JPH06289178A - Liquid metal cooled nuclear reactor - Google Patents

Liquid metal cooled nuclear reactor

Info

Publication number
JPH06289178A
JPH06289178A JP5074248A JP7424893A JPH06289178A JP H06289178 A JPH06289178 A JP H06289178A JP 5074248 A JP5074248 A JP 5074248A JP 7424893 A JP7424893 A JP 7424893A JP H06289178 A JPH06289178 A JP H06289178A
Authority
JP
Japan
Prior art keywords
flow rate
core
pump
reactor
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5074248A
Other languages
Japanese (ja)
Inventor
Takeshi Shimizu
水 武 司 清
Masaaki Iida
田 正 明 飯
Yasuyuki Moriki
木 保 幸 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5074248A priority Critical patent/JPH06289178A/en
Publication of JPH06289178A publication Critical patent/JPH06289178A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To adjust the necessary flow rate so that the reactor core outlet temperature is set within an already set temperature range by arranging an electromagnetic pump for exclusive use in each flow rate region, and carrying out the flow rate distribution of the coolant in the reactor core. CONSTITUTION:Tripartite flow rate regions 2, 3, and 4 of a reactor core 1 are connected with an electromagnetic pump 6 for exclusive use by a cooling material pipe 5. The cooling material which is sucked from a lower part plenum 7 by the center return type pump 6 flows into the regions 2-4, passing through a pipe 5, and reaches an upper part plenum 8. The cooling material in a heated state exchanges thermal energy in an intermediate heat exchanger 10, passing through an outlet pipe 9, and returns to the plenum 7. A detector 12 measures the cooling material outlet temperature in the regions 2-4, and an automatic controller 13 for the flow rate of an electromagnetic pump which receives the above-described temperature signal automatically controls the pump 6. Further, the pump 6 can adjust the pump flow rate even by the operation of an operator in an outside operation control room. Accordingly, each flow rate in the regions 2-4 is adjusted to an optimum state according to the combustion, and the operation efficiency can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子核の***反応で発
生する熱エネルギーを液体金属冷却材により原子炉炉心
外に取り出して発電等に利用するための液体金属冷却型
原子炉に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid metal cooled nuclear reactor for taking out thermal energy generated by a fission reaction of atomic nuclei by a liquid metal coolant to the outside of the reactor core and utilizing it for power generation and the like.

【0002】[0002]

【従来の技術】原子核の***反応により発生する熱エネ
ルギーを取り出して利用する従来型の液体金属冷却型原
子炉では、複数の熱交換器と原子炉炉心の間に複数の循
環流路を構成し、各循環流路毎に主循環ポンプと呼ばれ
る機械式ポンプまたは、電磁ポンプを設置し、これによ
り、液体金属を循環させて、炉心で発生する上記熱エネ
ルギーを熱交換器へ運び発電等に利用するための炉心冷
却系が設けられており、また、その寿命中に十分な炉心
冷却性能を保ち、燃料、その他の炉心構成要素の健全性
を損なわないよう、炉心内の各流量領域に適切な流量を
配分するための複雑な流量調節機構が設けられている。
この流量調節機構は、燃料の燃焼に応じて、また燃料交
換に応じて変化する炉心熱出力の時間的、空間的な変化
を考慮し、運転期間中に必要な最大限の炉心冷却材流量
を予め確保できるように設計されている。
2. Description of the Related Art In a conventional liquid metal cooling type nuclear reactor which takes out and uses thermal energy generated by nuclear fission reaction, a plurality of circulation flow paths are formed between a plurality of heat exchangers and a reactor core. A mechanical pump called a main circulation pump or an electromagnetic pump is installed for each circulation flow path, which circulates liquid metal and transfers the above-mentioned thermal energy generated in the core to a heat exchanger for power generation, etc. A core cooling system is provided for the purpose of maintaining appropriate core cooling performance during its life, and appropriate flow rate regions in the core so as not to impair the integrity of fuel and other core components. Complex flow control mechanisms are provided to distribute the flow.
This flow rate adjustment mechanism considers the temporal and spatial changes in the core heat output that change according to fuel combustion and fuel refueling, and considers the maximum core coolant flow rate required during operation. It is designed so that it can be secured in advance.

【0003】すなわち、炉心核設計に密接に関連して、
炉心冷却材流量配分評価が行なわれ、十分な裕度を予め
設定した炉心流量配分機構が設計される。しかし、従来
の流量調節機構は運転中に冷却材流量配分を変更するこ
とができないため、炉心冷却材流量の最適化には限界が
ある。また、燃料交換時期、炉心燃料構成の変更には炉
心流量調節機構の設計変更が必要となり、多大の経済的
コストがかかるため、既存原子炉の運用、利用形態の変
更は容易には行なえない。
In other words, closely related to core design,
The core coolant flow rate distribution is evaluated, and a core flow rate distribution mechanism with a preset sufficient margin is designed. However, since the conventional flow rate adjusting mechanism cannot change the coolant flow rate distribution during operation, there is a limit to the optimization of the core coolant flow rate. In addition, the design change of the core flow rate adjustment mechanism is required to change the fuel exchange timing and the core fuel composition, which requires a great economic cost, so that the operation and usage of the existing reactor cannot be easily changed.

【0004】[0004]

【発明が解決しようとする課題】上述したように、従来
の液体金属冷却型原子炉では、主循環ポンプにより液体
金属冷却材を循環させ、原子炉炉心の冷却を行なう炉心
冷却系と炉心流量調節機構が設けられており、炉心内の
各流量領域に適切な流量を配分できるように構成されて
いる。そして、一般にこのような原子炉では、運転中に
炉心内の配分流量を調整する事が困難なため、炉心燃料
の燃焼に伴って炉心内の熱出力分布が変化しても、冷却
可能なように炉心内配分流量は十分な裕度を取って設計
されている。しかしながら、このような原子炉において
も、さらに開発コストおよび保守コストの低減、運転効
率の向上が望まれている。
As described above, in the conventional liquid metal cooling type reactor, the liquid metal coolant is circulated by the main circulation pump to cool the reactor core and the core flow rate control. A mechanism is provided and configured so that an appropriate flow rate can be distributed to each flow rate region in the core. Generally, in such a reactor, it is difficult to adjust the distribution flow rate in the core during operation, so even if the heat output distribution in the core changes due to the combustion of the core fuel, cooling is possible. The distribution flow in the core is designed with sufficient margin. However, even in such a nuclear reactor, further reduction of development cost and maintenance cost and improvement of operation efficiency are desired.

【0005】本発明は、かかる従来の事情に対処してな
されたもので、従来のような複雑な流量調節機構を無く
し、炉心流量領域毎に機械式ポンプに較べ保守性が良
く、独立した電磁ポンプを設置し、運転中、流量領域毎
の炉心出口温度を検出し、その信号に応じて、上記電磁
ポンプを制御し、炉心出口温度が、予め設定された、燃
料、その他の炉心構成要素の健全性を損なわない条件を
満足する温度範囲になるように、上記流量領域毎の必要
流量を自動的に調整する機構を設けた原子炉を提供しよ
うとするものである。
The present invention has been made in response to such a conventional situation. It eliminates the complicated flow rate adjusting mechanism of the prior art, has better maintainability in each core flow rate region than a mechanical pump, and has an independent electromagnetic field. A pump is installed, during operation, the core outlet temperature for each flow rate region is detected, and in accordance with the signal, the electromagnetic pump is controlled, the core outlet temperature is set in advance, fuel, and other core constituent elements. An object of the present invention is to provide a nuclear reactor provided with a mechanism for automatically adjusting the required flow rate for each flow rate region so that the temperature range satisfies the condition that does not impair the soundness.

【0006】[0006]

【課題を解決するための手段】本発明は、炉心を複数の
冷却材流量領域に分け、各流量領域毎に専用の電磁ポン
プを配置し、炉心における冷却材流量配分を行なうよう
にしたことを特徴とし、また原子炉運転中に各電磁ポン
プの流量を、炉心出口温度検出器からの信号に応じて自
動的に調整することにより、上記領域の流量を炉心燃料
の燃焼に応じて最適に調整できるようにしたことを特徴
とする。
According to the present invention, the core is divided into a plurality of coolant flow rate regions, a dedicated electromagnetic pump is arranged for each flow rate region, and the coolant flow rate is distributed in the core. By adjusting the flow rate of each electromagnetic pump automatically according to the signal from the core outlet temperature detector during reactor operation, the flow rate in the above region is optimally adjusted according to the combustion of core fuel. It is characterized by being able to do so.

【0007】[0007]

【作用】複数に分割された各流量領域毎に設けらた電磁
ポンプをそれぞれ制御することにより、各領域に適した
冷却材流量配分とすることができる。さらに原子炉運転
中に、炉心出口温度を検出し、その信号によって電磁ポ
ンプを自動的に制御することにより、上記領域の流量を
最適に調整し、燃料設計の裕度を低減し、燃料の有効利
用を図り、かつ運転効率を向上させることができる。
By controlling the electromagnetic pumps provided for each of the divided flow rate regions, it is possible to achieve the coolant flow rate distribution suitable for each region. Furthermore, during reactor operation, the core outlet temperature is detected and the electromagnetic pump is automatically controlled by that signal to optimally adjust the flow rate in the above range, reduce fuel design margin, and improve fuel efficiency. It can be used and the operation efficiency can be improved.

【0008】また、本発明で採用した電磁ポンプは、機
械式ポンプに較べ流動抵抗が少なく、また、炉心流量調
節機構の流動抵抗が無くなるため、ポンプ停止に到る事
故後の炉心の崩壊熱除去に利用できる冷却材の浮力を駆
動力とする自然循環に於て、より多くの循環流量を確保
することができる。電磁ポンプでは、慣性の大きな機械
式ポンプに較べ、上記事故直後の流量低下が著しいが、
超伝導コイル等を利用した電力蓄積装置と組み合わせる
ことによって、炉心の健全性を保持するために必要な流
量減衰条件を得ることは可能である。
Further, the electromagnetic pump adopted in the present invention has less flow resistance than the mechanical pump, and since the flow resistance of the core flow rate adjusting mechanism is eliminated, the decay heat removal of the core after an accident leading to pump stoppage is eliminated. In natural circulation using the buoyancy of the coolant that can be used as a driving force, a larger circulation flow rate can be secured. Compared to mechanical pumps with large inertia, electromagnetic pumps have a marked decrease in flow rate immediately after the accident, but
By combining with a power storage device using a superconducting coil or the like, it is possible to obtain the flow rate attenuation condition necessary for maintaining the integrity of the core.

【0009】[0009]

【実施例】実施例1 以下、本発明の構成を液体金属冷却型原子炉に実施した
一例として、図1及び図2を参照して説明する。
EXAMPLES Example 1 Hereinafter, an example in which the structure of the present invention is applied to a liquid metal cooled nuclear reactor will be described with reference to FIGS. 1 and 2.

【0010】図2は、原子炉炉心1の内部の流量領域の
分割例を示すもので、本実施例では、炉心領域を同心円
状の3領域(符号2〜4)に分割した。この実施例は、
従来の炉心設計を参考にしたもので、流量領域2,3,
4は各々、内側炉心、外側炉心、径ブランケット燃料部
に対応する。図1は、炉心冷却系の系統構成を示すもの
で、図において符号1は原子炉炉心であり、その炉心1
の3つに分割された各流量領域は、冷却材配管5で、専
用の電磁ポンプ6に接続されている。この実施例では、
センターリターン型の電磁ポンプを使用しており、下部
プレナム7から電磁ポンプ6に吸い込まれた冷却材は、
配管5を通って、炉心の各流量領域2,3,4に流れ込
み、上部プレナム8に到る。この加熱された冷却材は、
出口配管9を通って中間熱交換器10で熱エネルギーを
交換し、下部プレナム7に戻る。
FIG. 2 shows an example of division of the flow rate region inside the nuclear reactor core 1. In this embodiment, the core region is divided into three concentric regions (reference numerals 2 to 4). This example
Based on the conventional core design, the flow rate range 2, 3,
Reference numerals 4 correspond to the inner core, the outer core and the diameter blanket fuel portion, respectively. FIG. 1 shows a system configuration of a core cooling system. In the figure, reference numeral 1 is a nuclear reactor core, and its core 1
Each flow rate region divided into three is connected to a dedicated electromagnetic pump 6 by a coolant pipe 5. In this example,
The center-return type electromagnetic pump is used, and the coolant sucked into the electromagnetic pump 6 from the lower plenum 7 is
It flows through the pipe 5 into each of the flow rate regions 2, 3 and 4 of the core and reaches the upper plenum 8. This heated coolant is
Heat energy is exchanged in the intermediate heat exchanger 10 through the outlet pipe 9 and then returned to the lower plenum 7.

【0011】炉上部機構11には、各流量領域の冷却材
出口温度を計測する検出器12が設けられ、その信号は
電磁ポンプ流量自動制御装置13に接続され、各電磁ポ
ンプ6を自動的に制御するように構成されている。ま
た、各電磁ポンプは、外部の運転制御室に接続されてい
て運転員の操作によってもポンプ流量を調整できるよう
になっている。
The upper furnace mechanism 11 is provided with a detector 12 for measuring the coolant outlet temperature in each flow rate region, and its signal is connected to an electromagnetic pump flow rate automatic control device 13 so that each electromagnetic pump 6 is automatically operated. Is configured to control. Further, each electromagnetic pump is connected to an external operation control room so that the pump flow rate can be adjusted by the operation of an operator.

【0012】上記構成のこの実施例の液体金属冷却型原
子炉では、各電磁ポンプを、原子炉運転中に炉心出口温
度検出器12の信号に応じて自動的に制御することによ
り、上記流量領域2〜4の流量を、燃焼に応じて最適に
調整し、運転効率を向上させることができる。
In the liquid metal cooled reactor of this embodiment having the above-mentioned structure, each of the electromagnetic pumps is automatically controlled in response to a signal from the core outlet temperature detector 12 during the operation of the reactor, so that the flow rate range is increased. The flow rates of 2 to 4 can be optimally adjusted according to the combustion, and the operation efficiency can be improved.

【0013】実施例2 本発明を、100万Kweクラスの大型高速炉に適用し
た実施例を以下に示す。炉心流量領域は、内側炉心1
4、外側炉心15と径ブランケット16の3領域とし
た。
Example 2 An example in which the present invention is applied to a large-scale fast reactor of 1 million Kwe class is shown below. The core flow rate region is the inner core 1
4, the outer core 15 and the diameter blanket 16 have three regions.

【0014】通常の原子炉は、1サイクルの運転期間が
12カ月から15カ月である。この運転期間中に燃料集
合体の出力はできるだけ変化が少ない方が冷却材の流量
配分上好ましい。しかしながら、燃料集合体出力は燃焼
に伴い変化している。
A typical nuclear reactor has a cycle operation period of 12 to 15 months. It is preferable for the flow rate distribution of the coolant that the output of the fuel assembly changes as little as possible during this operation period. However, the fuel assembly output changes with combustion.

【0015】図3に、本実施例における1サイクルの集
合体出力の変化、すなわち、サイクル初期から、サイク
ル末期における燃料集合体出力の変化を示す。図中の数
字は、サイクル初期とサイクル末期の集合体出力比であ
る。図中に示したように、サイクル末期の炉心燃料集合
体(内側炉心14と外側炉心15)の出力はサイクル初
期に較べて最大で約−10%〜約+20%の変化をして
いる。平均的には、集合体出力は、内側炉心14で増
し、外側炉心15で減少しているため、外側炉心の余分
な冷却材を内側炉心部に割り当てることにより炉心出口
温度をより平坦化でき、必要な炉心流量を低減できる。
FIG. 3 shows a change in the output of the fuel assembly in one cycle in this embodiment, that is, a change in the output of the fuel assembly from the beginning of the cycle to the end of the cycle. The numbers in the figure are the aggregate output ratios at the beginning of the cycle and the end of the cycle. As shown in the figure, the output of the core fuel assemblies (the inner core 14 and the outer core 15) at the end of the cycle changes by a maximum of about −10% to about + 20% compared to the beginning of the cycle. On average, the aggregate power is increased in the inner core 14 and decreased in the outer core 15, so by allocating excess coolant of the outer core to the inner core portion, the core outlet temperature can be flattened more, The required core flow rate can be reduced.

【0016】この流量低減率を以下に概算する。流量配
分条件を、各流路の最大出力集合体の出口温度が同一に
なるように設定するものとする。すなわち、最大出力集
合体の出力に概略比例した流量配分を仮定する。この設
計条件では、内側炉心出力で+19%(サイクル末
期)、外側炉心で0%(サイクル初期)、径ブランケッ
ト領域で+61%(サイクル末期)の出力増加を見込ん
だ流量配分が行なわれる。本発明の機構を使い、運転中
に流量調整を行なうことにより、炉心燃料集合体とブラ
ンケット燃料集合体の初期出力比を10:1として、サ
イクル初期で約10%、サイクル末期で約3%の炉心流
量が削減できる。
The flow rate reduction rate is roughly calculated below. The flow rate distribution condition is set so that the outlet temperatures of the maximum output aggregates of the respective flow paths are the same. That is, it is assumed that the flow rate distribution is approximately proportional to the output of the maximum output aggregate. Under this design condition, the flow rate distribution is performed in anticipation of an increase in power of + 19% at the inner core power (end of cycle), 0% of the outer core (early cycle), and + 61% at the diameter blanket region (end of cycle). By adjusting the flow rate during operation using the mechanism of the present invention, the initial output ratio of the core fuel assembly and the blanket fuel assembly is set to 10: 1, and about 10% at the beginning of the cycle and about 3% at the end of the cycle. Core flow rate can be reduced.

【0017】一方、径ブランケット燃料部16に於いて
は、U238の中性子吸収によりPu239が生成さ
れ、燃焼に伴い出力は大幅に増大する。すなわち、径ブ
ランケット燃料集合体においては、図3の出力変化の例
から、サイクル末期の径ブランケット燃料集合体の出力
はサイクル初期に較べて最大で約60%の変化をしてい
る。また、燃料装荷直後と燃料取り出し直前の集合体出
力変化は、図3の出力変化から換算すると約3倍から4
倍となる。このことから、本実施例で採用した3流量領
域の内、径ブランケット燃料集合体領域に於いては、各
燃料交換バッチ毎に流量領域を設定して、常に適切な流
量を確保することも有効である。
On the other hand, in the diameter blanket fuel part 16, Pu239 is generated by the neutron absorption of U238, and the output greatly increases with combustion. That is, in the radial blanket fuel assembly, the output of the radial blanket fuel assembly at the end of the cycle changes by a maximum of about 60% compared to the beginning of the cycle from the example of the output change in FIG. Further, the output change of the assembly immediately after the fuel loading and immediately before the fuel removal is about 3 times to 4 times when converted from the output change of FIG.
Doubled. From this, it is also effective to set a flow rate region for each refueling batch in the diameter blanket fuel assembly region out of the three flow rate regions adopted in this embodiment to always ensure an appropriate flow rate. Is.

【0018】実施例3 本発明の、他の実施例として、径ブランケット燃料を長
期間、無交換使用の原子炉(電気出力15万Kweの小
型FBR)について以下に説明する。
Example 3 As another example of the present invention, a reactor (small FBR having an electric output of 150,000 Kwe) in which a diameter blanket fuel is used without replacement for a long time will be described below.

【0019】炉心燃料部分とは独立に、径ブランケット
燃料部分にナトリウム流量の制御可能なポンプを設置す
ることにより、径ブランケット燃料を長期にわたり炉内
に滞在させ、原子炉の全出力を上昇させる事ができる。
すなわち、炉心燃料(炉心部+軸ブランケット部)の全
出力は、初期炉心より、その出力を変えずに原子炉を運
転でき、かつ径ブランケットに含まれるU238の中性
子照射により生成されるPu239等の核種の核***に
より径ブランケットの出力は上昇するので、径ブランケ
ットを交換せずに炉内に連続して滞在させると原子炉の
全出力は上昇する。この出力上昇の様子を図4に示す。
By installing a pump whose sodium flow rate can be controlled in the radial blanket fuel portion independently of the core fuel portion, the radial blanket fuel is allowed to stay in the reactor for a long period of time to increase the total output of the nuclear reactor. You can
That is, the total output of the core fuel (core + axial blanket part) can operate the reactor without changing the output from the initial core, and Pu239 etc. generated by neutron irradiation of U238 included in the diameter blanket. Since the output of the radial blanket increases due to the fission of nuclides, the total output of the nuclear reactor increases when the radial blanket is continuously kept in the reactor without being replaced. This increase in output is shown in FIG.

【0020】この図は、電気出力15万Kweの小型F
BRの場合を示しており、10年間径ブランケットを交
換せずに原子炉を運転すると原子炉全出力は約25%上
昇することを示している。10年間連続照射された径ブ
ランケットの最大出力密度は炉心燃料(平均)の1/3
程で低く、また中性子フルーエンスは約3×1023nv
tで、ほぼ炉心燃料と同程度であるので、径ブランケッ
トの10年間連続照射は通常の炉心出力密度をもった炉
心において可能と考えられる。また、径ブランケットの
材質を酸化物から金属および窒化物に変えると原子炉出
力は更に数%上昇する。径ブランケット長期間無交換使
用の原子炉は、以下に示すような原子炉に使用されると
思われる。すなわち、小型原子炉(モジュラータイプ)
が複数基で1ユニットを構成し、そのユニット内では、
蒸気発生器、タービン等は共用とし、このユニットが同
一サイト内に複数あり、ユニット間では冷却材および水
蒸気等の移送が可能な原子炉体系に対してである。何故
かと言うと、原子炉は炉心燃料交換のため停止すること
が定期的にあるため、ある原子炉の停止中には蒸気発生
器およびタービンの能力に空きが生じ、その空きを径ブ
ランケット出力上昇で補うことができ、そのサイト内の
原子炉体系全体の稼動率をあまり下げないで済ますこと
ができる。大型炉一基の場合は径ブランケット出力上昇
に対して蒸気発生器、タービン等の設備能力を当初より
備えておかねばならず、径ブランケットの出力が十分上
昇するまではそれらの設備の稼動率が落ちてしまうから
である。
This figure shows a small F with an electric output of 150,000 Kwe.
The case of BR is shown, and it is shown that the total reactor power output increases by about 25% when the reactor is operated for 10 years without exchanging the diameter blanket. Maximum power density of diameter blanket irradiated continuously for 10 years is 1/3 of core fuel (average)
And low, and the neutron fluence is about 3 × 10 23 nv
At t, it is almost the same as that of the core fuel, so it is considered that continuous irradiation of the diameter blanket for 10 years is possible in the core having a normal core power density. Also, changing the material of the diameter blanket from oxides to metals and nitrides will further increase reactor power by a few percent. The diameter blanket long-term non-replacement reactor will be used in the reactor as shown below. That is, small reactor (modular type)
Consists of a plurality of units, and within that unit,
This is for a nuclear reactor system in which the steam generator, turbine, etc. are shared, and there are multiple units in the same site, and it is possible to transfer coolant, steam, etc. between the units. The reason is that the reactor is regularly shut down due to core refueling.Therefore, during the shutdown of a certain reactor, there is a gap in the capacity of the steam generator and turbine, and this gap is increased by the diameter blanket output. The operating rate of the entire reactor system at the site can be kept low. In the case of a single large reactor, the capacity of steam generators, turbines, etc. must be equipped from the beginning to increase the output of the diameter blanket, and the operating rate of these equipment must be increased until the output of the diameter blanket is sufficiently increased. Because it will fall.

【0021】[0021]

【発明の効果】以上説明したように、本発明の原子炉に
よれば、複雑な炉心流量調節機構を削除することにより
開発コストが低減でき、その代替として配置した、機械
式ポンプに較べて保守コストの低い、各流量領域毎の専
用電磁ポンプを原子炉運転中に外部の運転員が操作する
ことにより、または炉心出口温度を検出し、その信号に
よって自動的に制御することにより、上記領域の流量を
最適に調整し、運転員の作業を簡単化でき、運転効率を
向上させることができる。
As described above, according to the reactor of the present invention, the development cost can be reduced by eliminating the complicated core flow rate adjusting mechanism, and maintenance can be performed as compared with the mechanical pump arranged as an alternative. By operating an external operator who operates a low-cost, dedicated electromagnetic pump for each flow rate region while the reactor is operating, or by detecting the core outlet temperature and automatically controlling by that signal, The flow rate can be optimally adjusted, the work of the operator can be simplified, and the operation efficiency can be improved.

【0022】また、機械式ポンプに較べ流動抵抗の少な
い電磁ポンプを採用し、また複雑な炉心流量調節機構が
無いため冷却系全体のシステム圧損を低減でき、自然循
環時の循環流量を従来の原子炉に較べて多く確保でき、
原子炉の安全性の向上も図れる。
Further, since an electromagnetic pump having a smaller flow resistance than that of a mechanical pump is adopted, and since there is no complicated core flow rate adjusting mechanism, the system pressure loss of the entire cooling system can be reduced, and the circulation flow rate during natural circulation can be reduced by the conventional atomic flow. You can secure more than the furnace,
The safety of the nuclear reactor can be improved.

【0023】本発明に基づく、径ブランケット長期間無
交換使用の原子炉では、小型原子炉(モジュラータイ
プ)複数基で1ユニットを構成することにより、定期的
な燃料交換、検査を含めてシステム稼動率の最適化を図
ることができ、かつ、径ブランケット燃料を長期間交換
しなくてすむため、原子炉の運用コストが低減できる。
In the long-term non-exchange reactor of the diameter blanket according to the present invention, one unit is composed of a plurality of small reactors (modular type), and the system operation including periodic fuel exchange and inspection is performed. The cost can be optimized and the diameter blanket fuel does not need to be replaced for a long period of time, so the operating cost of the reactor can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】炉心冷却系の系統構成図。FIG. 1 is a system configuration diagram of a core cooling system.

【図2】流量領域構成図。FIG. 2 is a flow rate region configuration diagram.

【図3】サイクル初期とサイクル末期の集合体出力変化
を示す図。
FIG. 3 is a diagram showing changes in aggregate output at the beginning of the cycle and the end of the cycle.

【図4】径ブランケット燃料無交換の場合の原子炉出力
の変化線図。
FIG. 4 is a diagram showing a change in reactor output when there is no diameter blanket fuel exchange.

【符号の説明】[Explanation of symbols]

1 原子炉炉心 2,3,4 流量領域 5 配管 6 電磁ポンプ 7 下部プレナム 8 上部プレナム 10 中間熱交換器 12 温度検出器 13 電磁ポンプ流量自動制御装置 1 Reactor Core 2, 3, 4 Flow Rate Region 5 Piping 6 Electromagnetic Pump 7 Lower Plenum 8 Upper Plenum 10 Intermediate Heat Exchanger 12 Temperature Detector 13 Electromagnetic Pump Flow Control Device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】炉心を複数の冷却材流量領域に分け、各流
量領域毎に専用の電磁ポンプを配置し、炉心における冷
却材流量配分を行なうようにしたことを特徴とする、液
体金属冷却型原子炉。
1. A liquid metal cooling type, characterized in that the core is divided into a plurality of coolant flow rate regions, a dedicated electromagnetic pump is arranged for each flow rate region, and the coolant flow rate is distributed in the core. Reactor.
【請求項2】各流量領域の炉心出口温度を検出する温度
検出器を設け、各炉心出口温度信号によって対応する電
磁ポンプの流量を制御し、炉心出口温度が予め設定され
た温度範囲になるようにしたことを特徴とする、請求項
1記載の液体金属冷却型原子炉。
2. A temperature detector for detecting the core outlet temperature in each flow rate region is provided, and the flow rate of the corresponding electromagnetic pump is controlled by each core outlet temperature signal so that the core outlet temperature falls within a preset temperature range. The liquid metal cooled nuclear reactor according to claim 1, wherein
JP5074248A 1993-03-31 1993-03-31 Liquid metal cooled nuclear reactor Pending JPH06289178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5074248A JPH06289178A (en) 1993-03-31 1993-03-31 Liquid metal cooled nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5074248A JPH06289178A (en) 1993-03-31 1993-03-31 Liquid metal cooled nuclear reactor

Publications (1)

Publication Number Publication Date
JPH06289178A true JPH06289178A (en) 1994-10-18

Family

ID=13541675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5074248A Pending JPH06289178A (en) 1993-03-31 1993-03-31 Liquid metal cooled nuclear reactor

Country Status (1)

Country Link
JP (1) JPH06289178A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004047119A1 (en) * 2002-11-18 2004-06-03 General Electric Company (A New York Corporation) Apparatus and methods for optimizing reactor core coolant flow distributions

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4992757A (en) * 1972-12-31 1974-09-04
JPS60201849A (en) * 1984-03-16 1985-10-12 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Automatic exchanger for finger tool for gripping
JPS61244477A (en) * 1985-04-22 1986-10-30 オムロン株式会社 Robot hand
JPS61184684U (en) * 1986-04-16 1986-11-18
JPS6299092A (en) * 1985-07-11 1987-05-08 オークマ株式会社 Exchanger of finger for gripper

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4992757A (en) * 1972-12-31 1974-09-04
JPS60201849A (en) * 1984-03-16 1985-10-12 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Automatic exchanger for finger tool for gripping
JPS61244477A (en) * 1985-04-22 1986-10-30 オムロン株式会社 Robot hand
JPS6299092A (en) * 1985-07-11 1987-05-08 オークマ株式会社 Exchanger of finger for gripper
JPS61184684U (en) * 1986-04-16 1986-11-18

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004047119A1 (en) * 2002-11-18 2004-06-03 General Electric Company (A New York Corporation) Apparatus and methods for optimizing reactor core coolant flow distributions

Similar Documents

Publication Publication Date Title
US20150117589A1 (en) Molten Salt Reactor
US3392087A (en) Heterogeneous nuclear reactor of the pressure vessel type
JPS6364755B2 (en)
US4795607A (en) High-temperature reactor
JPS5823914B2 (en) Support device for neutron absorber
JPS60207088A (en) Cluster aggregate of control rod for light-water reactor
Mukohara et al. Core design of a high-temperature fast reactor cooled by supercritical light water
US4129475A (en) Method of operating a nuclear reactor
US5114667A (en) High temperature reactor having an improved fluid coolant circulation system
JPH06289178A (en) Liquid metal cooled nuclear reactor
JP3524884B2 (en) Fast breeder reactor
JPH05508927A (en) Fuel bundle inversion for two-phase reactors
JPS6318037B2 (en)
JP4341876B2 (en) Solid cooled reactor
JPH07167988A (en) Boiling water type thermal neutron reactor and operating method thereof
JP7495871B2 (en) Fast reactor and method for operating control rods in fast reactor
JP3603878B2 (en) Operating method of boiling water thermal neutron reactor
KR102573325B1 (en) Steam generation system of nuclear reactor
JP6768450B2 (en) Core of boiling water reactor
CN116844741A (en) Helium xenon cooling micro-reactor safety system and control method
JPH0499995A (en) Recirculation pump driving device for fast reactor coolant
US20050117689A1 (en) Reactor cooling system
Paranjpe PFBR reactor protection
JPH02304395A (en) Nuclear reactor stabilizing device
Zheng et al. Study on the Core Cooling Scheme After Accident Shutdown of the Pebble-Bed Modular High Temperature Gas-Cooled Reactor