JPH0629201B2 - Method for producing 1,1,1,2-tetrafluoroethane - Google Patents

Method for producing 1,1,1,2-tetrafluoroethane

Info

Publication number
JPH0629201B2
JPH0629201B2 JP63132395A JP13239588A JPH0629201B2 JP H0629201 B2 JPH0629201 B2 JP H0629201B2 JP 63132395 A JP63132395 A JP 63132395A JP 13239588 A JP13239588 A JP 13239588A JP H0629201 B2 JPH0629201 B2 JP H0629201B2
Authority
JP
Japan
Prior art keywords
freon
tetrafluoroethane
reaction
cfc
yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63132395A
Other languages
Japanese (ja)
Other versions
JPH01301630A (en
Inventor
秀樹 大塩
定治 三隈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP63132395A priority Critical patent/JPH0629201B2/en
Priority to US07/357,291 priority patent/US4996379A/en
Priority to FR8907005A priority patent/FR2631959A1/en
Priority to IT8920692A priority patent/IT1230795B/en
Priority to GB8912325A priority patent/GB2219796B/en
Priority to DE3917573A priority patent/DE3917573A1/en
Publication of JPH01301630A publication Critical patent/JPH01301630A/en
Publication of JPH0629201B2 publication Critical patent/JPH0629201B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は1,1,1,2−テトラフルオロエタン(以下
フロン134aと記す)の製造方法に関するものであ
る。
TECHNICAL FIELD The present invention relates to a method for producing 1,1,1,2-tetrafluoroethane (hereinafter referred to as Freon 134a).

フロン134aは冷媒として有用な化合物である。Freon 134a is a compound useful as a refrigerant.

〔従来の技術〕[Conventional technology]

フロン134aの製造方法としては、1−クロロ−
2,2,2−トリフルオロエタンを酸化クロム触媒存在
下、無水フッ化水素を用いてフッ素化する方法(米国特
許第4,129,603号等)、1−クロロ−2,2,2−ト
リフロロエタンをフッ化カリウムを用いて液相下でフッ
素化する方法(米国特許第4,311,863号)、トリフル
オロエチレンをオキシフッ化クロム触媒存在下、無水フ
ッ化水素と反応させる方法(特公昭62-23728号)、
1,1−ジクロロ−1,2,2,2−テトラフルオロエ
タンを活性炭担持パラジウム触媒の存在下、水素と反応
させる方法(特公昭56-38131号)、1−クロロ−1,
2,2,2−テトラフルオロエタンを活性炭担持パラジ
ウム触媒の存在下で、水素と反応させる方法(特公昭56
-38131号)等が知られている。
As a method for producing Freon 134a, 1-chloro-
A method of fluorinating 2,2,2-trifluoroethane using anhydrous hydrogen fluoride in the presence of a chromium oxide catalyst (US Pat. No. 4,129,603, etc.), 1-chloro-2,2,2-trifluoroethane A method of fluorinating in a liquid phase using potassium fluoride (US Pat. No. 4,311,863), a method of reacting trifluoroethylene with anhydrous hydrogen fluoride in the presence of a chromium oxyfluoride catalyst (Japanese Patent Publication No. 62-23728),
Method for reacting 1,1-dichloro-1,2,2,2-tetrafluoroethane with hydrogen in the presence of a palladium catalyst supported on activated carbon (Japanese Patent Publication No. 56-38131), 1-chloro-1,
A method of reacting 2,2,2-tetrafluoroethane with hydrogen in the presence of a palladium catalyst supported on activated carbon (Japanese Patent Publication No.
-38131) etc. are known.

しかしながら、の方法は収率が約10〜30%と低いこ
と、の方法では、高温、高圧での反応であり、また塩
化カリウムが副生すること、、の方法では収率が高
い(約95〜99%)ものの原料のトリフロロエチレン、1
−クロロ−1,2,2,2−テトラフルオロエタンが高
価であることから必ずしも工業的に有利な製造法とは言
えないものである。
However, the method (1) has a low yield of about 10 to 30%, the method (2) is a reaction at high temperature and high pressure, and the method (2) produces potassium chloride as a by-product, and the method (2) has a high yield (about 95%). ~ 99%) of the raw material trifluoroethylene, 1
Since chloro-1,2,2,2-tetrafluoroethane is expensive, it cannot be said that it is an industrially advantageous production method.

また、については、フロン134aの収率は約72%で
あるものの選択率は約78%と低く、副生物である1,
1,1,−トリフルオロエタン(フロン143aと記
す。沸点−47.6℃)、フロン134aの前駆体である1
−クロロ−1,2,2,2−テトラフルオロエタン(フ
ロン124と記す。沸点−12℃)が各々約10%程度生成
する。また、原料中に異性体である1,2−ジクロロ−
1,1,2,2−テトラフルオロエタン(フロン114
と記す。)が存在すると、1,1,2,2−テトラフル
オロエタン(フロン134と記す。沸点−19.7℃)、1
−クロロ−1,1,2,2−テトラフルオロエタン(フ
ロン124aと記す。沸点−10.2℃)が副生する。通常
フロン114aは1,1,2−トリクロロ−1,2,2
−トリフルトロエタン(フロン113と記す。)、1,
1,1−トリクロロ−2,2,2−トリフルオロエタン
(フロン113aと記す。)と無水フッ化水素との反応
により工業的に製造されるが約10〜25%のフロン114
の混入は避けられない。
As for, regarding CFC 134a, the yield was about 72%, but the selectivity was about 78%, which was a by-product.
1,1, -Trifluoroethane (referred to as Freon 143a. Boiling point-47.6 ° C), a precursor of Freon 134a 1
About 10% of -chloro-1,2,2,2-tetrafluoroethane (referred to as Freon 124, boiling point -12 ° C) is produced. In addition, 1,2-dichloro- which is an isomer in the raw material
1,1,2,2-tetrafluoroethane (CFC 114
Is written. ) Is present, 1,1,2,2-tetrafluoroethane (referred to as Freon 134. Boiling point −19.7 ° C.), 1
-Chloro-1,1,2,2-tetrafluoroethane (referred to as Freon 124a, boiling point -10.2.degree. C.) is by-produced. Usually CFC 114a is 1,1,2-trichloro-1,2,2
-Triflutroethane (referred to as CFC 113), 1,
It is industrially produced by the reaction of 1,1-trichloro-2,2,2-trifluoroethane (referred to as Freon 113a) and anhydrous hydrogen fluoride, but about 10 to 25% of Freon 114 is produced.
Is inevitable.

また、反応生成物中に目的物であるフロン134a(沸
点−26.5℃)と沸点の近いフロン134、フロン12
4、フロン124aが含まれると、分離、精製上問題が
あり、フロン134aを効率よく製造することができな
い。例えば、通常の蒸留法では、フロン134aとフロ
ン124との分離、精製には約40段の蒸留塔が必要と
なり、この場合、フロン134aとフロン134、フロ
ン124とフロン124aは分離できない。このため、
フロン134aの純度およびフロン124の反応系への
再循環という点で問題が生じる。
In addition, Freon 134a and Freon 12 which have similar boiling points to Freon 134a (boiling point −26.5 ° C.), which is the target substance, in the reaction product.
4. If CFCs 124a are contained, there are problems in separation and purification, and CFCs 134a cannot be efficiently produced. For example, in the usual distillation method, about 40 stages of distillation column are required for separation and purification of Freon 134a and Freon 124, and in this case, Freon 134a and Freon 134, Freon 124 and Freon 124a cannot be separated. For this reason,
Problems arise with respect to the purity of freon 134a and the recycling of freon 124 to the reaction system.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、かかる従来技術の問題に鑑み、鋭意検討
の結果フロン114を含有するフロン114aを出発原
料として高選択率でフロン134aを製造できる方法を
見出したものである。すなわち本発明は1,2−ジクロ
ロ−1,1,2,2−テトラフルオロエタンを含む1,
1−ジクロロ−1,2,2,2−テトラフルオロエタン
を活性アルミナ担持パラジウム触媒の存在下、120℃か
ら200℃未満の温度範囲で水素と反応させることを特徴
とする1,1,1,2−テトラフルオロエタンの製造法
である。
In view of such problems of the prior art, the present inventors have made earnest studies and found a method capable of producing freon 134a with high selectivity using freon 114a containing freon 114 as a starting material. That is, the present invention includes 1,2-dichloro-1,1,2,2-tetrafluoroethane-containing 1,
1-dichloro-1,2,2,2-tetrafluoroethane is reacted with hydrogen in the temperature range of 120 ° C to less than 200 ° C in the presence of a palladium catalyst supported on activated alumina. This is a method for producing 2-tetrafluoroethane.

本発明において使用するフロン114a中のフロン11
4の含有率は約10〜25%の範囲が好ましい。25%以上に
なるとフロン134aの収率が低くなる。また、10%以
下のものは工業的に製造することが困難である。本発明
はフロン114を含有した原料を用いてフロン114a
の転化率を大きくするとともに、フロン114が反応し
てフロン124aおよびさらに水素化されたフロン13
4を生成することを防いで、目的のフロン134aの収
率を可及的に大きくするために、特定の温度範囲すなわ
ち120℃から200℃未満の温度範囲をとるものである。ま
た、水素化触媒としてはパラジウム触媒が好ましく、特
に活性アルミナに担持して使用する。活性炭担持触媒も
活性は十分であるが、目的のフロン134aの選択率を
高くすることができない。パラジウムの担持量は特に限
定されないが0.2〜5%の範囲が好ましい。また、原料で
あるフロン114a、フロン114で前処理し活性アル
ミナを部分的にフッ素化することにより過水素化された
フロン134aの生成量を低く抑えることができるもの
である。前処理の条件は200℃以上で20時間程度が好
ましい。ちなみに反応条件にもよるが、前処理をおこな
った触媒を用いた場合と未処理の触媒を用いた場合では
反応生成物中のフロン134aの量は前者が4〜6%で
あるのに対して後者では10%程度と約2倍である。水
素の量は原料のフロン114aとフロン114の混合物
に対してモル比で約2〜4倍の範囲が好ましく、2倍以
下では反応率が低くなり、フロン134aの収率は低下
する。また、4倍以上では反応率は変わらないが水素の
回収を考えると好ましくない。反応温度は、120℃か
ら200℃未満が好ましく120℃以下では反応率が低
くフロン134aの収量が低く好ましくない。また、2
00℃以上ではフロン124a、さらにはフロン134
の生成量が増大し、フロン134aの選択率が低くなり
好ましくない。
Freon 11 in Freon 114a used in the present invention
The content of 4 is preferably in the range of about 10 to 25%. If it exceeds 25%, the yield of Freon 134a becomes low. In addition, it is difficult to industrially produce the one having 10% or less. The present invention uses a raw material containing Freon 114 to produce Freon 114a.
The conversion rate of chlorofluorocarbon is increased and the chlorofluorocarbon 114 reacts with the chlorofluorocarbon 124a and the hydrogenated fluorocarbon 13
In order to prevent the formation of 4 and to maximize the yield of the target flon 134a, a specific temperature range, that is, a temperature range of 120 ° C. to less than 200 ° C. is adopted. As the hydrogenation catalyst, a palladium catalyst is preferable, and it is used by being supported on activated alumina. Although the activated carbon-supported catalyst has sufficient activity, it cannot increase the selectivity of the target CFC 134a. The amount of palladium supported is not particularly limited, but is preferably in the range of 0.2 to 5%. Further, the production amount of perhydrogenated Freon 134a can be suppressed to a low level by pre-treating Freon 114a as a raw material and partially fluorinating activated alumina. The pretreatment condition is preferably 200 ° C. or higher and about 20 hours. By the way, depending on the reaction conditions, the amount of Freon 134a in the reaction product is 4 to 6% in the reaction product when the pretreated catalyst is used and when the untreated catalyst is used. In the latter case, it is about 10%, which is about double. The amount of hydrogen is preferably in a range of about 2 to 4 times the molar ratio of the mixture of CFC 114a and CFC 114 as a raw material, and when the amount is less than 2 times, the reaction rate becomes low and the yield of CFC 134a decreases. Further, when the reaction rate is 4 times or more, the reaction rate does not change, but it is not preferable considering hydrogen recovery. The reaction temperature is preferably from 120 ° C. to less than 200 ° C., and when the reaction temperature is 120 ° C. or less, the reaction rate is low and the yield of Freon 134a is low, which is not preferable. Also, 2
Freon 124a, and Freon 134 above 00 ° C
Is increased, and the selectivity of Freon 134a is lowered, which is not preferable.

接触時間は5〜30秒の範囲が好ましく、5秒以下では反
応率が低く、フロン134aの収率は低下する。また、
30秒以上では触媒単位当たりのフロン134aの収率
が低下する。このようにして得られたフロン134aは
通常、公知の方法、例えば蒸留等により分離、精製する
ことができ、前駆体のフロン124は反応系に再循環さ
れる。
The contact time is preferably in the range of 5 to 30 seconds, and if the contact time is 5 seconds or less, the reaction rate is low and the yield of Freon 134a is lowered. Also,
If it is 30 seconds or longer, the yield of CFCs 134a per catalyst unit decreases. The chlorofluorocarbon 134a thus obtained can be usually separated and purified by a known method such as distillation, and the chlorofluorocarbon precursor 124 is recycled to the reaction system.

以下、本発明を実施例によりさらに具体的に説明する。Hereinafter, the present invention will be described more specifically by way of examples.

実施例1〜4 長さ30cm、内径2.5cmの耐熱ガラス反応管内に3mmφ
の球場γ−アルミナ上に担持されたパラジウム触媒(担
持量0.5または5重量%)100ccを充填し、電気炉内に配
置した。
Examples 1 to 4 3 mmφ in a heat-resistant glass reaction tube having a length of 30 cm and an inner diameter of 2.5 cm
100 cc of a palladium catalyst (supported amount: 0.5 or 5% by weight) supported on the spherical field γ-alumina of No. 1 was packed and placed in an electric furnace.

約1時間、300〜350℃の温度で水素を100cc/minの流量
で送入した後、フロン114aとフロン114の混合ガ
スで200℃、20時間前処理した。次いで所定反応温度
とし、水素とジクロロテトラフルオロエタン(フロン1
14a/フロン114=75/25重量%)を各々198cc/mi
n、66cc/minの流量で導入した(H/ジクロロテトラ
フルオロエタン=3/1モル比)。
Hydrogen was introduced at a flow rate of 100 cc / min at a temperature of 300 to 350 ° C. for about 1 hour, and then pretreated with a mixed gas of CFC 114a and CFC 114 at 200 ° C. for 20 hours. Next, the reaction temperature is set to a predetermined value, and hydrogen and dichlorotetrafluoroethane (CFC 1 are used).
14a / CFC 114 = 75/25% by weight) 198cc / mi
It was introduced at a flow rate of n, 66 cc / min (H 2 / dichlorotetrafluoroethane = 3/1 molar ratio).

反応生成物は水洗浄後、排ガス中の有機物質をガスクロ
マトグラフィーにより分析した。反応条件、結果を第1
表に示した。
After washing the reaction product with water, organic substances in the exhaust gas were analyzed by gas chromatography. First reaction conditions and results
Shown in the table.

比較例1 触媒を活性炭(2mmφ×5mmH、円柱状)上に担持され
たパラジウム触媒(担持量0.5重量%)とするほかは実
施例3と同様にして反応をおこなった。この結果を第1
表に示した。
Comparative Example 1 The reaction was carried out in the same manner as in Example 3 except that the catalyst was a palladium catalyst (loaded amount: 0.5% by weight) supported on activated carbon (2 mmφ × 5 mmH, columnar). This result is the first
Shown in the table.

比較例2、3 反応温度200℃、接触時間28秒(比較例2)、反応感度2
50℃、接触時間26秒(比較例3)とするほかは実施例1
と同様にして反応をおこなった。この結果を第1表に示
した。
Comparative Examples 2 and 3 Reaction temperature 200 ° C., contact time 28 seconds (Comparative Example 2), reaction sensitivity 2
Example 1 except that the contact time was 50 seconds and the contact time was 26 seconds (Comparative Example 3).
The reaction was carried out in the same manner as in. The results are shown in Table 1.

〔発明の効果〕 本発明においては工業的に容易に得られるフロン114
を含有するフロン114aを原料とし、反応温度を制御
することにより収率よく目的のフロン134aを得るこ
とができるものである。
[Effects of the Invention] In the present invention, CFC 114 which is industrially easily obtained
The target CFC 134a can be obtained in good yield by controlling the reaction temperature using CFC-containing CFC 114a as a raw material.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】1,2−ジクロロ−1,1,2,2−テトラフルオロ
エタンを含む1,1−ジクロロ−1,2,2,2−テトラフルオロ
エタンを活性アルミナ担持パラジウム触媒の存在下、12
0℃から200℃未満の温度範囲で水素と反応させることを
特徴とする1,1,1,2−テトラフルオロエタンの製造法。
1. 1,1-Dichloro-1,2,2,2-tetrafluoroethane containing 1,2-dichloro-1,1,2,2-tetrafluoroethane in the presence of a palladium catalyst supported on activated alumina. , 12
A process for producing 1,1,1,2-tetrafluoroethane, which comprises reacting with hydrogen in a temperature range of 0 ° C to less than 200 ° C.
JP63132395A 1988-05-30 1988-05-30 Method for producing 1,1,1,2-tetrafluoroethane Expired - Lifetime JPH0629201B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63132395A JPH0629201B2 (en) 1988-05-30 1988-05-30 Method for producing 1,1,1,2-tetrafluoroethane
US07/357,291 US4996379A (en) 1988-05-30 1989-05-26 Method of preparing 1,1,1,2-tetrafluoroethane from 1,1-dichloro-1,2,2,2-tetrafluoroethane
FR8907005A FR2631959A1 (en) 1988-05-30 1989-05-29 PROCESS FOR THE PREPARATION OF 1,1,1,2-TETRAFLUOROETHANE FROM 1,1-DICHLORO-1,2,2,2-TETRAFLUOROETHANE
IT8920692A IT1230795B (en) 1988-05-30 1989-05-30 PROCEDURE FOR PREPARING 1,1,1,2 TETRAFLUOROETHANE FROM 1,1 DICHLOR 1,2,2,2 TETRAFLUOROETHANE.
GB8912325A GB2219796B (en) 1988-05-30 1989-05-30 Method of preparing 1,1,1,2-tetrafluoroethane from 1,1-dichloro-1,2,2,2-tetrafluoroethane
DE3917573A DE3917573A1 (en) 1988-05-30 1989-05-30 METHOD FOR PRODUCING 1,1,1,2-TETRAFLUORETHANE FROM 1,1-DICHLOR-1,2,2,2-TETRAFLUORETHANE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63132395A JPH0629201B2 (en) 1988-05-30 1988-05-30 Method for producing 1,1,1,2-tetrafluoroethane

Publications (2)

Publication Number Publication Date
JPH01301630A JPH01301630A (en) 1989-12-05
JPH0629201B2 true JPH0629201B2 (en) 1994-04-20

Family

ID=15080388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63132395A Expired - Lifetime JPH0629201B2 (en) 1988-05-30 1988-05-30 Method for producing 1,1,1,2-tetrafluoroethane

Country Status (1)

Country Link
JP (1) JPH0629201B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638131A (en) * 1979-09-06 1981-04-13 Kawasaki Heavy Ind Ltd Contact method betweeen solid and liquid
US4319060A (en) * 1980-12-08 1982-03-09 Allied Chemical Corporation Process for producing 1,2-dichloro-1,1,2,2-tetrafluoroethane substantially free of 1,1-dichloro-1,2,2,2-tetrafluoroethane

Also Published As

Publication number Publication date
JPH01301630A (en) 1989-12-05

Similar Documents

Publication Publication Date Title
EP0452363B1 (en) Aluminum fluoride catalyst and use thereof in a chlorofluorination process for preparing 1,1-dichloro-1,2,2,2-tetrafluoroethane
JP4523754B2 (en) Novel process for producing 1,1,1-trifluoro-2,2-dichloroethane
US5453551A (en) Purification of pentafluoroethane
JPH05279275A (en) Production of difluoromethane
JP2947158B2 (en) Production of hexafluoroethane
EP1474370B1 (en) Processes for purification and production of fluorocarbons
US6340781B1 (en) Purification of pentafluoroethane
US5569797A (en) Method of removing olefinic impurities from hydrochlorofluorocarbons
US5679876A (en) Purification of pentafluoroethane
RU2010789C1 (en) Continuous method of 1,1-dichlorotetrafluoroethane synthesis
KR100643674B1 (en) Process for production of hydrofluorocarbons, products thereof and use of the products
JP4225736B2 (en) Method for producing fluoroethane and use thereof
JPH0629201B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
US5430205A (en) Process for the purification of 1,1,1,2-tetrafluoroethane
US7074974B2 (en) Process for the production of fluoroethane and use of the same
KR100543253B1 (en) Production and use of hexafluoroethane
JP2937539B2 (en) Purification method of chlorofluoroalkane
KR100283711B1 (en) Method for preparing hexafluoroethane
KR100265580B1 (en) Purification of 1,1,1,2-tetrafluoroethane
JP4458784B2 (en) Method for producing pentafluoroethane and use thereof
US20040242943A1 (en) Process for the production of fluoroethane and use of the produced fluoroethane
JPH0753420A (en) Method for dimerizing chlorofluorinated ethane
US5990364A (en) Purification of pentafluoroethane
EP0881946B1 (en) Process using a hydrogenation catalyst
JPH08511020A (en) Isomerization method