誘導体およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silanamine derivative suitable as a hole transporting material used in organic electroluminescent elements (hereinafter referred to as organic EL elements), electrophotographic photoreceptors and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】有機EL素子としては種々の構成のもの
があるが、ITO(陽極)/正孔輸送層/発光層/陰極
の素子構成のものは高輝度発光が可能なものとして知ら
れている(特開昭63−295695号公報参照)。こ
の構成の有機EL素子では20V以上の印加電圧で数百
cd/m2 の高輝度発光が可能であり、前記公報には正
孔輸送層の材料として芳香族第三級アミンを用いること
が開示されている。
2. Description of the Related Art There are various types of organic EL devices, and the device structure of ITO (anode) / hole transport layer / light emitting layer / cathode is known to be capable of high-luminance light emission. (See JP-A-63-295695). The organic EL device having this structure is capable of high-luminance light emission of several hundred cd / m 2 at an applied voltage of 20 V or higher, and the publication discloses that an aromatic tertiary amine is used as the material of the hole transport layer. Has been done.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、アミン
系の材料には、酸化に弱いという難点や、薄膜としたと
きに経時的に再結晶化を起こすという難点がある。ま
た、アミン系の材料は主としてウルマン反応を利用して
製造されるが、この反応は高い反応温度を必要とし、ま
た、重金属を触媒として用いるために廃液の処理が困難
である。
However, amine-based materials have the drawback that they are weak against oxidation and that they recrystallize over time when formed into a thin film. Further, the amine-based material is mainly produced by utilizing the Ullmann reaction, but this reaction requires a high reaction temperature, and the treatment of the waste liquid is difficult because a heavy metal is used as a catalyst.

【0004】本発明の目的は、酸化に強いとともに再結
晶化を起こしにくい正孔輸送層等を得るのに好適なシラ
ナミン誘導体およびその製造方法を提供することにあ
る。
An object of the present invention is to provide a silanamin derivative suitable for obtaining a hole transport layer which is strong against oxidation and hardly recrystallized, and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】上目的を達成する本発明
のシラナミン誘導体は、一般式(I)
The silanamin derivative of the present invention which achieves the above object has the general formula (I):

【化4】 (式中、Ar1 は炭素数6〜20のアリール基または炭
素数3〜10の複素芳香環基であり、これらの基にはア
ルキル基またはフェニル基が核置換されていてもよい。
Ar2 は炭素数7〜20のアリール基または炭素数3〜
10の複素芳香環基であり、これらの基にはアルキル基
またはフェニル基が核置換されていてもよい。Ar3
炭素数6〜20のアリール基であり、この基にはアルキ
ル基が核置換されていてもよい。)で表されるものであ
る。
[Chemical 4] (In the formula, Ar 1 is an aryl group having 6 to 20 carbon atoms or a heteroaromatic group having 3 to 10 carbon atoms, and these groups may be substituted with an alkyl group or a phenyl group as a nucleus.
Ar 2 is an aryl group having 7 to 20 carbon atoms or 3 to 3 carbon atoms.
10 heteroaromatic ring groups, which may be nucleus-substituted with an alkyl group or a phenyl group. Ar 3 is an aryl group having 6 to 20 carbon atoms, and an alkyl group may be nucleus-substituted in this group. ) Is represented.

【0006】また、本発明のシラナミン誘導体の製造方
法は、一般式(II)
Further, the method for producing the silanamin derivative of the present invention has the general formula (II)

【化5】 (式中、Ar1 は炭素数6〜20のアリール基または炭
素数3〜10の複素芳香環基であり、これらの基にはア
ルキル基またはフェニル基が核置換されていてもよい。
Ar2 は炭素数7〜20のアリール基または炭素数3〜
10の複素芳香環基であり、これらの基にはアルキル基
またはフェニル基が核置換されていてもよい。)で表さ
れるアミンと、一般式(III)
[Chemical 5] (In the formula, Ar 1 is an aryl group having 6 to 20 carbon atoms or a heteroaromatic group having 3 to 10 carbon atoms, and these groups may be substituted with an alkyl group or a phenyl group as a nucleus.
Ar 2 is an aryl group having 7 to 20 carbon atoms or 3 to 3 carbon atoms.
10 heteroaromatic ring groups, which may be nucleus-substituted with an alkyl group or a phenyl group. ) And the general formula (III)

【化6】 (式中、Ar3 は炭素数6〜20のアリール基であり、
この基にはアルキル基が核置換されていてもよい。)で
表されるハロゲン化シランとを縮合反応させることを特
徴とするものである。
[Chemical 6] (In the formula, Ar 3 is an aryl group having 6 to 20 carbon atoms,
An alkyl group may be nucleus-substituted in this group. ) And a halogenated silane represented by the formula (6) are subjected to a condensation reaction.

【0007】以下、本発明を詳細に説明する。まず本発
明のシラナミン誘導体について説明すると、このシラナ
ミン誘導体は前述のように一般式(I)
The present invention will be described in detail below. First, the silanamin derivative of the present invention will be described. This silanamin derivative has the general formula (I) as described above.

【化7】 で表されるものである。[Chemical 7] It is represented by.

【0008】ここで、Ar1 は炭素数6〜20のアリー
ル基または炭素数3〜10の複素芳香環基であり、これ
らの基にはアルキル基またはフェニル基が核置換されて
いてもよい。炭素数6〜20のアリール基の具体例とし
ては、フェニル基、ナフチル基、ビフェニル基、アント
ラニル基、アセナフチル基、フェナンスリル基、ピレニ
ル基等が挙げられる。また、炭素数3〜10の複素芳香
環基の具体例としては、ピローリル基、チオフェニル
基、フラニル基、ピリジニル基、イミダゾリル基、イン
ドーリル基、ベンゾチオフェニル基、ベンゾフラニル基
等が挙げられる。そして、これらの基に核置換し得るア
ルキル基の具体例としてはメチル基、エチル基などが挙
げられる。
Here, Ar 1 is an aryl group having 6 to 20 carbon atoms or a heteroaromatic ring group having 3 to 10 carbon atoms, and these groups may be nucleus-substituted with an alkyl group or a phenyl group. Specific examples of the aryl group having 6 to 20 carbon atoms include phenyl group, naphthyl group, biphenyl group, anthranyl group, acenaphthyl group, phenanthryl group and pyrenyl group. Further, specific examples of the heteroaromatic ring group having 3 to 10 carbon atoms include a pyrrolyl group, a thiophenyl group, a furanyl group, a pyridinyl group, an imidazolyl group, an indolyl group, a benzothiophenyl group, a benzofuranyl group and the like. Specific examples of the alkyl group which can be nuclear-substituted with these groups include a methyl group and an ethyl group.

【0009】上記一般式(I)中のAr2 は、炭素数7
〜20のアリール基または炭素数3〜10の複素芳香環
基であり、これらの基にはアルキル基またはフェニル基
が核置換されていてもよい。炭素数7〜20のアリール
基の具体例としては、ナフチル基、ビフェニル基、アン
トラニル基、アセナフチル基、フェナンスリル基、ピレ
ニル基等が挙げられる。また、炭素数3〜10の複素芳
香環基の具体例としては、Ar1 の説明の中で挙げたも
のと同じものが例示される。そして、これらの基に核置
換し得るアルキル基の具体例としては、Ar1 の説明の
中で挙げたものと同じものが例示される。
Ar 2 in the general formula (I) has 7 carbon atoms.
To an aryl group having 20 to 20 carbon atoms or a heteroaromatic ring group having 3 to 10 carbon atoms, and these groups may be substituted with an alkyl group or a phenyl group as a nucleus. Specific examples of the aryl group having 7 to 20 carbon atoms include naphthyl group, biphenyl group, anthranyl group, acenaphthyl group, phenanthryl group and pyrenyl group. Further, specific examples of the heteroaromatic ring group having 3 to 10 carbon atoms include the same ones as mentioned in the description of Ar 1 . Specific examples of the alkyl group which can be nuclear-substituted with these groups are the same as those mentioned in the description of Ar 1 .

【0010】上記一般式(I)中のAr3 は炭素数6〜
20のアリール基であり、この基にはアルキル基が核置
換されていてもよい。このアリール基の具体例として
は、Ar1 の説明の中で挙げたものと同じものが例示さ
れる。また、この基に核置換し得るアルキル基の具体例
としても、Ar1 の説明の中で挙げたものと同じものが
例示される。
Ar 3 in the general formula (I) has 6 to 6 carbon atoms.
20 aryl groups, which may be nucleus-substituted with alkyl groups. Specific examples of the aryl group are the same as those mentioned in the description of Ar 1 . Further, specific examples of the alkyl group which can be nuclear-substituted with this group are also the same as those mentioned in the description of Ar 1 .

【0011】本発明のシラナミン誘導体の具体例を、図
1および図2に示す。本発明のシラナミン誘導体は、公
知の真空蒸着法等により容易に薄膜化することができ
る。さらには、ポリカーボネート、ポリウレタン、ポリ
スチレン、ポリアリレート、ポリエステル等のポリマー
に本発明のシラナミン誘導体を分散させた溶液を用いキ
ャスト法、塗布法、スピンコート法等によっても、容易
に薄膜化することができる。
Specific examples of the silanamine derivative of the present invention are shown in FIGS. 1 and 2. The silanamin derivative of the present invention can be easily formed into a thin film by a known vacuum deposition method or the like. Further, it is possible to easily form a thin film by a casting method, a coating method, a spin coating method or the like using a solution in which the silanamin derivative of the present invention is dispersed in a polymer such as polycarbonate, polyurethane, polystyrene, polyarylate or polyester. .

【0012】上述のようにして薄膜化することができる
本発明のシラナミン誘導体は、正孔を輸送するという電
子機能を保有している一方で、アミン系材料に比べて耐
酸化性に優れ、かつ、薄膜とした場合でも再結晶化を起
こしにくいという特性を有している。したがって、本発
明のシラナミン誘導体は有機EL素子の正孔輸送層の材
料や正孔輸送性結着剤の材料あるいは電子写真感光体の
電荷輸送層(正孔輸送層)の材料等の正孔輸送材料とし
て好適である。
The silanamin derivative of the present invention, which can be formed into a thin film as described above, has an electronic function of transporting holes, but is more excellent in oxidation resistance than amine-based materials, and Also, it has a characteristic that recrystallization is difficult to occur even when formed into a thin film. Therefore, the silanamine derivative of the present invention is a hole transporting material such as a material for a hole transporting layer of an organic EL device, a material for a hole transporting binder or a material for a charge transporting layer (hole transporting layer) of an electrophotographic photoreceptor. It is suitable as a material.

【0013】このような特性を有する本発明のシラナミ
ン誘導体は、例えば以下に述べる本発明の方法により合
成することができる。本発明の方法は、前述したよう
に、一般式(II)
The silanamin derivative of the present invention having such characteristics can be synthesized, for example, by the method of the present invention described below. As described above, the method of the present invention has the general formula (II)

【化8】 で表されるアミンと、一般式(III)[Chemical 8] An amine represented by the general formula (III)

【化9】 で表されるハロゲン化シランとを縮合反応させることを
特徴とするものである。
[Chemical 9] It is characterized in that the halogenated silane represented by

【0014】ここで、上記一般式(II)におけるAr1
とAr2 、および上記一般式(III)におけるAr3 は、
本発明のシラナミ誘導体を表す前述の一般式(I)にお
けるAr1 、Ar2 およびAr3 と同じである。また、
一般式(III) におけるXはハロゲン原子であり、具体例
としてはフッ素、塩素、臭素、ヨウ素が挙げられる。一
般式(II)で表されるアミンの具体例を図3に示す。ま
た、一般式(III) で表されるハロゲン化シランの具体例
を図4に示す。
Here, Ar 1 in the above general formula (II)
And Ar 2 , and Ar 3 in the above general formula (III),
It is the same as Ar 1 , Ar 2 and Ar 3 in the above-mentioned general formula (I) representing the silanami derivative of the present invention. Also,
X in the general formula (III) is a halogen atom, and specific examples thereof include fluorine, chlorine, bromine and iodine. A specific example of the amine represented by the general formula (II) is shown in FIG. A specific example of the halogenated silane represented by the general formula (III) is shown in FIG.

【0015】一般式(II)で表されるアミンと一般式(I
II) で表されるハロゲン化シランとの縮合は、例えば以
下のようにして行うことができる。まず、一般式(II)
で表されるアミンを、アルゴンガス等の不活性ガス雰囲
気中で、溶媒に溶解させる。溶媒としてはジエチルエー
テル、THF(テトラヒドロフラン)、メタノール、エ
タノール、DMSO(ジメチルスルホキシド)、DMF
(ジメチルホルムアミド)、トルエン等を用いることが
できるが、特にTHFが好適である。また、溶媒は市販
のものを用いてもよいが、精製したものを用いることが
好ましい。溶媒の精製は、モレキュラーシーブスやシリ
カゲルによる乾燥、ナトリウムや五塩化リンからの蒸
留、不活性ガス雰囲気中での水素化カルシウムからの蒸
留等により行うことができる。
The amine represented by the general formula (II) and the general formula (I
The condensation with the halogenated silane represented by II) can be performed, for example, as follows. First, general formula (II)
The amine represented by is dissolved in a solvent in an atmosphere of an inert gas such as argon gas. As the solvent, diethyl ether, THF (tetrahydrofuran), methanol, ethanol, DMSO (dimethyl sulfoxide), DMF
(Dimethylformamide), toluene and the like can be used, but THF is particularly preferable. A commercially available solvent may be used, but a purified solvent is preferably used. Purification of the solvent can be performed by drying with molecular sieves or silica gel, distillation from sodium or phosphorus pentachloride, distillation from calcium hydride in an inert gas atmosphere, and the like.

【0016】次いで、上述のようにして得た溶液に、一
般式(II)のアミンに対して1〜5当量の塩基および1
〜5当量の一般式(III) のハロゲン化シランを順次加え
る。塩基としては水酸化ナトリウム、炭酸カリウム、水
素化ナトリウム、ピリジン、トリエチルアミン、t−ブ
トキシカリウム、DBU(1,8−ジアザビシクロ
[5.4.0.]ウンデク−7−エン)、n−ブチルリ
チウム、フェニルリチウム等を用いることができるが、
n−ブチルリチウムが特に好適である。塩基の好ましい
添加量は1.0〜2.4当量である。また、ハロゲン化
シランの好ましい添加量は1.0〜1.3当量である。
Then, to the solution obtained as described above, 1 to 5 equivalents of the base and 1 to the amine of the general formula (II) are added.
~ 5 equivalents of halogenated silane of general formula (III) are added sequentially. As the base, sodium hydroxide, potassium carbonate, sodium hydride, pyridine, triethylamine, potassium t-butoxy, DBU (1,8-diazabicyclo [5.4.0.] Undec-7-ene), n-butyllithium, Phenyllithium or the like can be used,
n-Butyllithium is particularly preferred. The preferred addition amount of the base is 1.0 to 2.4 equivalents. Moreover, the preferable addition amount of the halogenated silane is 1.0 to 1.3 equivalents.

【0017】なお、塩基およびハロゲン化シランは溶媒
に溶解させて前記溶液に添加してもよい。塩基を溶解す
る溶媒としては、THF、トルエン、ジエチルエーテ
ル、ジオキサン、ジメトキシエタン等を用いることがで
きるが、一般式(II)のアミンを溶解させる際に用いた
溶媒と同じものを用いることが好ましい。また、ハロゲ
ン化シランを溶解する溶媒としては、ジエチルエーテ
ル、THF、ジオキサン、トルエン、ジメトキシエタン
等を用いることができるが、一般式(II)のアミンを溶
解させる際に用いた溶媒と同じものを用いることが好ま
しい。
The base and halogenated silane may be dissolved in a solvent and added to the above solution. As the solvent for dissolving the base, THF, toluene, diethyl ether, dioxane, dimethoxyethane or the like can be used, but it is preferable to use the same solvent as used for dissolving the amine of the general formula (II). . As the solvent for dissolving the halogenated silane, diethyl ether, THF, dioxane, toluene, dimethoxyethane or the like can be used, but the same solvent as used for dissolving the amine of the general formula (II) can be used. It is preferable to use.

【0018】この後、反応温度−80〜100℃で1〜
36時間反応させることにより、アミンとハロゲン化シ
ランとを縮合反応させる。反応温度は前述の範囲内から
適宜選択可能であり、室温でも十分に良好な収率で目的
とするシラナミン誘導体が得られる。また、反応時間も
前述の範囲内から適宜選択可能であり、8時間程度でも
十分に良好な収率で目的とするシラナミン誘導体が得ら
れる。
Thereafter, at a reaction temperature of -80 to 100 ° C., 1 to
By reacting for 36 hours, the amine and the halogenated silane are condensed. The reaction temperature can be appropriately selected from the above range, and the desired silanamine derivative can be obtained even at room temperature with a sufficiently good yield. Further, the reaction time can be appropriately selected from the above range, and the target silanamin derivative can be obtained in a sufficiently good yield even for about 8 hours.

【0019】反応生成物(目的とするシラナミン誘導
体)は、反応液からトルエン、ジエチルエーテル、酢酸
エチル等の溶媒で抽出し、無水硫酸マグネシウム等の乾
燥剤で乾燥した後に溶媒を留去し、この後トルエン、D
MF、ピリジン等の溶媒により再結晶させるか、シリカ
ゲルまたは活性アルミナを担持したカラムクロマトグラ
フィーにかけることにより、精製することができる。場
合によっては、さらに昇華精製を行なってもよい。
The reaction product (the desired silanamine derivative) is extracted from the reaction solution with a solvent such as toluene, diethyl ether, ethyl acetate, dried with a desiccant such as anhydrous magnesium sulfate, and then the solvent is distilled off. After toluene, D
It can be purified by recrystallization with a solvent such as MF or pyridine, or by subjecting it to column chromatography supporting silica gel or activated alumina. Depending on the case, further sublimation purification may be performed.

【0020】本発明の方法によれば、触媒として重金属
を使用することなく比較的に低い反応温度下で本発明の
シラナミン誘導体を得ることができることから、ウルマ
ン反応を利用してアミン系材料を得る場合よりも製造が
容易である。
According to the method of the present invention, the silanamine derivative of the present invention can be obtained at a relatively low reaction temperature without using a heavy metal as a catalyst. Therefore, an Ullmann reaction is used to obtain an amine material. It is easier to manufacture than in the case.

【0021】このようにして得られる本発明のシラナミ
ン誘導体は、前述したように正孔を輸送するという電子
機能を保有している一方で、アミン系材料に比べて耐酸
化性に優れ、かつ、薄膜とした場合でも再結晶化を起こ
しにくいという特性を有していることから、正孔輸送材
料として好適である。
The silanamine derivative of the present invention thus obtained possesses the electronic function of transporting holes as described above, but is more excellent in oxidation resistance than amine-based materials, and It is suitable as a hole-transporting material because it has a characteristic that it is difficult to recrystallize even when formed into a thin film.

【0022】本発明のシラナミン誘導体を正孔輸送層と
して用いた有機EL素子は、正孔輸送層の材料として前
記一般式(I)で表されるシラナミン誘導体を用いる以
外は公知の方法により製造することができる。このとき
の素子構成は、陽極/正孔輸送層/発光層/陰極、
陽極/正孔輸送層/発光層/電子注入層/陰極等、陽極
と発光層との間に正孔輸送層が介在している構成であれ
ばよい。正孔輸送層以外の構成部材の材料としては種々
の物質を用いることができ、目的とする有機EL素子の
用途等に応じて適宜選択可能である。
The organic EL device using the silanamin derivative of the present invention as the hole transport layer is manufactured by a known method except that the silanamin derivative represented by the general formula (I) is used as the material of the hole transport layer. be able to. The device structure at this time is as follows: anode / hole transport layer / light emitting layer / cathode
Any structure may be used, such as an anode / hole transport layer / light emitting layer / electron injection layer / cathode, as long as the hole transport layer is interposed between the anode and the light emitting layer. Various materials can be used as the material of the constituent members other than the hole transport layer, and can be appropriately selected depending on the intended use of the organic EL device and the like.

【0023】有機EL素子の正孔輸送層として本発明の
シラナミン誘導体を用いた場合には、このシラナミン誘
導体がアミン系材料に比べて耐酸化性に優れ、かつ、薄
膜とした場合でも再結晶化を起こしにくいという特性を
有していることから、正孔輸送層としてアミン系材料を
用いた有機EL素子よりも素子寿命の長いものを得るこ
とができる。
When the silanamin derivative of the present invention is used as the hole transport layer of the organic EL device, the silanamin derivative is more excellent in oxidation resistance than the amine-based material and recrystallized even when formed into a thin film. Since it has a characteristic of being less likely to cause the above, it is possible to obtain a device having a longer device life than the organic EL device using the amine-based material as the hole transport layer.

【0024】[0024]

【実施例】以下、本発明の実施例について説明する。 実施例1(シラナミン誘導体の製造) まず、水素化カルシウムからアルゴンガス雰囲気下蒸留
したTHF 150mlにアルゴンガス雰囲気下で、N
−フェニル−1−ナフチルアミン[図3(1)に示すア
ミン;東京化成(株)製]3.02g(13.8m mo
l)を溶解させた。次いで、上で得られた溶液にn−ブ
チルリチウムのヘキサン溶液(アルドリッチ社製)12
ml(約20m mol)とトリフェニルクロロシラン[図
4(1)に示すハロゲン化シラン;信越化学(株)製]
4.28g(14.5m mol)とを加えて、室温で8時
間反応させた。反応終了後、反応生成物を酢酸エチルで
抽出し、無水硫酸マグネシウムで乾燥した後にロータリ
ーエバポレーターで溶媒を留去し、得られた化合物をピ
リジンで洗浄したところ、2.02gの白色粉末が得ら
れた。
EXAMPLES Examples of the present invention will be described below. Example 1 (Production of Silanamine Derivative) First, 150 ml of THF distilled from calcium hydride under an argon gas atmosphere was subjected to N 2 under an argon gas atmosphere.
-Phenyl-1-naphthylamine [amine shown in FIG. 3 (1); manufactured by Tokyo Kasei Co., Ltd.] 3.02 g (13.8 mmo)
l) was dissolved. Then, a hexane solution of n-butyllithium (manufactured by Aldrich Co.) 12 was added to the solution obtained above.
ml (about 20 mmol) and triphenylchlorosilane [halogenated silane shown in Fig. 4 (1); manufactured by Shin-Etsu Chemical Co., Ltd.]
4.28 g (14.5 mmol) was added, and the mixture was reacted at room temperature for 8 hours. After completion of the reaction, the reaction product was extracted with ethyl acetate, dried over anhydrous magnesium sulfate, the solvent was distilled off with a rotary evaporator, and the obtained compound was washed with pyridine. 2.02 g of white powder was obtained. It was

【0025】この白色粉末のFD−Mass(フィール
ドディフュージョンマススペクトロスコピー)を測定し
たところ、C3427NSi=477に対して477の親
ピークが得られた。また、この白色粉末のIRスペクト
ルを測定したところ、1620,1520,1300,
880(cm-1)に吸収が観測された。これらのことか
ら、得られた白色粉末は、目的とするN−トリフェニル
シリル−N−フェニル−1−ナフチルアミン[図1
(1)に示すシラナミン誘導体;融点176℃。以下S
N−1と略記する。]であると同定された(収率31
%)。
When the FD-Mass (field diffusion mass spectroscopy) of this white powder was measured, a parent peak of 477 was obtained for C 34 H 27 NSi = 477. The IR spectrum of this white powder was measured and found to be 1620, 1520, 1300,
Absorption was observed at 880 (cm -1 ). From these facts, the obtained white powder shows the desired N-triphenylsilyl-N-phenyl-1-naphthylamine [Fig.
Silanamine derivative shown in (1); melting point 176 ° C. Below S
It is abbreviated as N-1. ] (Yield 31
%).

【0026】実施例2(シラナミン誘導体の製造) N−フェニル−1−ナフチルアミンに代えてN−フェニ
ル−2−ナフチルアミン[図3(2)に示すアミン;東
京化成(株)製]3.06g(14.0m mol)を用
い、このアミンとトリフェニルクロロシラン[図4
(1)に示すハロゲン化シラン;信越化学(株)製]
4.28g(14.5m mol)とを実施例1と同様にし
て反応させた。反応終了後、反応生成物を実施例1と同
様にして精製して、1.26gの白色粉末を得た。
Example 2 (Production of Silanamine Derivative) N-phenyl-2-naphthylamine [amine shown in FIG. 3 (2); manufactured by Tokyo Kasei Co., Ltd.] 3.06 g (instead of N-phenyl-1-naphthylamine) 14.0mmol) and the amine and triphenylchlorosilane [Fig.
Halogenated silane shown in (1); manufactured by Shin-Etsu Chemical Co., Ltd.]
4.28 g (14.5 mmol) was reacted in the same manner as in Example 1. After completion of the reaction, the reaction product was purified in the same manner as in Example 1 to obtain 1.26 g of white powder.

【0027】この白色粉末のFD−Massを測定した
ところ、C3427NSi=477に対して477の親ピ
ークが得られた。また、この白色粉末のIRスペクトル
を測定したところ、1620,1520,1300,8
60(cm-1)に吸収が観測された。これらのことか
ら、得られた白色粉末は、目的とするN−トリフェニル
シリル−N−フェニル−2−ナフチルアミン[図1
(2)に示すシラナミン誘導体;融点201℃。以下S
N−2と略記する。]であると同定された(収率19
%)。
When the FD-Mass of this white powder was measured, a parent peak of 477 was obtained for C 34 H 27 NSi = 477. The IR spectrum of this white powder was measured and found to be 1620, 1520, 1300, 8
Absorption was observed at 60 (cm -1 ). From these facts, the obtained white powder shows that the target N-triphenylsilyl-N-phenyl-2-naphthylamine [Fig.
Silanamine derivative shown in (2); melting point 201 ° C. Below S
Abbreviated as N-2. ] Was identified (yield 19
%).

【0028】実施例3(シラナミン誘導体の製造) (1)原料のアミンの製造 まず、1−アミノピレリン4.22g(19.4m mo
l)と無水酢酸5ml(49m mol)とを100mlの
塩化メチレンに溶解させて室温で12時間反応させた
後、反応液から4.73gの1−アセチルアミノピレン
を濾別した。次いで、得られた1−アセチルアミノピレ
ンの4.04g(15.6m mol)と、8.55g(4
1.9m mol)のヨードベンゼン、7.30g(52.
9mmol)の無水炭酸カリウム、および0.05gの銅
粉を200mlのDMSOに懸濁させ、アルゴンガス雰
囲気下、190℃で5時間反応させた。この後、4gの
水酸化カリウムを20mlの水に溶解させたものを加え
て、さらに5時間反応させた。反応終了後、反応液を濾
過し、母液中の反応性生物を酢酸エチルで抽出し、無水
硫酸マグネシウムで乾燥した後にロータリーエバポレー
ターで溶媒を留去し、残渣を、シリカゲルを担持したカ
ラムクロマトグラフィーにより精製して、2.52gの
N−1−ピレニル−アニリン[図3(3)に示すアミ
ン]を得た。
Example 3 (Production of Silanamine Derivative) (1) Production of Raw Material Amine First, 4.22 g (19.4 mmo) of 1-aminopyrelin.
l) and 5 ml (49 mmol) of acetic anhydride were dissolved in 100 ml of methylene chloride and reacted at room temperature for 12 hours, and then 4.73 g of 1-acetylaminopyrene was filtered off from the reaction solution. Then, 4.04 g (15.6 mmol) of the obtained 1-acetylaminopyrene and 8.55 g (4
1.9 mmol of iodobenzene, 7.30 g (52.
Anhydrous potassium carbonate (9 mmol) and 0.05 g of copper powder were suspended in 200 ml of DMSO and reacted at 190 ° C. for 5 hours under an argon gas atmosphere. After this, 4 g of potassium hydroxide dissolved in 20 ml of water was added, and the reaction was further continued for 5 hours. After completion of the reaction, the reaction solution was filtered, the reaction product in the mother liquor was extracted with ethyl acetate, dried over anhydrous magnesium sulfate and the solvent was distilled off with a rotary evaporator, and the residue was subjected to silica gel-supported column chromatography. Purification yielded 2.52 g of N-1-pyrenyl-aniline [amine shown in FIG. 3 (3)].

【0029】(2)シラナミン誘導体の製造 まず、上記(1)で得られたN−1−ピレニル−アニリ
ンの1.00g(3.41m mol)と、トリフェニルク
ロロシラン[図4(1)に示すハロゲン化シラン;信越
化学(株)製]1.21g(4.10m mol)とを、実
施例1と同様に反応させた。このとき、塩基としてはn
−ブチルリチウムのヘキサン溶液(アルドリッチ社製)
5ml(約8m mol)を用いた。反応終了後、反応生成
物を実施例1と同様にして精製して、0.12gの白色
粉末を得た。
(2) Production of Silanamine Derivative First, 1.00 g (3.41 mmol) of N-1-pyrenyl-aniline obtained in (1) above and triphenylchlorosilane [shown in FIG. 4 (1)]. Halogenated silane; manufactured by Shin-Etsu Chemical Co., Ltd.] 1.21 g (4.10 mmol) was reacted in the same manner as in Example 1. At this time, the base is n
-Butyl lithium hexane solution (Aldrich)
5 ml (about 8 mmol) was used. After completion of the reaction, the reaction product was purified in the same manner as in Example 1 to obtain 0.12 g of white powder.

【0030】この白色粉末のFD−Massを測定した
ところ、C4029NSi=551に対して551の親ピ
ークが得られた。また、この白色粉末のIRスペクトル
を測定したところ、1620,1520,1300,8
60(cm-1)に吸収が観測された。これらのことか
ら、得られた白色粉末は、目的とするN−トリフェニル
シリル−N−1−ピレニル−アニリン[図1(3)に示
すシラナミン誘導体;融点263℃。以下SN−3と略
記する。]であると同定された(収率6%)。
When FD-Mass of this white powder was measured, a parent peak of 551 was obtained for C 40 H 29 NSi = 551. The IR spectrum of this white powder was measured and found to be 1620, 1520, 1300, 8
Absorption was observed at 60 (cm -1 ). From these facts, the obtained white powder was the target N-triphenylsilyl-N-1-pyrenyl-aniline [silanamine derivative shown in FIG. 1 (3); melting point 263 ° C. Hereinafter referred to as SN-3. ] Was identified (yield 6%).

【0031】実施例4(シラナミン誘導体の製造) N−フェニル−1−ナフチルアミンに代えてN,N−ジ
−2−ピリジルアミン[図3(4)に示すアミン;東京
化成(株)製]5.03g(29.4m mol)を用い、
このアミンとトリフェニルクロロシラン[図4(1)に
示すハロゲン化シラン;信越化学(株)製]8.98g
(30.4m mol)とを実施例1と同様にして反応させ
た。このとき、塩基としてはn−ブチルリチウムのヘキ
サン溶液(アルドリッチ社製)20ml(約32m mo
l)を用いた。反応終了後、反応生成物を実施例1と同
様にして精製して、1.43gの白色粉末を得た。
Example 4 (Production of Silanamine Derivative) N, N-di-2-pyridylamine [amine shown in FIG. 3 (4); manufactured by Tokyo Kasei Co., Ltd.] 5 in place of N-phenyl-1-naphthylamine Using 0.03 g (29.4 mmol),
8.98 g of this amine and triphenylchlorosilane [halogenated silane shown in FIG. 4 (1); manufactured by Shin-Etsu Chemical Co., Ltd.]
(30.4 mmol) was reacted in the same manner as in Example 1. At this time, as a base, 20 ml of a hexane solution of n-butyllithium (manufactured by Aldrich) (about 32 mmo)
l) was used. After completion of the reaction, the reaction product was purified in the same manner as in Example 1 to obtain 1.43 g of white powder.

【0032】この白色粉末のFD−Massを測定した
ところ、C28233 Si=429に対して429の親
ピークが得られた。また、この白色粉末のIRスペクト
ルを測定したところ、1620,1520,1300,
860(cm-1)に吸収が観測された。これらのことか
ら、得られた白色粉末は、目的とするN−トリフェニル
シリル−N,N−ジ−2−ピリジルアミン[図1(4)
に示すシラナミン誘導体;融点145℃。以下SN−4
と略記する。]であると同定された(収率11%)。
When the FD-Mass of this white powder was measured, a parent peak of 429 was obtained for C 28 H 23 N 3 Si = 429. The IR spectrum of this white powder was measured and found to be 1620, 1520, 1300,
Absorption was observed at 860 (cm -1 ). From these things, the obtained white powder is the target N-triphenylsilyl-N, N-di-2-pyridylamine [Figure 1 (4)
Silanamin derivative shown in the table; melting point 145 ° C. Below SN-4
Is abbreviated. ] Was identified (yield 11%).

【0033】比較例1(アミン系材料の製造) 22.5g(0.08 mol)の4,4′−ジ−t−ブチ
ルジフェニルアミン、32.6g(0.16 mol)のヨ
ードベンゼン、16.6g(0.12 mol)の無水炭酸
カリウム、および0.5g(8m mol)の銅粉を混合
し、DMSOを溶媒にして5時間反応させた。このと
き、反応温度としては200〜230℃という高温を要
した。反応終了後、200mlのトルエンを加えたとこ
ろ、反応生成物は溶解したが無機塩が固形物として残っ
たため、実施例1〜実施例4の場合と異なり精製が困難
であった。また、銅塩の廃液の処理を必要とした。
Comparative Example 1 (Production of amine material) 22.5 g (0.08 mol) of 4,4'-di-t-butyldiphenylamine, 32.6 g (0.16 mol) of iodobenzene, 16. 6 g (0.12 mol) of anhydrous potassium carbonate and 0.5 g (8 mmol) of copper powder were mixed and reacted with DMSO as a solvent for 5 hours. At this time, a high temperature of 200 to 230 ° C. was required as the reaction temperature. When 200 ml of toluene was added after the completion of the reaction, the reaction product was dissolved, but the inorganic salt remained as a solid substance, so that purification was difficult unlike in the cases of Examples 1 to 4. It also required treatment of copper salt effluent.

【0034】イオン化ポテンシャルの測定 実施例1〜実施例4で得られた各シラナミン誘導体のイ
オン化ポテンシャルを、理研計器社製の表面分析装置A
C−1(商品名)により測定した。また、比較として、
アミン系材料の一つであるTPD[N,N′−ビス−
(m−トリル)−N,N′−ジフェニル−4,4′−ジ
アミノ−1,1′−ビフェニル]のイオン化ポテンシャ
ルを同様にして測定した。これらの結果を表1に示す。
Measurement of Ionization Potential The ionization potential of each of the silanamin derivatives obtained in Examples 1 to 4 was measured by the surface analyzer A manufactured by Riken Keiki Co., Ltd.
It was measured by C-1 (trade name). Also, as a comparison,
One of the amine-based materials, TPD [N, N'-bis-
The ionization potential of (m-tolyl) -N, N'-diphenyl-4,4'-diamino-1,1'-biphenyl] was similarly measured. The results are shown in Table 1.

【0035】[0035]

【表1】 [Table 1]

【0036】表1から明らかなように、実施例1〜実施
例4で得られた各シラナミン誘導体のイオン化ポテンシ
ャルは5.7〜5.9eVであり、この値はTPDのイ
オン化ポテンシャル5.4eVよりも大きい。このこと
から、各シラナミン誘導体はTPDよりも酸化されにく
いことがわかる。
As is apparent from Table 1, the ionization potentials of the respective silanamine derivatives obtained in Examples 1 to 4 are 5.7 to 5.9 eV, and this value is based on the ionization potential of TPD of 5.4 eV. Is also big. From this, it is understood that each silanamin derivative is less likely to be oxidized than TPD.

【0037】また、UV−ランプを用いて空気中で紫外
線を照射すると、TPDは酸化されて着色するが、実施
例1〜実施例4で得られた各シラナミン誘導体は着色せ
ずに白色のままである。このことは、各シラナミン誘導
体がTPDよりも酸化されにくいことを示唆している。
Further, when UV light is irradiated in the air using a UV-lamp, TPD is oxidized and colored, but the respective silanamine derivatives obtained in Examples 1 to 4 remain white without coloring. Is. This suggests that each silanamin derivative is less susceptible to oxidation than TPD.

【0038】応用例1(有機EL素子の製造) まず、膜厚100nmのITO透明電極を成膜してある
ガラス基板(25mm×1.1mm:ホーヤ(株)製)
をイソプロピルアルコールで30分間超音波洗浄し、さ
らに浸漬して洗浄した。そして、洗浄後のガラス基板を
乾燥窒素ガスで乾燥し、市販の真空蒸着装置の基板ホル
ダーに固定した。また、モリブデン製抵抗加熱ボートに
SN−1(N−トリフェニルシリル−N−フェニル−1
−ナフチルアミン;実施例1で得られたシラナミン誘導
体)200mgを入れ、別のモリブデン製抵抗加熱ボー
トに4,4−ビス[2,2−フェニルビニル]ビフェニ
ル(以下DPVBiと略記する)200mgを入れ、さ
らに別のモリブデン製抵抗加熱ボートにトリス(8−ヒ
ドロキシ)アルミニウム(以下Alqと略記する)20
0mgを入れ、これらの抵抗加熱ボートを上記の真空蒸
着装置に取付けた。
Application Example 1 (Production of Organic EL Element) First, a glass substrate (25 mm × 1.1 mm: manufactured by Hoya Co., Ltd.) on which an ITO transparent electrode having a film thickness of 100 nm is formed.
Was ultrasonically cleaned with isopropyl alcohol for 30 minutes and further immersed for cleaning. Then, the washed glass substrate was dried with dry nitrogen gas and fixed to a substrate holder of a commercially available vacuum vapor deposition device. In addition, SN-1 (N-triphenylsilyl-N-phenyl-1) was added to the resistance heating boat made of molybdenum.
-Naphthylamine; 200 mg of the silanamine derivative obtained in Example 1), and 200 mg of 4,4-bis [2,2-phenylvinyl] biphenyl (hereinafter abbreviated as DPVBi) was placed in another molybdenum resistance heating boat. In another resistance heating boat made of molybdenum, tris (8-hydroxy) aluminum (hereinafter abbreviated as Alq) 20 was added.
0 mg was put in, and these resistance heating boats were attached to the above vacuum deposition apparatus.

【0039】次いで、真空槽を4×10-4Paまで減圧
した後、SN−1の入った前記抵抗加熱ボートに通電し
て加熱し、蒸着速度0.1〜0.7nm/秒でITO透
明電極上にSN−1を蒸着して、膜厚60nmの正孔輸
送層を設けた。次に、DPVBiの入った前記抵抗加熱
ボートに通電して加熱し、蒸着速度0.1〜0.3nm
/秒で上記正孔輸送層上にDPVBiを蒸着して、膜厚
40nmの発光層を設けた。さらに、Alqの入った前
記抵抗加熱ボートに通電して加熱し、蒸着速度0.1n
m/秒で上記発光層上にAlqを蒸着して、膜厚20n
mの電子注入層(付着改善層)を設けた。なお、正孔輸
送層、発光層および電子注入層を設ける際の基板温度は
いずれも室温であった。
Then, the vacuum chamber was decompressed to 4 × 10 -4 Pa, and the resistance heating boat containing SN-1 was energized to heat it, and the ITO transparent at a deposition rate of 0.1 to 0.7 nm / sec. SN-1 was vapor-deposited on the electrode to provide a hole transport layer having a film thickness of 60 nm. Next, the resistance heating boat containing DPVBi is energized and heated, and the deposition rate is 0.1 to 0.3 nm.
DPVBi was vapor-deposited on the hole-transporting layer at a rate of 1 / sec to form a light-emitting layer having a thickness of 40 nm. Further, the resistance heating boat containing Alq is energized and heated to a vapor deposition rate of 0.1 n.
Alq is vapor-deposited on the above light emitting layer at a rate of
m electron injection layer (adhesion improving layer) was provided. The substrate temperature at the time of providing the hole transport layer, the light emitting layer and the electron injection layer was room temperature.

【0040】次に、真空槽を開けて電子注入層上にステ
ンレス鋼製のマスクを設置した。また、マグネシウム3
gを入れたモリブデン製抵抗加熱ボートと、銀500m
gを入れたタングステン製フィラメントとを、真空蒸着
装置に取付けた。この後、再度真空槽を2×10-4Pa
まで減圧してから、マグネシウムの入った前記抵抗加熱
ボートに通電して加熱し、蒸着速度2〜3nm/秒で上
記電子注入層上にマグネシウムを蒸着すると同時に、銀
を入れた前記フィラメントを加熱して蒸着速度0.1〜
0.2nm/秒で上記電子注入層上に銀を蒸着して、I
TO透明電極に対する対向電極としてマグネシウムと銀
との合金からなる電極を設けた。これにより、目的とす
る有機EL素子が得られた。
Next, the vacuum chamber was opened and a mask made of stainless steel was placed on the electron injection layer. Also, magnesium 3
Molybdenum resistance heating boat containing g and silver 500m
The tungsten filament containing g was attached to a vacuum vapor deposition apparatus. After this, the vacuum chamber is again set to 2 × 10 −4 Pa.
Then, the resistance heating boat containing magnesium is energized and heated, and magnesium is vapor-deposited on the electron injection layer at a vapor deposition rate of 2 to 3 nm / sec. At the same time, the filament containing silver is heated. Vapor deposition rate 0.1
Evaporating silver on the electron injection layer at 0.2 nm / sec, I
An electrode made of an alloy of magnesium and silver was provided as a counter electrode for the TO transparent electrode. As a result, the intended organic EL device was obtained.

【0041】この有機EL素子について、ITO透明電
極を陽極にしマグネシウムと銀との合金からなる対向電
極を陰極として直流19Vの電圧を印加したところ、電
流密度27.5mA/cm2 で電流が流れ、輝度400
cd/m2 の青色発光が得られた。
When a voltage of DC 19 V was applied to this organic EL device with the ITO transparent electrode as the anode and the counter electrode made of an alloy of magnesium and silver as the cathode, a current flowed at a current density of 27.5 mA / cm 2 . Brightness 400
A blue emission of cd / m 2 was obtained.

【0042】薄膜維持能の評価 NA(開口数)40材であるガラス基板上にITO膜を
100nmの厚さで成膜したものについて応用例1と同
様にして超音波洗浄および乾燥を行った後、応用例1と
同様にして、ITO膜上に膜厚60nmのSN−1層を
設けた。このものを1ヶ月間空気中にさらした後、再結
晶化によるSN−1層の破壊の有無を光学顕微鏡により
観察した。この結果、再結晶化によるSN−1層の破壊
は光学顕微鏡下では認められなかった。このことから、
SN−1の薄膜は再結晶化を起こしにくく、良好な薄膜
維持能を有していることがわかる。一方、同様の試験を
TPDについて行ったところ、1ヶ月後には光学顕微鏡
下で認められる再結晶化が生じていた。このことから、
TPDの薄膜はSN−1の薄膜よりも再結晶化を起こし
易く、TPDの薄膜維持能はSN−1よりも劣っている
ことがわかる。
Evaluation of Thin Film Maintainability A glass substrate having a NA (numerical aperture) of 40 and an ITO film having a thickness of 100 nm was subjected to ultrasonic cleaning and drying in the same manner as in Application Example 1. A SN-1 layer having a film thickness of 60 nm was provided on the ITO film in the same manner as in Application Example 1. After exposing this to air for one month, the presence or absence of destruction of the SN-1 layer due to recrystallization was observed with an optical microscope. As a result, destruction of the SN-1 layer due to recrystallization was not observed under an optical microscope. From this,
It can be seen that the thin film of SN-1 does not easily recrystallize and has a good thin film maintaining ability. On the other hand, when a similar test was conducted on TPD, recrystallization observed under an optical microscope had occurred after one month. From this,
It can be seen that the thin film of TPD is more likely to cause recrystallization than the thin film of SN-1, and the thin film maintaining ability of TPD is inferior to that of SN-1.

【0043】[0043]

【発明の効果】以上説明したように、本発明のシラナミ
ン誘導体は酸化されにくいとともに、薄膜とした場合で
も再結晶化を起こしにくい。したがって、本発明によれ
ば酸化に強いとともに薄膜維持能の高い正孔輸送層等を
提供することが可能になる。
As described above, the silanamin derivative of the present invention is hard to be oxidized and is hard to be recrystallized even when formed into a thin film. Therefore, according to the present invention, it is possible to provide a hole transport layer or the like that is strong against oxidation and has a high ability to maintain a thin film.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のシラナミン誘導体の具体例を示す構造
式である。
FIG. 1 is a structural formula showing a specific example of the silanamin derivative of the present invention.

【図2】本発明のシラナミン誘導体の他の具体例を示す
構造式である。
FIG. 2 is a structural formula showing another specific example of the silanamin derivative of the present invention.

【図3】本発明の方法で用いるアミンの具体例を示す構
造式である。
FIG. 3 is a structural formula showing a specific example of an amine used in the method of the present invention.

【図4】本発明の方法で用いるハロゲン化シランの具体
例を示す構造式である。
FIG. 4 is a structural formula showing a specific example of a halogenated silane used in the method of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一般式(I) 【化1】 (式中、Ar1 は炭素数6〜20のアリール基または炭
素数3〜10の複素芳香環基であり、これらの基にはア
ルキル基またはフェニル基が核置換されていてもよい。
Ar2 は炭素数7〜20のアリール基または炭素数3〜
10の複素芳香環基であり、これらの基にはアルキル基
またはフェニル基が核置換されていてもよい。Ar3
炭素数6〜20のアリール基であり、この基にはアルキ
ル基が核置換されていてもよい。)で表されるシラナミ
ン誘導体。
1. A compound represented by the general formula (I): (In the formula, Ar 1 is an aryl group having 6 to 20 carbon atoms or a heteroaromatic group having 3 to 10 carbon atoms, and these groups may be substituted with an alkyl group or a phenyl group as a nucleus.
Ar 2 is an aryl group having 7 to 20 carbon atoms or 3 to 3 carbon atoms.
10 heteroaromatic ring groups, which may be nucleus-substituted with an alkyl group or a phenyl group. Ar 3 is an aryl group having 6 to 20 carbon atoms, and an alkyl group may be nucleus-substituted in this group. ) A silanamine derivative represented by.
【請求項2】 一般式(II) 【化2】 (式中、Ar1 は炭素数6〜20のアリール基または炭
素数3〜10の複素芳香環基であり、これらの基にはア
ルキル基またはフェニル基が核置換されていてもよい。
Ar2 は炭素数7〜20のアリール基または炭素数3〜
10の複素芳香環基であり、これらの基にはアルキル基
またはフェニル基が核置換されていてもよい。)で表さ
れるアミンと、一般式(III) 【化3】 (式中、Ar3 は炭素数6〜20のアリール基であり、
この基にはアルキル基が核置換されていてもよい。)で
表されるハロゲン化シランとを縮合反応させることを特
徴とする、請求項1に記載のシラナミン誘導体の製造方
法。
2. A compound represented by the general formula (II): (In the formula, Ar 1 is an aryl group having 6 to 20 carbon atoms or a heteroaromatic group having 3 to 10 carbon atoms, and these groups may be substituted with an alkyl group or a phenyl group as a nucleus.
Ar 2 is an aryl group having 7 to 20 carbon atoms or 3 to 3 carbon atoms.
10 heteroaromatic ring groups, which may be nucleus-substituted with an alkyl group or a phenyl group. ) And an amine represented by the general formula (III): (In the formula, Ar 3 is an aryl group having 6 to 20 carbon atoms,
An alkyl group may be nucleus-substituted in this group. The method for producing a silanamine derivative according to claim 1, wherein the halogenated silane represented by the formula (1) is subjected to a condensation reaction.
【請求項3】 請求項1に記載のシラナミン誘導体から
なることを特徴とする正孔輸送材料。
3. A hole transport material comprising the silanamin derivative according to claim 1.
【請求項4】 陽極と発光層との間に正孔輸送層が介在
している有機エレクトロルミネッセンス素子において、 前記正孔輸送層が、請求項1に記載のシラナミン誘導体
からなることを特徴とする有機エレクトロルミネッセン
ス素子。
4. An organic electroluminescence device having a hole transport layer interposed between an anode and a light emitting layer, wherein the hole transport layer is composed of the silanamin derivative according to claim 1. Organic electroluminescent device.
JP5078344A 1993-04-05 1993-04-05 Silanamine derivative and its production Withdrawn JPH06293778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5078344A JPH06293778A (en) 1993-04-05 1993-04-05 Silanamine derivative and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5078344A JPH06293778A (en) 1993-04-05 1993-04-05 Silanamine derivative and its production

Publications (1)

Publication Number Publication Date
JPH06293778A true JPH06293778A (en) 1994-10-21

Family

ID=13659376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5078344A Withdrawn JPH06293778A (en) 1993-04-05 1993-04-05 Silanamine derivative and its production

Country Status (1)

Country Link
JP (1) JPH06293778A (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0786924A1 (en) * 1996-01-24 1997-07-30 Sumitomo Chemical Company, Limited Organic electroluminescence device
US6013384A (en) * 1997-01-27 2000-01-11 Junji Kido Organic electroluminescent devices
US6396209B1 (en) 1998-12-16 2002-05-28 International Manufacturing And Engineering Services Co., Ltd. Organic electroluminescent device
US6423429B2 (en) 1998-03-02 2002-07-23 Junji Kido Organic electroluminescent devices
US6459199B1 (en) 1996-05-15 2002-10-01 Chemipro Kasei Kaisha, Limited Multicolor organic EL element having plurality of organic dyes, method of manufacturing the same, and display using the same
US6589673B1 (en) 1999-09-29 2003-07-08 Junji Kido Organic electroluminescent device, group of organic electroluminescent devices
WO2003084969A1 (en) * 2002-03-29 2003-10-16 Advanced Technology Materials, Inc. Silicon source reagent compositions, and method of making and using same for microelectronic device structure
US7326473B2 (en) 1998-02-17 2008-02-05 Junji Kido Organic electroluminescent devices
WO2013058505A2 (en) 2011-10-17 2013-04-25 주식회사 엘지화학 Substrate for organic electronic device
WO2013141673A1 (en) 2012-03-23 2013-09-26 주식회사 엘지화학 Method for producing a substrate for organic electronic devices
WO2013141675A1 (en) 2012-03-23 2013-09-26 주식회사 엘지화학 Organic light-emitting element
WO2013141674A1 (en) 2012-03-23 2013-09-26 주식회사 엘지화학 Organic light-emitting element
WO2013147573A1 (en) 2012-03-30 2013-10-03 주식회사 엘지화학 Substrate for organic electronic device
WO2013147571A1 (en) 2012-03-30 2013-10-03 주식회사 엘지화학 Substrate for organic electronic device
WO2013147570A1 (en) 2012-03-30 2013-10-03 주식회사 엘지화학 Substrate for organic electronic device
WO2013147572A1 (en) 2012-03-30 2013-10-03 주식회사 엘지화학 Substrate for organic electronic device
WO2014021642A1 (en) 2012-07-31 2014-02-06 주식회사 엘지화학 Substrate for organic electronic device
WO2014021644A1 (en) 2012-07-31 2014-02-06 주식회사 엘지화학 Substrate for organic electronic device
WO2014021643A1 (en) 2012-07-31 2014-02-06 주식회사 엘지화학 Substrate for organic electronic device
WO2014084699A1 (en) 2012-11-30 2014-06-05 주식회사 엘지화학 Substrate for organic electronic element
WO2014084701A1 (en) 2012-11-30 2014-06-05 주식회사 엘지화학 Substrate for organic electronic element
WO2015047041A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Substrate for organic electronic device
WO2015047036A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Substrate for organic electronic devices and production method therefor
WO2015047049A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Organic electronic device
WO2015047044A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Method for manufacturing organic electronic device
WO2015047055A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Substrate for organic electronic device
WO2015047053A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Method for manufacturing organic electronic device
WO2015047037A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Substrate for organic electronic device and method for manufacturing same
US9012876B2 (en) 2010-03-26 2015-04-21 Entegris, Inc. Germanium antimony telluride materials and devices incorporating same
WO2015084073A1 (en) 2013-12-04 2015-06-11 주식회사 엘지화학 Method for manufacturing substrate for organic electronic device
US9190609B2 (en) 2010-05-21 2015-11-17 Entegris, Inc. Germanium antimony telluride materials and devices incorporating same
US9203046B2 (en) 2003-10-17 2015-12-01 Junji Kido Organic electroluminescent device and production process thereof
US9640757B2 (en) 2012-10-30 2017-05-02 Entegris, Inc. Double self-aligned phase change memory device structure

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0786924A1 (en) * 1996-01-24 1997-07-30 Sumitomo Chemical Company, Limited Organic electroluminescence device
US6459199B1 (en) 1996-05-15 2002-10-01 Chemipro Kasei Kaisha, Limited Multicolor organic EL element having plurality of organic dyes, method of manufacturing the same, and display using the same
US6013384A (en) * 1997-01-27 2000-01-11 Junji Kido Organic electroluminescent devices
US7326473B2 (en) 1998-02-17 2008-02-05 Junji Kido Organic electroluminescent devices
US6423429B2 (en) 1998-03-02 2002-07-23 Junji Kido Organic electroluminescent devices
US6396209B1 (en) 1998-12-16 2002-05-28 International Manufacturing And Engineering Services Co., Ltd. Organic electroluminescent device
US6589673B1 (en) 1999-09-29 2003-07-08 Junji Kido Organic electroluminescent device, group of organic electroluminescent devices
US7084080B2 (en) 2001-03-30 2006-08-01 Advanced Technology Materials, Inc. Silicon source reagent compositions, and method of making and using same for microelectronic device structure
WO2003084969A1 (en) * 2002-03-29 2003-10-16 Advanced Technology Materials, Inc. Silicon source reagent compositions, and method of making and using same for microelectronic device structure
US9203046B2 (en) 2003-10-17 2015-12-01 Junji Kido Organic electroluminescent device and production process thereof
US9012876B2 (en) 2010-03-26 2015-04-21 Entegris, Inc. Germanium antimony telluride materials and devices incorporating same
US9190609B2 (en) 2010-05-21 2015-11-17 Entegris, Inc. Germanium antimony telluride materials and devices incorporating same
WO2013058505A2 (en) 2011-10-17 2013-04-25 주식회사 엘지화학 Substrate for organic electronic device
WO2013141677A1 (en) 2012-03-23 2013-09-26 주식회사 엘지화학 Substrate for organic electronic device
WO2013141675A1 (en) 2012-03-23 2013-09-26 주식회사 엘지화학 Organic light-emitting element
WO2013141678A1 (en) 2012-03-23 2013-09-26 주식회사 엘지화학 Substrate for organic electronic device
WO2013141674A1 (en) 2012-03-23 2013-09-26 주식회사 엘지화학 Organic light-emitting element
WO2013141676A1 (en) 2012-03-23 2013-09-26 주식회사 엘지화학 Substrate for organic electronic device
WO2013141673A1 (en) 2012-03-23 2013-09-26 주식회사 엘지화학 Method for producing a substrate for organic electronic devices
WO2013141679A1 (en) 2012-03-23 2013-09-26 주식회사 엘지화학 Substrate for organic electronic device
WO2013147573A1 (en) 2012-03-30 2013-10-03 주식회사 엘지화학 Substrate for organic electronic device
WO2013147571A1 (en) 2012-03-30 2013-10-03 주식회사 엘지화학 Substrate for organic electronic device
WO2013147570A1 (en) 2012-03-30 2013-10-03 주식회사 엘지화학 Substrate for organic electronic device
WO2013147572A1 (en) 2012-03-30 2013-10-03 주식회사 엘지화학 Substrate for organic electronic device
US9391301B2 (en) 2012-07-31 2016-07-12 Lg Chem, Ltd. Substrate for organic electronic device
WO2014021643A1 (en) 2012-07-31 2014-02-06 주식회사 엘지화학 Substrate for organic electronic device
WO2014021642A1 (en) 2012-07-31 2014-02-06 주식회사 엘지화학 Substrate for organic electronic device
US9373820B2 (en) 2012-07-31 2016-06-21 Lg Chem, Ltd. Substrate for organic electronic device
WO2014021644A1 (en) 2012-07-31 2014-02-06 주식회사 엘지화학 Substrate for organic electronic device
US9640757B2 (en) 2012-10-30 2017-05-02 Entegris, Inc. Double self-aligned phase change memory device structure
WO2014084699A1 (en) 2012-11-30 2014-06-05 주식회사 엘지화학 Substrate for organic electronic element
US9768398B2 (en) 2012-11-30 2017-09-19 Lg Chem, Ltd. Substrate for organic electronic device
WO2014084701A1 (en) 2012-11-30 2014-06-05 주식회사 엘지화학 Substrate for organic electronic element
US9761832B2 (en) 2013-09-30 2017-09-12 Lg Display Co., Ltd. Substrate for organic electronic device
WO2015047044A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Method for manufacturing organic electronic device
WO2015047049A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Organic electronic device
WO2015047036A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Substrate for organic electronic devices and production method therefor
WO2015047041A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Substrate for organic electronic device
US9570705B2 (en) 2013-09-30 2017-02-14 Lg Display Co., Ltd. Method of manufacturing organic electronic device
WO2015047037A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Substrate for organic electronic device and method for manufacturing same
US9755188B2 (en) 2013-09-30 2017-09-05 Lg Display Co., Ltd. Organic electronic device
WO2015047055A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Substrate for organic electronic device
WO2015047053A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Method for manufacturing organic electronic device
US10079351B2 (en) 2013-09-30 2018-09-18 Lg Display Co., Ltd. Method of preparing organic electronic device
US10950808B2 (en) 2013-09-30 2021-03-16 Lg Display Co., Ltd. Method of preparing organic electronic device
WO2015084073A1 (en) 2013-12-04 2015-06-11 주식회사 엘지화학 Method for manufacturing substrate for organic electronic device

Similar Documents

Publication Publication Date Title
JPH06293778A (en) Silanamine derivative and its production
US6657084B2 (en) Arylamine compound and organic electroluminescence device
JP3874782B2 (en) Method for producing 4,4&#39;-biphenylenediamine derivative
JP3649302B2 (en) Organic electroluminescence device
JPH0649079A (en) Silanamine derivative, its production and el element using the same silanamine derivative
US7122256B2 (en) Styryl compound and organic electroluminescence device
JPH11329737A (en) Organic multilayer type electroluminescent element and synthesizing method of structure body for organic multilayer type electroluminescent element
JPH07126226A (en) Benzidine compound
JPH07126225A (en) Tetraphenylbenzidine compound
JP2002235077A (en) Organic el material and organic el element using the same
JPH0625659A (en) Phosphamine derivative, its preparation, and electroluminescent element made using the same
EP0563811A1 (en) Silanamine derivative and process for the production thereof, and organical EL device using the said silanamine derivative
JPH08333283A (en) Distyrylarylene derivative
JPH09222741A (en) Positive hole transferring material and its use
JPH0873443A (en) Pyrazine derivative, organoelectroluminescence element containing the same and production of the pyrazine derivative
JPH093342A (en) Pyrazinoquinoxaline derivative, its production, and organic electroluminescent element
JP2002020354A (en) Arylenediamine derivative
JP2003073311A (en) Aromatic methylidene compound, aromatic aldehyde compound and methylstyryl compound for producing the same, and method for producing these compounds
JP2002212114A (en) Aromatic methylidene compound, aromatic aldehyde compound and methylstyryl compound for producing the same, and method for producing the compounds
JPH09143130A (en) Amine and organic electroluminescent element
JP2006128716A (en) Organic electroluminescent element
JP2003231656A (en) Aromatic methylidene compound, methylstyryl compound for producing the same and methods for producing them
JP2002220354A (en) Aromatic methylidene compound, aromatic aldehyde compound and methylstyryl compound to produce it, and method for producing them
JP2003073310A (en) Aromatic methylidene compound, aromatic aldehyde compound and methylstyryl compound for producing the same, and method for producing these compounds
JPH08176125A (en) Oxadiazole derivative having trifluoromethyl group

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000704