JPH06287647A - Operation of sintering machine - Google Patents

Operation of sintering machine

Info

Publication number
JPH06287647A
JPH06287647A JP9666393A JP9666393A JPH06287647A JP H06287647 A JPH06287647 A JP H06287647A JP 9666393 A JP9666393 A JP 9666393A JP 9666393 A JP9666393 A JP 9666393A JP H06287647 A JPH06287647 A JP H06287647A
Authority
JP
Japan
Prior art keywords
distance
value
calcination
exhaust air
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9666393A
Other languages
Japanese (ja)
Inventor
Junichi Nishikawa
淳一 西川
Yasuhiko Hatano
康彦 波多野
Tatsuhiro Nakamu
辰弘 中務
Masanari Hamada
勝成 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP9666393A priority Critical patent/JPH06287647A/en
Publication of JPH06287647A publication Critical patent/JPH06287647A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To stabilize a calcination in the advancing direction of sintering by calculating an exhaust gas temp. pattern from the exhaust gas temp. measured value in a wind box and adjusting pallet velocity in the case of deviating from the aim temp. CONSTITUTION:The exhaust gas temp. measured with a thermocouple 10 in each wind box 8 is inputted in a calcination distance device 20. The calcinating point is detected from the variation in the exhaust gas temp. and the average calcination distance in the width direction of the pallet is calculated and outputted to an exhaust gas temp. predicted value arithmetic unit 19. The exhaust gas temp. predicted value arithmetic unit 19 corrects the calcination distance based on the exhaust gas predicted value and the corrected calcination distance is outputted to a calcinating point control arithmetic unit 21. The calcinating point control arithmetic unit 21 finds the pallet velocity for obtaining the aimed calcination distance from the corrected calcination distance, the calcination distance aimed value inputted from a manual setter 22, the packing layer thickness value inputted from a packing layer thickness meter 18, the pallet velocity measured value inputted from a pallet velocity detected adjusting device 23 and the main exhaust gas vol. measured value. This pallet velocity is given to the pallet velocity detected adjusting device 23 to adjust the setting value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、DL式焼結機の操業
方法に係り、より詳しくは焼結進行方向の焼成を飛躍的
に安定化させることによって焼結鉱の生産性の向上と品
質の安定化をはかる焼結操業方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of operating a DL type sintering machine, and more particularly, by dramatically stabilizing firing in the sintering progressing direction, improving productivity and quality of sintered ore. The present invention relates to a sintering operation method for stabilizing the temperature.

【0002】[0002]

【従来の技術】DL式焼結機の焼成点を制御する方法と
しては、例えば(イ)焼結機ウインドボックスの排風温
度から幅方向別の焼成点を検出し、それらの平均値に基
づいてパレット速度を調節する方法(特開昭60−13
032号公報参照)、(ロ)焼結機の排風温度パターン
の変化を設定値と比較して、その差よりパレット速度を
調節する方法(特開昭57−125254号公報参照)
等が知られている。
2. Description of the Related Art As a method for controlling the firing point of a DL type sintering machine, for example, (a) the firing point in each width direction is detected from the exhaust air temperature of the wind box of the sintering machine and based on the average value thereof. To adjust pallet speed (Japanese Patent Laid-Open No. 60-13
No. 032), and (b) a method of comparing the change in the exhaust air temperature pattern of the sintering machine with a set value and adjusting the pallet speed based on the difference (see JP-A-57-125254).
Etc. are known.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来例の
(イ)は、パレット幅方向別の排風温度パターンより直
接焼成点を検出するので、パレット幅方向別での焼きむ
ら等が発生した場合は十分対応できるが、焼結進行方向
の排風温度パターンが変化した場合には、焼成を安定化
させることが十分にできないという問題がある。
However, in (a) of the conventional example, since the firing point is detected directly from the exhaust air temperature pattern for each pallet width direction, when uneven firing or the like occurs for each pallet width direction. However, there is a problem that the firing cannot be sufficiently stabilized when the exhaust air temperature pattern in the sintering progressing direction changes.

【0004】また、従来例の(ロ)は従来例(イ)の問
題に鑑み、排風温度パターンとその設定値とを比較する
ことにより、若干の焼成安定ははかられるものの、原料
の搬送による排風温度パターンの変化を考慮しておら
ず、同じタイミングで測定された排風温度パターンと設
定値を比較しているので、焼結進行方向各位置の原料の
焼成状態が変動している状態では十分な制御精度が得ら
れないという問題がある。
Further, in view of the problem of the conventional example (a), the conventional example (b) compares the exhaust air temperature pattern with the set value thereof, and although some firing stability is achieved, the raw material is conveyed. Since the change in the exhaust air temperature pattern due to is not taken into consideration and the exhaust air temperature pattern measured at the same timing is compared with the set value, the firing state of the raw material at each position in the sintering progress direction fluctuates. There is a problem that sufficient control accuracy cannot be obtained in the state.

【0005】この発明は、このような従来技術の問題点
に鑑みて、直近の検出焼成点に対応した原料が、各風箱
を通過する際の排風温度を予測し、その予測値より焼成
点を補正して、焼結進行方向の焼成を飛躍的に安定させ
ることにより、歩留りを悪化させることなく生産量の増
大と品質の安定化がはかられる焼結機の操業方法を提案
しようとするものである。
In view of the above problems of the prior art, the present invention predicts the exhaust air temperature when the raw material corresponding to the latest detected firing point passes through each wind box, and fires it from the predicted value. By correcting the points and dramatically stabilizing the firing in the sintering progress direction, we will propose a method of operating a sintering machine that can increase the production amount and stabilize the quality without deteriorating the yield. To do.

【0006】[0006]

【課題を解決するための手段】この発明は、焼結機の排
風温度から焼成点を検出し、該検出値が所定値となるよ
うにパレット速度を調節する焼結機の操業方法におい
て、各風箱の排風温度測定値から排風温度パターンを算
出し、該排風温度パターンが目標排風温度パターンから
ずれている場合は、各風箱の実測排風温度パターンと目
標排風温度パターンをパラメータとして、検出した焼成
点を補正し、該補正焼成点が目標の焼成点となるようパ
レット速度を調節する方法と、この方法において、焼結
進行方向の原料をトラッキングすることによって、直近
の検出焼成点に対応した原料の将来の排風温度を予測
し、該予測値を焼成点の補正に用いる方法を要旨とする
ものである。
The present invention provides a method for operating a sintering machine, which detects a firing point from the exhaust air temperature of the sintering machine and adjusts the pallet speed so that the detected value becomes a predetermined value. An exhaust temperature pattern is calculated from the measured exhaust temperature of each wind box, and if the exhaust temperature pattern deviates from the target exhaust temperature pattern, the actually measured exhaust temperature pattern of each wind box and the target exhaust temperature. Using the pattern as a parameter, the detected firing point is corrected, and the pallet speed is adjusted so that the corrected firing point becomes the target firing point. In this method, by tracking the raw material in the sintering progress direction, the latest The method is to predict the future exhaust air temperature of the raw material corresponding to the detected firing point and to use the predicted value to correct the firing point.

【0007】[0007]

【作用】この発明における焼成点の検出方法と焼成点を
制御するためのパレット速度の算出方法について、図面
を参照しつつ説明する。図1は焼成点と各風箱の排風温
度との関係を示す説明図、図2は同上の各風箱と、それ
らに配設された排風温度測定用熱電対の配置を示す平面
図である。すなわち、各原料槽(図示せず)から切出さ
れてサージホッパー2に供給された原料4は、原料装入
嵩高計1の測定値が所定の値となるようにロールフィー
ダ3の回転によって連続的にパレットのグレート5上に
給鉱される。給鉱された原料は、所定層厚の充填層6を
形成しながらパレットの移動によって排鉱部へ搬送され
る。この間に給鉱箇所寄りの位置に設置された点火炉7
で充填層6の表面に点火される。
The method of detecting the firing point and the method of calculating the pallet speed for controlling the firing point according to the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view showing the relationship between the firing point and the exhaust air temperature of each wind box, and FIG. 2 is a plan view showing the arrangement of the above wind boxes and the exhaust air temperature measuring thermocouples arranged therein. Is. That is, the raw material 4 cut out from each raw material tank (not shown) and supplied to the surge hopper 2 is continuously rotated by the rotation of the roll feeder 3 so that the measured value of the raw material charging bulk height meter 1 becomes a predetermined value. Will be supplied on Great 5 of the pallet. The raw material supplied to the ore is conveyed to the ore discharge section by moving the pallet while forming the packed bed 6 having a predetermined layer thickness. Ignition furnace 7 installed during this period near the mining site
The surface of the packed bed 6 is ignited by.

【0008】一方、パレットの搬送路下部には、充填層
6で発生した燃焼ガスを主排風機9によって吸引するた
めの風箱8が設置されており、各風箱に配設されている
熱電対10により燃焼ガスの温度すなわち排風温度が測
定されるようになっている。排風温度は、燃焼前線12
−1、12−2がパレットのグレート5に到達するまで
ほぼ一定であるが、到達位置すなわち焼成点13−1、
13−2と相前後して上昇し始める。排風温度の上昇
は、原料の移動にしたがいパレット幅方向別に測定され
た各風箱8の排風温度推移曲線14−1、14−2のご
とくであり、その立上り点15−1、15−2を幅方向
それぞれの部分における焼成点とみなすことができる。
On the other hand, a wind box 8 for sucking the combustion gas generated in the packed bed 6 by the main air blower 9 is installed at the lower part of the transport path of the pallet, and the thermoelectric box arranged in each wind box is installed. The pair 10 measures the temperature of the combustion gas, that is, the exhaust air temperature. Exhaust air temperature is the combustion front 12
-1, 12-2 is almost constant until reaching the pallet grade 5, but the reaching position, that is, the firing point 13-1,
It begins to rise before and after 13-2. The rise of the exhaust air temperature is as shown in the exhaust air temperature transition curves 14-1 and 14-2 of each wind box 8 measured in the pallet width direction according to the movement of the raw material, and the rising points 15-1 and 15- thereof. 2 can be regarded as a firing point in each portion in the width direction.

【0009】このようにして検出された焼成点により、
幅方向平均の焼成距離(点火炉から焼成点間での距離)
は下記(1)式により求められる。なお、(1)式の右
辺第2項は、幅方向の排風温度測定を2点でしか測定で
きなかったことにより生じる誤差を補正する項である。
By the firing point thus detected,
Width average firing distance (distance from firing furnace to firing point)
Is calculated by the following equation (1). The second term on the right side of the equation (1) is a term for correcting an error caused by the fact that the exhaust air temperature measurement in the width direction can be measured at only two points.

【0010】 Lffp:幅方向平均の焼成距離(m) Lffp、Lffp:幅方向別における焼成点より
求めた焼成距離(m) α:補正係数
(−)
[0010] Lffp: Average firing distance in width direction (m) Lffp 1 , Lffp 2 : Firing distance (m) obtained from firing points in each width direction α: Correction coefficient (-)

【0011】次に、焼成点とあらかじめ設定された所定
風箱の排風温度とから、直近の検出焼成点に対応した原
料が所定の風箱を通過するときの排風温度予測値を下記
(2)式により算出し、排風温度目標値と算出された排
風温度予測値とを比較して、下記(3)式により補正焼
成距離を求める。ここで、(2)式は焼結進行方向の原
料をトラッキングすることにより、直近の実績排風温度
に対応した原料の焼成点検出値と、直近の焼成点検出値
との差を用いることによって、直近の検出焼成点に対応
した原料の排風温度を予測する。図3は排風温度から検
出した焼成点とその焼成点における各風箱の排風温度予
測値とを比較した図であり、25は直近(現時点)の焼
成点に基づく予測排風温度、26は実績排風温度、27
は直近(現時点)の焼成点、28は実績排風温度測定時
の原料が焼成点位置に存在した時の焼成点である。
Next, from the firing point and the preset exhaust air temperature of the predetermined air box, the exhaust air temperature predicted value when the raw material corresponding to the latest detected firing point passes through the predetermined air box is as follows ( Calculated by the formula 2), the exhaust temperature target value and the calculated predicted exhaust temperature value are compared, and the corrected firing distance is obtained by the following formula (3). Here, the expression (2) is obtained by tracking the raw material in the sintering progressing direction and using the difference between the most recent firing point detected value of the raw material corresponding to the latest actual exhaust air temperature and the most recent firing point detected value. , Predict the exhaust air temperature of the raw material corresponding to the latest detected firing point. FIG. 3 is a diagram comparing the firing point detected from the exhaust temperature and the estimated value of the exhaust temperature of each wind box at the firing point, where 25 is the predicted exhaust temperature based on the latest (current) firing point, and 26 is Is the actual exhaust temperature, 27
Is the most recent (current) firing point, and 28 is the firing point when the raw material was present at the firing point position when the actual exhaust air temperature was measured.

【0012】 WBY=1/β{Lffp(T)ーLffp(0)}+TWB ……(2)式 WBY:現焼成距離における排風温度予測値(℃) β:補正係数(m/℃) TWB:排風温度実績値(℃) T:焼成点検出位置とTWB測定風箱間の移動所要時間
(min) Lffp(−t):t分前の補正焼成距離検出値(m)
WBY = 1 / β {Lffp (T 1 ) −Lffp (0)} + TWB (2) Formula WBY: Exhaust air temperature predicted value (° C.) at current firing distance β: Correction coefficient (m / ° C.) TWB: Exhaust air temperature actual value (° C) T 1 : Time required to move between firing point detection position and TWB measurement wind box
(min) Lffp (-t): Corrected firing distance detection value (t) before t minutes

【0013】 LFfp=Lffpーβ・(WBAーWBY) ……(3)式 LFfp:排風温度で補正した焼成距離(m) WBA:排風温度目標値(℃)LFfp = Lffp−β · (WBA−WBY) (3) Formula LFfp: Firing distance corrected by exhaust air temperature (m) WBA: Exhaust air temperature target value (° C.)

【0014】 LWB:点火炉からTWB測定風箱間の距離(m) Ps(−t):t分前のパレット速度測定値(m/min) L11:パレット速度変更により焼成点検出値が変化す
るまでの無駄時間(min)
[0014] LWB: Distance from ignition furnace to TWB measurement wind box (m) Ps (-t): Pallet speed measurement value (m / min) t minutes before L 11 : Until firing point detection value changes due to pallet speed change Dead time (min)

【0015】焼成距離間の平均実績焼成速度Vfは、図
4に示す定常状態における燃焼速度とパレット速度との
関係から、この焼成距離を用いることにより下記(5)
式および(6)式で求めることができる。
The average actual firing rate Vf between firing distances can be calculated from the relationship between the firing rate and the pallet speed in the steady state shown in FIG.
It can be obtained by the equation and the equation (6).

【0016】 Vf(O)=PsB(O)・h(−L12)/LFfp(O) ……(5)式 Vf(−t):t分前の焼成速度実績値(m/min) PsB(−t):t分前の焼成距離間の平均パレット速
度(m/min) L12:充填層厚変更により焼成点検出値が変化するま
での無駄時間(min) h(t):t分前の充填層厚測定値(m)
Vf (O) = PsB (O) · h (−L 12 ) / LFfp (O) (5) Formula Vf (−t): Actual firing rate value t minutes before (m / min) PsB (-t): average pallet velocity between t minutes before firing distance (m / min) L 12: dead time before firing point detection value by the filling layer thickness change is changed (min) h (t): t min Previous measured value of packed bed thickness (m)

【0017】 Ps(−t):t分前のパレット速度測定値(m/min) L11:パレット速度変更により焼成点検出値が変化す
るまでの無駄時間(min) Tt:焼成距離間の移動所要時間(min) (Ttは(7) 式を満たす値)
[0017] Ps (-t): Measured value of pallet speed (t / minute) (m / min) L 11 : Dead time until the detected value of firing point changes due to change of pallet speed (min) Tt: Time required for movement between firing distances ( min) (Tt is a value that satisfies equation (7))

【0018】 [0018]

【0019】また、他に外乱がなければ、焼成速度は下
記(8)式に示す主排風量にほぼ比例して変化する。
If there is no other disturbance, the firing rate changes substantially in proportion to the main exhaust air amount shown in the following equation (8).

【0020】 K:比例係数 Q:主排風量(Nm/min)[0020] K: Proportional coefficient Q: Main exhaust air volume (Nm 3 / min)

【0021】したがって、焼成速度は例えば下記(9)
式によって予測することができる。
Therefore, the firing rate is, for example, (9) below.
It can be predicted by the formula.

【0022】 VfY(−t):t分前の焼成速度予測値(m/min) Qs (−t):t分前の主排風量設定値(m/mi
n) Q(−t):t分前の主排風量測定値(m/min) L:主排風量変更により焼成点検出値が変化するまで
の無駄時間 (min)
[0022] VfY (-t): t min before firing rate estimated value (m / min) Qs (-t ): t minutes before the main exhaust air volume set value (m 3 / mi
n) Q (-t): Measured value of main exhaust air amount before t minutes (m 3 / min) L 2 : Dead time (min) until the firing point detection value changes due to change of main exhaust air amount

【0023】よって、目標の焼成距離を得るためのパレ
ット速度Pscは、目標の焼成距離が与えられると、例
えば下記(10)式により算出することができる。
Therefore, the pallet speed Psc for obtaining the target firing distance can be calculated, for example, by the following equation (10) when the target firing distance is given.

【0024】 Psc:パレット速度(m/min) LffpA:焼成距離目標値[0024] Psc: Pallet speed (m / min) LffpA: Firing distance target value

【0025】なお、焼成点の補正は前記のごとく、特定
風箱の排風温度自体ではなく、排風温度パターンの昇り
勾配、例えば下記(11)式で行う方法によっても同様
の効果が得られる。
As described above, the same effect can be obtained by correcting the firing point not by the exhaust air temperature of the specific air box but by the rising gradient of the exhaust air temperature pattern, for example, the method of the following formula (11). .

【0026】 △T={TWBーTB }/{LWBーLffp(T)} ……(11)式 △T:昇り勾配(℃/m) TB :焼成点検出のベース温度(℃)ΔT = {TWB−TB} / {LWB−Lffp (T 1 )} (11) Formula ΔT: Ascending slope (° C./m) TB: Base temperature for detecting firing point (° C.)

【0027】[0027]

【実施例】図5はこの発明方法を実施するための装置構
成例を示す概略図で、18は充填層厚計、19は排風温
度予測値演算装置、20は焼成距離演算装置、21は焼
成点制御演算装置、22は手動設定器、23はパレット
速度検出調整装置、24は主排風量検出調整装置であ
る。
EXAMPLE FIG. 5 is a schematic view showing an example of the apparatus configuration for carrying out the method of the present invention. 18 is a packed bed thickness gauge, 19 is an exhaust air temperature predicted value calculation device, 20 is a firing distance calculation device, and 21 is A baking point control calculation device, 22 is a manual setting device, 23 is a pallet speed detection adjustment device, and 24 is a main exhaust air amount detection adjustment device.

【0028】すなわち、この発明では焼成距離演算装置
20に各風箱8の熱電対10により測定される排風温度
が入力され、その排風温度の推移から焼成点の検出を行
い、前記(1)式によってパレット幅方向の平均焼成距
離Lffpを演算し、排風温度予測値演算装置19に出
力する。排風温度予測値演算装置19では、前記(2)
式で算出された排風温度予測値に基づいて前記(3)式
によって焼成距離を補正し、その補正された焼成距離L
ffpを焼成点制御演算装置21に出力する。
That is, in the present invention, the exhaust air temperature measured by the thermocouple 10 of each wind box 8 is input to the firing distance calculation device 20, and the firing point is detected from the transition of the exhaust air temperature. ), The average firing distance Lffp in the pallet width direction is calculated, and is output to the exhaust air temperature predicted value calculation device 19. In the exhaust air temperature predicted value calculation device 19, the above (2)
The firing distance is corrected by the equation (3) based on the exhaust air temperature predicted value calculated by the equation, and the corrected firing distance L
The ffp is output to the firing point control arithmetic unit 21.

【0029】焼成点制御演算装置21では、焼成距離演
算装置20から入力された補正焼成距離LFfp、手動
設定器22から入力された焼成距離目標値LffpA、
充填層厚計18から入力された充填層厚測定値h、パレ
ット速度検出調整装置23から入力されたパレット速度
測定値Psおよび主排風量検出調整装置24から入力さ
れた主排風量測定値Qや主排風量設定値Qsにより、前
記(5)式、(6)式、(9)式、(10)式によって、
目標の焼成距離を得るためのパレット速度Pscをパレ
ット速度検出調整装置23の設定値Pssとして与える
ことにより調整する。
In the firing point control computing device 21, the corrected firing distance LFfp input from the firing distance computing device 20, the firing distance target value LffpA input from the manual setting device 22,
The packed bed thickness measurement value h input from the packed bed thickness gauge 18, the pallet speed measurement value Ps input from the pallet speed detection and adjustment apparatus 23, and the main exhaust air quantity measurement value Q input from the main exhaust air quantity detection and adjustment apparatus 24 and According to the main exhaust air flow rate setting value Qs, according to the equations (5), (6), (9), and (10),
It is adjusted by giving the pallet speed Psc for obtaining the target firing distance as the set value Pss of the pallet speed detection adjusting device 23.

【0030】実施例1 この発明方法を主排風機の能力等他の条件を一定にし
て、実際にDL式焼結機に適用して操業した結果を、排
風温度から検出した焼成点のみに基づいてパレット速度
を調整した従来法と比較して表1に示す。表1の結果よ
り明らかなごとく、この発明方法により焼成距離のバラ
ツキが改善され、生産性および歩留の向上と品質の安定
化がはかられた。
Example 1 The method of the present invention was actually applied to a DL type sintering machine while keeping other conditions such as the capacity of the main air exhauster constant, and the result of operation was applied only to the firing point detected from the exhaust air temperature. Table 1 shows a comparison with the conventional method in which the pallet speed is adjusted based on the above. As is clear from the results in Table 1, the method of the present invention improved the variation in the firing distance, improved productivity and yield, and stabilized quality.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【発明の効果】以上説明したごとく、この発明方法によ
れば、焼結機における焼結進行方向の焼成を飛躍的に安
定させることができるので、歩留の悪化を招くことなく
生産量の増大と品質の安定化をはかることができるとい
う大なる効果を奏する。
As described above, according to the method of the present invention, it is possible to dramatically stabilize the sintering in the sintering direction in the sintering machine, so that the production amount can be increased without deteriorating the yield. With this, there is a great effect that the quality can be stabilized.

【図面の簡単な説明】[Brief description of drawings]

【図1】DL式焼結機における焼成点と各風箱の排風温
度との関係を示す概略説明図である。
FIG. 1 is a schematic explanatory diagram showing a relationship between a firing point in a DL type sintering machine and an exhaust air temperature of each air box.

【図2】同上焼結機における風箱の一部を上から見た状
態における排風温度測定用熱電対の配置を示す概略図で
ある。
FIG. 2 is a schematic view showing an arrangement of exhaust air temperature measuring thermocouples in a state where a part of a wind box in the same sintering machine is viewed from above.

【図3】この発明における排風温度から検出した焼成点
とその焼成点における各風箱の排風温度予測値とを比較
した図である。
FIG. 3 is a diagram comparing a firing point detected from an exhaust air temperature in the present invention with a predicted value of the exhaust air temperature of each air box at the firing point.

【図4】DL式焼結機の定常状態における燃焼速度とパ
レット速度との関係を示す説明図である。
FIG. 4 is an explanatory diagram showing a relationship between a combustion speed and a pallet speed in a steady state of a DL type sintering machine.

【図5】この発明方法を実施するための装置構成例を示
す概略説明図である。
FIG. 5 is a schematic explanatory view showing an example of a device configuration for carrying out the method of the present invention.

【符号の説明】[Explanation of symbols]

1 原料装入嵩高計 2 サージホッパー 3 ロールフィーダー 4 原料 5 パレットのクレート 6 充填層 7 点火炉 8 風箱 9 主排風機 10 熱電対 12−1、12−2 燃焼前線 13−1、13−2 焼成点 14−1、14−2 排風温度推移 15−1、15−2 排風温度立上り点 18 充填層厚計 19 排風温度予測値演算装置 20 焼成距離演算装置 21 焼成点制御演算装置 22 手動設定器 23 パレット速度検出調整装置 24 主排風量検出調整装置 25 直近(現時点)の焼成点に基づく予測排風温度 26 実績排風温度 27 直近(現時点)の焼成点 28 実績排風温度測定時の原料が焼成点位置に存在
するときの焼成点 Vf 燃焼速度 (m/min) Pf パレット速度 (m/min) h 充填層厚(m) Lffp 焼成距離(m)
1 Raw material charging bulk height meter 2 Surge hopper 3 Roll feeder 4 Raw material 5 Pallet crate 6 Packed bed 7 Ignition furnace 8 Wind box 9 Main blower 10 Thermocouple 12-1, 12-2 Combustion front 13-1, 13-2 Firing point 14-1, 14-2 Exhaust air temperature transition 15-1, 15-2 Exhaust air temperature rising point 18 Packed bed thickness gauge 19 Exhaust air temperature predicted value calculation device 20 Firing distance calculation device 21 Firing point control calculation device 22 Manual setting device 23 Pallet speed detection and adjustment device 24 Main exhaust air amount detection and adjustment device 25 Predicted exhaust air temperature based on the latest (current) firing point 26 Actual exhaust air temperature 27 Latest (current) firing point 28 Measured actual exhaust air temperature Burning point when the raw material of is present at the burning point position Vf Burning speed (m / min) Pf Pallet speed (m / min) h Packed bed thickness (m) Lffp Burning distance (m)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 濱田 勝成 大阪市中央区北浜4丁目5番33号 住友金 属工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Katsunari Hamada 4-53-3 Kitahama, Chuo-ku, Osaka City Sumitomo Metal Industries, Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 焼結機の排風温度から焼成点を検出し、
該検出値が所定値となるようにパレット速度を調節する
焼結機の操業方法において、各風箱の排風温度測定値か
ら排風温度パターンを算出し、該排風温度パターンが目
標排風温度パターンからずれている場合は、各風箱の実
測排風温度パターンと目標排風温度パターンをパラメー
タとして、検出した焼成点を補正し、該補正焼成点が目
標の焼成点となるようパレット速度を調節することを特
徴とする焼結機の操業方法。
1. A firing point is detected from an exhaust air temperature of a sintering machine,
In the operating method of the sintering machine, which adjusts the pallet speed so that the detected value becomes a predetermined value, the exhaust temperature pattern is calculated from the exhaust temperature measurement value of each wind box, and the exhaust temperature pattern is the target exhaust temperature. If there is a deviation from the temperature pattern, the detected firing point is corrected using the measured exhaust air temperature pattern of each wind box and the target exhaust air temperature pattern as parameters, and the pallet speed is adjusted so that the corrected firing point becomes the target firing point. A method for operating a sintering machine, which comprises adjusting the temperature.
【請求項2】 請求項1において、焼結進行方向の原料
をトラッキングすることによって、直近の検出焼成点に
対応した原料の将来の排風温度を予測し、該予測値を焼
成点の補正に用いることを特徴とする焼結機の操業方
法。
2. The method according to claim 1, wherein by tracking the raw material in the sintering progressing direction, the future exhaust air temperature of the raw material corresponding to the latest detected firing point is predicted, and the predicted value is used as the correction of the firing point. A method of operating a sintering machine, which is characterized by being used.
JP9666393A 1993-03-31 1993-03-31 Operation of sintering machine Pending JPH06287647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9666393A JPH06287647A (en) 1993-03-31 1993-03-31 Operation of sintering machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9666393A JPH06287647A (en) 1993-03-31 1993-03-31 Operation of sintering machine

Publications (1)

Publication Number Publication Date
JPH06287647A true JPH06287647A (en) 1994-10-11

Family

ID=14171063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9666393A Pending JPH06287647A (en) 1993-03-31 1993-03-31 Operation of sintering machine

Country Status (1)

Country Link
JP (1) JPH06287647A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020002109A (en) * 2000-06-29 2002-01-09 이구택 Speed control apparatus and speed control method of sintering machine
KR100413285B1 (en) * 1999-12-29 2003-12-31 주식회사 포스코 Automatic control method of sintering speed
JP2006307259A (en) * 2005-04-27 2006-11-09 Jfe Steel Kk Method for controlling pallet speed in sintering machine
KR101462548B1 (en) * 2013-08-23 2014-11-18 주식회사 포스코 Apparatus for manufacturing sintered ore and method for manufacturing sintered ore using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100413285B1 (en) * 1999-12-29 2003-12-31 주식회사 포스코 Automatic control method of sintering speed
KR20020002109A (en) * 2000-06-29 2002-01-09 이구택 Speed control apparatus and speed control method of sintering machine
JP2006307259A (en) * 2005-04-27 2006-11-09 Jfe Steel Kk Method for controlling pallet speed in sintering machine
KR101462548B1 (en) * 2013-08-23 2014-11-18 주식회사 포스코 Apparatus for manufacturing sintered ore and method for manufacturing sintered ore using the same

Similar Documents

Publication Publication Date Title
US4606529A (en) Furnace controls
JPH11337035A (en) Method of controlling thermal power of incineration plant
JPH06287647A (en) Operation of sintering machine
JP5779716B2 (en) Method and adjuster for adjusting firing completion point in sintering machine
JP2008038210A (en) Method for producing sintered ore
JP2658748B2 (en) Operating method of sintering machine
JPH055589A (en) Operating method for sintering machine
US3399053A (en) Method and apparatus for controlling sintering processes in conveyor type sintering machines
JP3259778B2 (en) Sintering completion point control method for sintering machine
JP2720653B2 (en) Sinter production method
JP2658745B2 (en) Operating method of sintering machine
JP4231459B2 (en) Coke oven coal level control method
JPS5919888B2 (en) Method for controlling the amount of molten glass in float glass plate manufacturing
JPH06256862A (en) Method for controlling pallet velocity in sintering machine
KR102305734B1 (en) Apparatus and method for controlling charging amount of sintering material
JPH03104827A (en) Method for operating sintering machine
JPH02228430A (en) Operation of sintering machine
JPS6220834A (en) Method for controlling sintering with continuous sintering machine
JPH03177787A (en) Reduction of sintering nonuniformity of sintered ore
JPS6333527A (en) Method for controlling surface ignition of sintering ore raw material
JPS63210245A (en) Method for operating sintering machine
SU837939A1 (en) Method of automatic control of charge supply
JPS6013034A (en) Method for controlling heating-up gradient in sintering machine
JPS6013032A (en) Method for controlling calcination point with sintering machine
JPH02194128A (en) Method for operating sintering machine