JPH0629134A - Thin-film transformer for high-frequency switching power supply - Google Patents

Thin-film transformer for high-frequency switching power supply

Info

Publication number
JPH0629134A
JPH0629134A JP4180181A JP18018192A JPH0629134A JP H0629134 A JPH0629134 A JP H0629134A JP 4180181 A JP4180181 A JP 4180181A JP 18018192 A JP18018192 A JP 18018192A JP H0629134 A JPH0629134 A JP H0629134A
Authority
JP
Japan
Prior art keywords
thin
substrate
film transformer
transformer
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4180181A
Other languages
Japanese (ja)
Inventor
Masato Mino
正人 三野
Toshiaki Yanai
利明 谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4180181A priority Critical patent/JPH0629134A/en
Publication of JPH0629134A publication Critical patent/JPH0629134A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Dc-Dc Converters (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

PURPOSE:To miniaturize and make compact a thin-film transformer for high-frequency switching power supply and then improve high-frequency characteristics. CONSTITUTION:An Si substrate is used for a substrate 10, MOSFETs A1 and A2 as synchronous rectification elements are produced on the substrate 10 by the semiconductor process technology, an insulation layer 12b is formed, and then a thin-film transformer 11 is produced by the thin-film forming technology. Connection edges 17h-17k of the thin-film transformer 11 and the MOSFETs A1 and A2 are connected using a through hole formed via the surface wiring and each insulation layer on the substrate 10, thus eliminating wiring with wires, drastically miniaturizing and making thin the element configuration consisting of the MOSFET and the thin-film transformer at a secondary side circuit, at the same time reducing resistance/capacitance by minimizing the wiring, and then improving high-frequency characteristics. Further, since the forward voltage drop of the MOSFET is small, efficiency can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コンバータやスイッチ
ング電源等に好適で、導電性パターンにより小形に構成
された高周波特性に優れる高周波スイッチング電源用薄
膜トランスに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film transformer for a high frequency switching power source, which is suitable for a converter, a switching power source and the like, and which has a small size by a conductive pattern and has excellent high frequency characteristics.

【0002】[0002]

【従来の技術】近年、電子機器構成部品の小形化・軽量
化の要請は厳しく、高品質な電力が得られるスイッチン
グ電源等においても小形化は必須の課題であり、スイッ
チング周波数の高周波化により、トランス,コンデンサ
等の部品を小さくすることで小形化が進められてきた。
半導体部品やコンデンサ部品では、LSIや積層セラミ
ックコンデンサに代表されるように、早くから薄膜技術
が用いられ、構成部品小形化の要請に十分応えてきた。
一方、トランス等の磁性部品はこれまでに最も小形化し
にくく、また高周波化に伴う損失増加を抑えることが難
しいため、電源の小形化を妨げる第一の原因であった。
このため、現在、高周波スイッチング電源の体積は、磁
性部品の体積によって決定されると言っても過言ではな
い。そこで近年、高周波化に対応すべく薄膜形成技術を
用いた薄膜トランスの研究が進められ、スイッチング周
波数をMHz帯域まで高めた小形電源の開発が強く望ま
れるようになった。
2. Description of the Related Art In recent years, demands for downsizing and weight reduction of electronic equipment components are strict, and downsizing is an essential issue even in switching power supplies and the like that can obtain high-quality power. Miniaturization has been promoted by making parts such as transformers and capacitors smaller.
In semiconductor components and capacitor components, thin film technology has been used for a long time, as represented by LSI and multilayer ceramic capacitors, and has sufficiently met the demand for miniaturization of component parts.
On the other hand, magnetic parts such as transformers have been the most difficult to miniaturize until now, and it has been difficult to suppress an increase in loss due to higher frequencies, which is the first cause of hindering miniaturization of power supplies.
Therefore, it is no exaggeration to say that the volume of the high-frequency switching power supply is currently determined by the volume of the magnetic component. Therefore, in recent years, research on a thin film transformer using a thin film forming technique has been advanced in order to cope with higher frequencies, and development of a small power source in which a switching frequency is increased to a MHz band has been strongly desired.

【0003】図3に従来の薄膜形成技術で作製された薄
膜トランス(例えば、T.YACHI,M.MINO,
A.TAGO,and K.YANAGISAWA,
“ANEW PLANAR MICROTRANSFO
RMER FOR USEIN MICRO−SWIT
CHING−CONVERTERS”,IEEEPES
C Rec.,pp.20−26,Jun.,199
1.)の構造模式図を示す。図中、1は基板、2は絶縁
層、3は磁性層、4は1次巻線、5は2次巻線を示して
いる。
3A and 3B show a thin film transformer manufactured by a conventional thin film forming technique (for example, T.YACHI, M.MINO,
A. TAGO, and K.K. YANAGISAWA,
"ANEW PLANAR MICROTRANSFO
RMER FOR USEIN MICRO-SWIT
CHING-CONVERTERS ", IEEEPES
C Rec. , Pp. 20-26, Jun. , 199
1. ) Shows a schematic structure diagram. In the figure, 1 is a substrate, 2 is an insulating layer, 3 is a magnetic layer, 4 is a primary winding, and 5 is a secondary winding.

【0004】従来、この種の薄膜トランス・インダクタ
の作製は、以下のように行われていた。すなわち、表面
が絶縁性であるガラスやフェライト,またはSi基板に
SiO2を堆積した基板1上に、下部導体層をスパッタ
等の薄膜形成手法で成膜し、これをパターニングして帯
状の下部導体を形成し、この上に絶縁層2をフォトレジ
スト,SiO2,SiO,Al23,ポリイミド樹脂等
で形成し、これを平坦化したのちパーマロイ,CoZr
Re等の磁性膜層をスパッタ等で形成し、パターンニン
グして長方形形状の磁性層3としたのち、この上にふた
たび絶縁層2を形成し、さらに本絶縁層2にスルーホー
ルを形成し、上部導体層形成後、パターンニングで帯状
の上部導体を形成して作製される。これら上部導体と下
部導体とは前記スルーホールを通して接続され、磁性層
3を取り巻くように1次巻線4,2次巻線5が構成さ
れ、トランスが作製される。
Conventionally, the fabrication of this type of thin film transformer / inductor has been performed as follows. That is, a lower conductor layer is formed by a thin film forming method such as sputtering on a substrate 1 having an insulating surface such as glass or ferrite, or a Si substrate on which SiO 2 is deposited, and is patterned to form a strip-shaped lower conductor. Is formed, and the insulating layer 2 is formed on it with photoresist, SiO 2 , SiO, Al 2 O 3 , polyimide resin, etc., and after flattened, permalloy, CoZr
After forming a magnetic film layer of Re or the like by sputtering or the like and patterning to form a rectangular magnetic layer 3, an insulating layer 2 is formed again on the rectangular magnetic layer 3, and a through hole is formed in the main insulating layer 2. After forming the upper conductor layer, a strip-shaped upper conductor is formed by patterning. The upper conductor and the lower conductor are connected to each other through the through hole, and the primary winding 4 and the secondary winding 5 are formed so as to surround the magnetic layer 3 to manufacture a transformer.

【0005】こうして作製された薄膜トランスやインダ
クタは、チップとして切断されて、別の基板上に回路チ
ップと同様に実装され、使用されている。特にスイッチ
ング電源の変換効率向上のために、MOSFETを整流
素子として使用する同期整流回路においては、MOSF
ETチップに並べて薄膜トランスチップを実装し、互い
の端子をワイヤボンディングおよび基板上に形成した印
刷配線によって接続して使用されている。
The thin film transformer and inductor thus produced are cut into chips and mounted on another substrate in the same manner as circuit chips and used. In particular, in order to improve the conversion efficiency of the switching power supply, in a synchronous rectification circuit that uses a MOSFET as a rectification element, a MOSF
The thin film transformer chips are mounted side by side on the ET chip, and the terminals are used by being connected by wire bonding and printed wiring formed on the substrate.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来技術による薄膜トランスの実装方法では、上記したよ
うに相互の接続にリード線あるいはボンディングワイヤ
等を使用するため、本来の小形化・薄形化の効果が十分
ではなかった。また、ワイヤ類を引き回すために、不要
な容量分やインダクタンス分が発生し高周波での特性を
損なう要因となっていた。
However, in the method of mounting a thin film transformer according to the above-mentioned prior art, since lead wires or bonding wires are used for mutual connection as described above, it is possible to reduce the size and thickness of the original device. The effect was not enough. In addition, since the wires are laid around, unnecessary capacitance and inductance are generated, which is a factor that impairs the characteristics at high frequencies.

【0007】本発明は、上記問題点を解決するためにな
されたものであり、その目的は、使用するに際し小形・
薄形化を実現し、さらに高周波特性を向上させる高周波
スイッチング電源用薄膜トランスを提供することにあ
る。
The present invention has been made in order to solve the above-mentioned problems, and its purpose is to reduce the size and
An object of the present invention is to provide a thin film transformer for a high frequency switching power supply which realizes a thin structure and further improves high frequency characteristics.

【0008】[0008]

【課題を解決するための手段】本発明の高周波スイッチ
ング電源用薄膜トランスは、同期整流用素子としてMO
SFETを作り込んだ基板上に絶縁層を介して薄膜トラ
ンスを作製し、表面配線,スルーホールを介して、上記
MOSFETと薄膜トランス相互の接続を行う構成によ
って、素子の小形化・薄形化と配線の最短化による高周
波特性の向上および順方向電圧降下の低減による高効率
化を達成するものである。
A thin film transformer for a high frequency switching power supply according to the present invention is an MO device as a synchronous rectification element.
A thin film transformer is formed on an SFET-embedded substrate through an insulating layer, and the MOSFET and the thin film transformer are connected to each other through surface wiring and through holes. It is intended to improve the high frequency characteristics by shortening the wiring and to improve the efficiency by reducing the forward voltage drop.

【0009】[0009]

【作用】本発明の高周波スイッチング電源用薄膜トラン
スは、基板としてSi,Ge等の半導体基板を使用し、
半導体プロセス技術により基板に同期整流素子などとし
てMOSFETを作り付け、絶縁層を介したのち、薄膜
形成技術を用いてトランスを作製する。そして、この薄
膜トランスの接続端とMOSFET相互の接続には、通
常の基板上の表面配線のほか絶縁層を通るスルーホール
等の接続手段を用いて行うことにより、同期整流用素子
などとトランスからなる構成を大幅に小形・薄形化する
と同時に、配線の最短化により、抵抗・容量を低減し、
高周波特性を改善する。さらに、基板に作り付けたMO
SFETを整流ダイオードの代替として使用することに
より、順方向電圧(VF)を低く設定できるようにし、
電源の出力損のうち、最も大きな割合を持つ整流回路で
の損失を低減させ、特に低電圧出力電源に好適に適用可
能にする。
The thin film transformer for a high frequency switching power supply of the present invention uses a semiconductor substrate such as Si or Ge as a substrate,
A MOSFET is built in the substrate as a synchronous rectifying element by a semiconductor process technology, and an insulating layer is interposed therebetween, and then a thin film forming technology is used to manufacture a transformer. The connection ends of the thin film transformer and the MOSFETs are connected to each other by using a connecting means such as a through hole passing through an insulating layer in addition to the normal surface wiring on the substrate so that the synchronous rectifying element and the transformer can be connected to each other. The configuration will be significantly smaller and thinner, and at the same time the resistance and capacitance will be reduced by shortening the wiring.
Improve high frequency characteristics. Furthermore, MO built into the substrate
The use of SFET as an alternative to the rectifier diode, to be set low forward voltage (V F),
The loss in the rectifier circuit, which has the largest proportion of the output loss of the power supply, is reduced, and it is particularly applicable to the low voltage output power supply.

【0010】[0010]

【実施例】以下、本発明の実施例を、図面を参照して詳
細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0011】図1(a),(b),(c)は、本発明の
一実施例の構成を示す平面図とその平面図中のX−X′
およびY−Y′間の断面部分拡大図である。本実施例で
は、基板10としてn-エピタキシャル層を持つp形S
i基板を用い、2個のMOSFET:A1,A2を半導体
プロセスにより作り込んだ後、PSG等による保護膜を
形成して絶縁層12aとし、その上に薄膜トランス11
を薄膜形成技術により作製している。なお、半導体の基
板10をn形Si基板やGe基板としても良い。また、
半導体の基板10中に作製するMOSFETは1個だけ
作製した場合も基本的には変わらない。
1 (a), 1 (b) and 1 (c) are plan views showing the structure of an embodiment of the present invention and XX 'in the plan views.
FIG. 3 is an enlarged view of a partial cross section between YY ′ and YY ′. In this embodiment, a p-type S having an n epitaxial layer as the substrate 10 is used.
After using the i substrate to fabricate two MOSFETs: A 1 and A 2 by a semiconductor process, a protective film such as PSG is formed as an insulating layer 12a, and the thin film transformer 11 is formed thereon.
Is manufactured by a thin film forming technique. The semiconductor substrate 10 may be an n-type Si substrate or a Ge substrate. Also,
Even if only one MOSFET is formed in the semiconductor substrate 10, it basically does not change.

【0012】続いて、MOSFET付き薄膜トランス形
成例を作製工程順に説明する。図1(b)中に破線で示
したMOSFET:A1,A2はドレインを共通として作
製されており、表面にはPSG等の絶縁層12aをCV
D法等で堆積している。初めにバイアススパッタリング
等によりSiO2等の絶縁層12bを形成し、平坦化処
理を行う。その上にCoZrRe,CoFeSiB等の
磁性膜をスパッタリング法等で堆積し、イオンビームエ
ッチング法等でパターンニングして下部磁性層14を作
製する(図1(c))。その後、再び上記と同様にSi
2等を堆積し、平坦化処理を行い絶縁層12cとす
る。その後、MOSFET:A1,A2のソース電極13
a′,13e′,ゲート電極13b′,13d′,ドレ
イン電極13c′(共通)上に絶縁層12a,12b,
12cを貫通するスルーホールをイオンビームエッチン
グ等により形成する(図1(b))。引き続いて絶縁層
12c上にCu等の導体層を電子ビーム蒸着法等で成膜
し、前記のスルーホールの内部を充填すると共に、導体
層をパターンニングして帯状の下部導体15aおよびM
OSFETの各電極端子13a″,13b,13c″,
13d,13e″を形成する。この時、MOSFETの
ゲート電極端子13b,13dと薄膜トランス11のゲ
ート駆動用巻線端子13f,13gをCu等の導体層で
形成した配線パタン15b,15cによってそれぞれ接
続する。
Next, an example of forming a thin film transformer with a MOSFET will be described in the order of manufacturing steps. The MOSFETs A 1 and A 2 shown by broken lines in FIG. 1B are manufactured with a common drain, and an insulating layer 12a such as PSG is provided on the surface of the CV.
It is deposited by the D method or the like. First, an insulating layer 12b such as SiO 2 is formed by bias sputtering or the like, and a flattening process is performed. A magnetic film of CoZrRe, CoFeSiB or the like is deposited thereon by a sputtering method or the like and patterned by an ion beam etching method or the like to form the lower magnetic layer 14 (FIG. 1C). Then, again as above, Si
O 2 or the like is deposited and flattened to form an insulating layer 12c. Then, the source electrodes 13 of the MOSFETs A 1 and A 2
a ', 13e', gate electrodes 13b ', 13d', drain electrode 13c '(common), insulating layers 12a, 12b,
A through hole penetrating 12c is formed by ion beam etching or the like (FIG. 1B). Subsequently, a conductor layer of Cu or the like is formed on the insulating layer 12c by an electron beam evaporation method or the like to fill the inside of the through hole, and the conductor layer is patterned to form strip-shaped lower conductors 15a and M.
Each electrode terminal 13a ", 13b, 13c" of the OSFET,
13d, 13e "are formed. At this time, the gate electrode terminals 13b, 13d of the MOSFET and the gate driving winding terminals 13f, 13g of the thin film transformer 11 are connected by wiring patterns 15b, 15c formed of a conductor layer such as Cu, respectively. To do.

【0013】次に、絶縁層12dを形成した後、中間磁
性膜をスパッタリング法等により成膜し、パターンニン
グして中心磁性層16とする。さらに、この上に絶縁層
12eを形成し、平坦化を行う。その後、13a″,1
3c″,13e″の電極端子上に絶縁層12d,12e
を貫通するスルーホールと上下導体層(下部導体15a
と次に形成する上部導体17a等)を接続するためのス
ルーホールとをイオンビームエッチング等により形成す
る。引き続いて絶縁層12e上にCu等の導体層を電子
ビーム蒸着法等で成膜し、前記スルーホールの内部を充
填するとともに、導体層をパターンニングして上部導体
17aおよびMOSFETの電極端子13a,13c,
13eを形成する。この時、トランスの1次側外部端子
17b,17c、2次側端子17d,17e、外部接続
端子17f,17g、さらに配線パタン17h〜17k
(図1(a))をパターンニングして作製し、トランス
の2次側端子17d,17eとMOSFET:A1の電
極端子13a,13e、MOSFET:A2の電極端子
13c,13eと外部端子17f,17gとをそれぞれ
接続する。そして、さらに絶縁層12fを形成し、平坦
化を行った後、上部磁性膜を成膜し、パターンニングし
て上部磁性層18とする。最後に、絶縁層12gを形成
したのち、端子17b,17c,17f,17g部にス
ルーホールを開けて外部端子とし、完成する。
Next, after forming the insulating layer 12d, an intermediate magnetic film is formed by a sputtering method or the like and patterned to form the central magnetic layer 16. Further, an insulating layer 12e is formed on this and flattening is performed. Then 13a ", 1
Insulating layers 12d and 12e on the electrode terminals of 3c "and 13e"
Through hole and upper and lower conductor layers (lower conductor 15a
And a through hole for connecting the upper conductor 17a and the like to be formed next) are formed by ion beam etching or the like. Subsequently, a conductor layer of Cu or the like is formed on the insulating layer 12e by an electron beam evaporation method or the like to fill the inside of the through hole, and the conductor layer is patterned to form the upper conductor 17a and the electrode terminal 13a of the MOSFET. 13c,
13e is formed. At this time, primary side external terminals 17b and 17c of the transformer, secondary side terminals 17d and 17e, external connection terminals 17f and 17g, and wiring patterns 17h to 17k.
(FIG. 1 (a)) is patterned to prepare, transformer secondary terminals 17d, 17e and MOSFET: A 1 of the electrode terminals 13a, 13e, MOSFET: A 2 of the electrode terminals 13c, 13e and the external terminal 17f , 17 g, respectively. Then, the insulating layer 12f is further formed and planarized, and then an upper magnetic film is formed and patterned to form the upper magnetic layer 18. Finally, after forming the insulating layer 12g, through holes are formed in the terminals 17b, 17c, 17f and 17g to form external terminals, which is completed.

【0014】図2は、この実施例に適用する1石フォワ
ード形コンバータの回路図を示す。図中、11は薄膜ト
ランス、L1は平滑インダクタ、19は直流電源、20
はパルス発生器(P.G)、Tr1はスイッチング素
子、A1,A2はMOSFET、C1,C2はコンデンサ、
1は抵抗、RLは負荷である。このコンバータの構成に
おいて、薄膜トランス11の一次巻き線側には直流電源
19とスイッチング素子Tr1が直列に接続され、直流
電源19に並列にコンデンサC1が接続されている。こ
の構成により、主トランスの薄膜トランス11で昇圧も
しくは降圧された電力が、MOSFET:A1,A2の回
路で整流され、平滑インダクタL1,コンデンサC2で平
滑されて、負荷RLに供給され得るようになっている。
FIG. 2 shows a circuit diagram of a one-stone forward type converter applied to this embodiment. In the figure, 11 is a thin film transformer, L 1 is a smoothing inductor, 19 is a DC power supply, and 20
Is a pulse generator (PG), Tr 1 is a switching element, A 1 and A 2 are MOSFETs, C 1 and C 2 are capacitors,
R 1 is a resistance and R L is a load. In the configuration of this converter, a DC power supply 19 and a switching element Tr 1 are connected in series on the primary winding side of the thin film transformer 11, and a capacitor C 1 is connected in parallel to the DC power supply 19. With this configuration, the power boosted or stepped down by the thin film transformer 11 of the main transformer is rectified by the circuit of MOSFETs: A 1 and A 2 , smoothed by the smoothing inductor L 1 and the capacitor C 2 , and supplied to the load RL . It can be done.

【0015】上記実施例は、図2中の破線で示した部分
ZをSi基板上に作製したものである。すなわち図1に
おいて、薄膜トランス11,MOSFET:A1,A
2は、絶縁層を通るスルーホールと配線層を通して上記
に示したように相互に接続され、外部配線用端子17
b,17c,17f,17gを基板10表面に作製して
いる。図1(a)中のMOSFETの電極端子13a〜
13e、トランス1次側端子17b,17c、およびト
ランス2次側端子13f,17d,17e,13gは、
図2の回路図中の接続点(13a)〜(13e)、(1
7b),(17c),(17f),(17g)、および
(13f),(17d),(17e),(13g)にそ
れぞれ対応しており、周辺素子類と接続される。ただ
し、図1(a)中の配線パタン15bと17h,15c
と17iは、絶縁層を介して交差しており、互いに接触
していない。
In the above embodiment, the portion Z shown by the broken line in FIG. 2 is formed on the Si substrate. That is, in FIG. 1, a thin film transformer 11, MOSFETs: A 1 , A
2 are connected to each other through the through hole passing through the insulating layer and the wiring layer as described above, and are connected to the external wiring terminal 17
b, 17c, 17f and 17g are formed on the surface of the substrate 10. The electrode terminals 13a to 13a of the MOSFET in FIG.
13e, the transformer primary side terminals 17b and 17c, and the transformer secondary side terminals 13f, 17d, 17e and 13g,
Connection points (13a) to (13e), (1 in the circuit diagram of FIG.
7b), (17c), (17f), (17g), and (13f), (17d), (17e), (13g), respectively, and are connected to peripheral elements. However, the wiring patterns 15b and 17h and 15c in FIG.
And 17i intersect with each other through the insulating layer and are not in contact with each other.

【0016】以上のように構成した実施例を試作し、動
作試験を行った結果、従来の実装方法による動作可能な
周波数以上の高周波域においても正常に動作することが
確認できた。一方、Si基板10中にMOSFET:A
1,A2を作り込むことにより、個別部品を実装した従来
の実装方法に比べて、体積・重量を大幅に低減すること
ができた。また、配線の余分な引き回しを低減したこと
により、回路動作も安定し、従来のダイオードによる整
流を行った場合に比べ、順方向電圧(VF)が低下し、
電源効率も上昇した。
As a result of making a prototype of the embodiment configured as described above and performing an operation test, it has been confirmed that the embodiment normally operates even in a high frequency range above the operable frequency by the conventional mounting method. On the other hand, in the Si substrate 10, the MOSFET: A
By incorporating 1 and A 2 , the volume and weight could be significantly reduced compared to the conventional mounting method in which individual parts were mounted. Also, by reducing the excess wire routing, also stable circuit operation, compared with the case of performing rectification by conventional diode, the forward voltage (V F) is reduced,
Power efficiency has also increased.

【0017】なお、上記実施例では、薄膜トランスをS
i基板に作り付けたMOSFETの真上部分からはずれ
た場所に作製しているが、薄膜トランスをMOSFET
の真上に作製し、スルーホール等を用いて接続できるこ
とは自明である。また、上記実施例では、Si基板にM
OSFETのみを作り込んだ例を示したが、必要に応じ
てスイッチング素子,抵抗,コンデンサ類を作り込むこ
とも可能であり、これらと薄膜トランス・インダクタを
接続できることは言うまでもない。このように本発明
は、その主旨に沿って種々に応用され、種々に実施態様
を取り得るものである。
In the above embodiment, the thin film transformer is S
The thin film transformer is made in a place off the part directly above the MOSFET built in the i substrate.
It is self-evident that it can be made right above and can be connected using a through hole or the like. In addition, in the above-mentioned embodiment, M is formed on the Si substrate.
Although the example in which only the OSFET is formed is shown, it is needless to say that a switching element, a resistor, and a capacitor can be formed as necessary, and these can be connected to the thin film transformer / inductor. As described above, the present invention can be variously applied and variously embodied in accordance with its gist.

【0018】[0018]

【発明の効果】以上の説明で明らかなように、本発明の
高周波用薄膜トランスによれば、これまでの個別部品実
装の場合に比べ、大幅な小形・軽量化が実現できる。ま
た、同時に配線の余分な引き回しの低減および整流素子
の順方向電圧VFの低減効果により、一層の高周波化と
回路効率の向上が達成できる。
As is apparent from the above description, according to the high frequency thin film transformer of the present invention, it is possible to realize a significant reduction in size and weight as compared with the conventional mounting of individual components. At the same time, due to the effect of reducing the extra wiring of the wiring and the effect of reducing the forward voltage V F of the rectifying element, it is possible to further increase the frequency and improve the circuit efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の平面図および断面部分拡大
FIG. 1 is a plan view and a partially enlarged sectional view of an embodiment of the present invention.

【図2】上記実施例に適用した1石フォワード形コンバ
ータの回路図
FIG. 2 is a circuit diagram of a one-stone forward converter applied to the above embodiment.

【図3】従来の技術を示す構造模式図FIG. 3 is a structural schematic diagram showing a conventional technique.

【符号の説明】[Explanation of symbols]

10…基板 11…薄膜トランス 12a,12b,12c,12d,12e,12f,1
2g…絶縁層 13a′…MOSFET:A1のソース電極 13b′…MOSFET:A1のゲート電極 13c′…MOSFET:A1,A2のドレイン電極(共
通) 13d′…MOSFET:A2のゲート電極 13e′…MOSFET:A2のソース電極 13a,13b,13c,13d,13e…MOSFE
Tの電極端子 14…下部磁性層 15a…下部導体 15b,15c…配線パタン 16…中心部磁性層 17a…上部導体 17b,17c,17d,17e,17f,17g,1
7h,17i,17j,17k…配線パタン・端子 18…上部磁性層
10 ... Substrate 11 ... Thin film transformer 12a, 12b, 12c, 12d, 12e, 12f, 1
2 g ... insulating layer 13a '... MOSFET: A 1 of the source electrode 13b' ... MOSFET: the gate electrode 13c of A 1 '... MOSFET: A 1 , the drain of the A 2 electrode (common) 13d' ... MOSFET: the gate of the A 2 electrode 13e '... MOSFET: the source electrode 13a of the a 2, 13b, 13c, 13d , 13e ... MOSFE
T electrode terminal 14 ... Lower magnetic layer 15a ... Lower conductor 15b, 15c ... Wiring pattern 16 ... Central magnetic layer 17a ... Upper conductor 17b, 17c, 17d, 17e, 17f, 17g, 1
7h, 17i, 17j, 17k ... Wiring pattern / terminal 18 ... Upper magnetic layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも1つ以上のMOSFETを形
成した半導体基板上に絶縁層を介して形成され、前記絶
縁層を通る接続手段を介して前記MOSFETの少なく
とも1つに2次巻線が接続されていることを特徴とする
高周波スイッチング電源用薄膜トランス。
1. A secondary winding is formed on a semiconductor substrate on which at least one MOSFET is formed, via an insulating layer, and a secondary winding is connected to at least one of the MOSFETs via a connecting means passing through the insulating layer. A thin film transformer for high frequency switching power supplies.
JP4180181A 1992-07-08 1992-07-08 Thin-film transformer for high-frequency switching power supply Pending JPH0629134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4180181A JPH0629134A (en) 1992-07-08 1992-07-08 Thin-film transformer for high-frequency switching power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4180181A JPH0629134A (en) 1992-07-08 1992-07-08 Thin-film transformer for high-frequency switching power supply

Publications (1)

Publication Number Publication Date
JPH0629134A true JPH0629134A (en) 1994-02-04

Family

ID=16078807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4180181A Pending JPH0629134A (en) 1992-07-08 1992-07-08 Thin-film transformer for high-frequency switching power supply

Country Status (1)

Country Link
JP (1) JPH0629134A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998056101A1 (en) * 1997-06-03 1998-12-10 Lightech Electronics Industries Ltd. Low voltage illumination system
EP1376694A3 (en) * 2002-04-17 2006-08-23 Sanyo Electric Co., Ltd. Semiconductor switching circuit device
US20150200050A1 (en) * 2014-01-16 2015-07-16 Fujitsu Limited Inductor apparatus and inductor apparatus manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998056101A1 (en) * 1997-06-03 1998-12-10 Lightech Electronics Industries Ltd. Low voltage illumination system
EP1376694A3 (en) * 2002-04-17 2006-08-23 Sanyo Electric Co., Ltd. Semiconductor switching circuit device
US20150200050A1 (en) * 2014-01-16 2015-07-16 Fujitsu Limited Inductor apparatus and inductor apparatus manufacturing method
US9837208B2 (en) * 2014-01-16 2017-12-05 Fujitsu Limited Inductor apparatus and inductor apparatus manufacturing method

Similar Documents

Publication Publication Date Title
JP3123343B2 (en) Stabilized power supply and manufacturing method thereof
US5548265A (en) Thin film magnetic element
KR101296238B1 (en) Dc-dc converter
US5355301A (en) One-chip type switching power supply device
JP2001053239A (en) Integrated circuit and manufacture thereof
JP2008171965A (en) Microminiature power converter
US6738240B1 (en) Microtransformer for system-on-chip power supply
JPH05291063A (en) Magnetic induction element
US20050105225A1 (en) Microtransformer for system-on-chip power supply
JP3649214B2 (en) Ultra-compact power converter and manufacturing method thereof
JP2001358427A (en) Printed circuit board and power supply using the same
JP3661380B2 (en) Planar inductor
US20240064902A1 (en) Dc/dc converter component
US6420954B1 (en) Coupled multilayer soft magnetic films for high frequency microtransformer for system-on-chip power supply
US20130062730A1 (en) Electronic semiconductor device with integrated inductor, and manufacturing method
JPH0629134A (en) Thin-film transformer for high-frequency switching power supply
JPS60136363A (en) Semiconductor device
JPH05109557A (en) High frequency thin film transformer and high frequency thin film inductor
JPH10154795A (en) Inductor on semiconductor chip and its manufacturing method
JPH0613249A (en) Thin film transformer for high-frequency switching power source and thin film inductor for the same
JP2006032579A (en) Variable inductor
JP3019611B2 (en) One-chip switching power supply
JPH05109556A (en) High frequency thin film transformer and high frequency thin film inductor
JP2002270427A (en) Inductor
JP3114392B2 (en) Thin-film magnetic induction element