JPH06287093A - Production of sintered aluminum nitride product having metallized layer - Google Patents

Production of sintered aluminum nitride product having metallized layer

Info

Publication number
JPH06287093A
JPH06287093A JP5097201A JP9720193A JPH06287093A JP H06287093 A JPH06287093 A JP H06287093A JP 5097201 A JP5097201 A JP 5097201A JP 9720193 A JP9720193 A JP 9720193A JP H06287093 A JPH06287093 A JP H06287093A
Authority
JP
Japan
Prior art keywords
weight
powder
particle size
metallized layer
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5097201A
Other languages
Japanese (ja)
Other versions
JP3316923B2 (en
Inventor
Kazuya Kamitake
和弥 上武
Masuhiro Natsuhara
益宏 夏原
Kohei Shimoda
浩平 下田
Jihei Ukekawa
治平 請川
Hirohiko Nakada
博彦 仲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP09720193A priority Critical patent/JP3316923B2/en
Publication of JPH06287093A publication Critical patent/JPH06287093A/en
Application granted granted Critical
Publication of JP3316923B2 publication Critical patent/JP3316923B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5133Metallising, e.g. infiltration of sintered ceramic preforms with molten metal with a composition mainly composed of one or more of the refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications

Abstract

PURPOSE:To provide a production process for a sintered AlN compact having W metallized layer which can make high-density and multilayered wiring with lowered sheet resistance of the metallized layer in no need of reduction in the organic binder which would cause reduction in paste printability. CONSTITUTION:A paste comprising W powder, if needed, ceramic powder and an organic binder is printed on the ceramic green sheet mainly comprising AlN and the product is simultaneously fired in a non-oxidative atmosphere. In the process, 100 pts.wt. of the W powder contains less than 5.0 pts.wt. of the particles of less than 1.0mum, more than 50 pts.wt. of 1.0 to 2.0mum particle sizes, and less than 10 pts.wt. of more than 5.0mum particle sizes and has 0.9 to 3.2g/cm<3> appearance density are used to produce the sintered AlN compact having a metallized layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体用の基板又はパ
ッケージとして有用な、タングステン(W)の金属化層を
有する窒化アルミニウム(AlN)焼結体の製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an aluminum nitride (AlN) sintered body having a metallized layer of tungsten (W), which is useful as a substrate or package for semiconductors.

【0002】[0002]

【従来の技術】近年における半導体素子の高集積化及び
大出力化に伴って基板やパッケージ等の高熱伝導率化の
要請が高まり、熱伝導率の低いアルミナに代わる半導体
用の基板又はパッケージ材料として、電気絶縁性で化学
的安定性に優れ且つ熱伝導率の高いAlN焼結体が注目
を集めている。
2. Description of the Related Art With the recent trend toward higher integration and higher output of semiconductor devices, there is an increasing demand for higher thermal conductivity of substrates and packages, and as a substrate or package material for semiconductors that replaces alumina having low thermal conductivity. The AlN sintered body, which is electrically insulating, excellent in chemical stability and high in thermal conductivity, has been attracting attention.

【0003】又、AlN焼結体に配線を施して基板とし
又はパッケージ化するためには、配線となる金属化層と
してAlN焼結体と熱膨張係数が近似したWを用いるこ
とが好ましいが、Wの金属化層はAlN焼結体との密着
性が悪いという欠点がある。そこで、Wの金属化層とA
lN焼結体との密着性を高め且つ高密度多層配線化を達
成するために、AlNを主成分とするグリーンシート上
にW粉末を含むペーストを印刷し、必要に応じてペース
トを印刷したグリーンシートを積層した後、同時焼成す
る方法が有効とされている。
Further, in order to provide wiring to the AlN sintered body to form a substrate or package, it is preferable to use W having a thermal expansion coefficient similar to that of the AlN sintered body as the metallized layer to be the wiring. The metallized layer of W has the drawback of poor adhesion to the AlN sintered body. Therefore, the metallization layer of W and A
In order to improve the adhesion with the 1N sintered body and achieve high-density multilayer wiring, a paste containing W powder is printed on a green sheet containing AlN as a main component, and the paste is printed as necessary. A method of co-firing after stacking sheets is effective.

【0004】ところで、高熱伝導率のAlN焼結体から
なる基板やパッケージを使用した場合でも、さらなる高
密度多層配線化を達成するためには、Wからなる金属化
層の抵抗を低下させ、金属化層の幅を狭く微細にするこ
とが必要不可欠の技術的課題となってきている。その解
決方法として特開平4−16577号公報には、粗いW
粉末粒子間の空隙や細かいW粉末粒子の凝集固まり内部
の空隙を埋めるため、粒径1μm以下の微細なW粉末を
5〜15重量部と比較的多量に添加することが必要であ
ると記載されている。
By the way, even when a substrate or a package made of an AlN sintered body having a high thermal conductivity is used, in order to achieve higher density multilayer wiring, the resistance of the metallized layer made of W is lowered and It has become an indispensable technical subject to make the width of the chemical conversion layer narrow and fine. As a solution to this problem, Japanese Unexamined Patent Publication No. 4-16577 discloses a coarse W
It is described that it is necessary to add a relatively large amount of 5 to 15 parts by weight of fine W powder having a particle size of 1 μm or less in order to fill the voids between the powder particles and the voids inside the aggregated mass of fine W powder particles. ing.

【0005】[0005]

【発明が解決しようとする課題】前記特開平4−165
77号公報記載の方法によれば、粒径1μm以下の微細
なW粒子の添加によって金属化層中の空隙を減少させ、
W粒子間の電気的導通を高めることが出来ると考えられ
るが、その反面粒径が1μmより小さい微細なW粒子は
表面が非常に活性であるため、この微細なW粒子がペー
スト中に多量に含まれると、有機溶剤や溶媒の炭素や残
留炭化物と焼成時に反応してタングステンカーバイト
(WC)を生成し、このWCが金属化層のシート抵抗を高
めてしまうという欠点を有している。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
According to the method described in Japanese Patent Publication No. 77, the addition of fine W particles having a particle size of 1 μm or less reduces the voids in the metallized layer,
It is thought that electrical conduction between W particles can be enhanced, but on the other hand, since fine W particles having a particle size smaller than 1 μm have a very active surface, a large amount of these fine W particles are contained in the paste. When included, it reacts with organic solvents and solvent carbon and residual carbides during firing to produce tungsten carbide.
It has the disadvantage that it produces (WC), which increases the sheet resistance of the metallization layer.

【0006】高シート抵抗の原因となるWCの生成を抑
えるためには、ペースト中に有機バインダーとして含ま
れる溶媒や溶剤の含有量を低減させ、ペーストの含有炭
素量ないしペースト印刷の乾燥時や焼成時の残留炭化物
を減らせば良いと考えられるが、有機バインダー量の低
減はペーストの印刷性の低下を招き、更には得られる金
属化層のシート抵抗のばらつきの原因となる等の問題が
ある。
In order to suppress the generation of WC which causes a high sheet resistance, the solvent contained in the paste as an organic binder or the content of the solvent is reduced so that the carbon content of the paste or the paste printing is dried or baked. It is considered that the residual carbides at this time should be reduced, but the reduction of the amount of the organic binder causes the deterioration of the printability of the paste, and further causes the variation of the sheet resistance of the obtained metallized layer.

【0007】本発明は、かかる従来の事情に鑑み、ペー
ストの印刷性の低下を招くような有機バインダー量の低
減の必要がなく、金属化層のシート抵抗を従来よりも低
下させ、高密度多層配線が可能なWの金属化層を有する
窒化アルミニウム焼結体の製造方法を提供することを目
的とする。
In view of the above conventional circumstances, the present invention does not need to reduce the amount of the organic binder that causes the deterioration of the printability of the paste, reduces the sheet resistance of the metallized layer more than before, and realizes high density multi-layer. An object of the present invention is to provide a method for manufacturing an aluminum nitride sintered body having a W metallizable layer capable of wiring.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、窒化アルミニウムを主成分とするセラミックスグリ
ーンシート上にタングステン粉末と有機バインダーとか
らなるペーストを印刷した後、非酸化性雰囲気中におい
て同時焼成することによりタングステンの金属化層を有
する窒化アルミニウム焼結体を製造する方法において、
本発明が提供する方法は、前記ペーストに含まれるタン
グステン粉末が、当該タングステン粉末全体を100重
量部としたとき、粒径1.0μm未満のものが5.0重量
部未満、粒径1.0〜2.0μmのものが50重量部以
上、粒径5.0μm以上のものが10重量部以下であっ
て、且つ見掛密度が0.9〜3.2g/cm3の範囲にあ
ることを特徴とするものである。
In order to achieve the above object, a paste composed of a tungsten powder and an organic binder is printed on a ceramic green sheet containing aluminum nitride as a main component, and then cofired in a non-oxidizing atmosphere. In the method of manufacturing an aluminum nitride sintered body having a metallized layer of tungsten by
According to the method provided by the present invention, the tungsten powder contained in the paste has a particle size of less than 1.0 μm and a particle size of less than 5.0 parts by weight, and a particle size of 1.0 when the total amount of the tungsten powder is 100 parts by weight. ˜2.0 μm is 50 parts by weight or more, particle size is 5.0 μm or more is 10 parts by weight or less, and the apparent density is in the range of 0.9 to 3.2 g / cm 3. It is a feature.

【0009】尚、W粉末の見掛密度は、金属粉の見掛密
度試験法(JIS Z 2504)により測定した。Al
Nを主成分とするセラミックスグリーンシート、及びペ
ーストを作るためにW粉末に混合される溶媒や溶剤等の
有機バインダーは、従来と同様であって良い。又、ペー
ストを印刷したセラミックスグリーンシートは、多層配
線化のために必要に応じて何枚か積層した後、同時焼成
し得ることは言うまでもない。
The apparent density of the W powder was measured by the apparent density test method of metal powder (JIS Z 2504). Al
The ceramic green sheet containing N as a main component and a solvent or an organic binder such as a solvent mixed with the W powder to form a paste may be the same as conventional ones. Further, it goes without saying that the ceramic green sheets printed with the paste may be co-fired after laminating several sheets as needed for multilayer wiring.

【0010】[0010]

【作用】本発明においては、ペースト中のW粉末の粒径
分布と見掛密度を最適化することによって、空隙を少な
くしてW粒子同士の接触面積を増やすと同時に、シート
抵抗を低下させるWCの生成を抑制する。まずW粉末の
粒径分布は、ペースト中のW粉末全体を100重量部と
したとき、その大部分である50重量部以上を粒径1.
0〜2.0μmのものとし、粒径1.0μm未満の微細な
W粉末が5.0重量部未満、粒径5.0μm以上のW粉末
が10重量部以下となるように調整する必要がある。
In the present invention, by optimizing the particle size distribution and apparent density of the W powder in the paste, the voids are reduced to increase the contact area between the W particles and at the same time reduce the sheet resistance. Suppress the generation of. First, regarding the particle size distribution of W powder, when the entire W powder in the paste is 100 parts by weight, the particle size of 50 parts by weight or more, which is the majority, is 1.
It is necessary to adjust so that fine W powder having a particle size of less than 1.0 μm is less than 5.0 parts by weight and W powder having a particle size of 5.0 μm or more is 10 parts by weight or less. is there.

【0011】特に、粒径1.0μm未満の微細なW粉末
は、その表面が非常に活性であり、残留する有機バイン
ダーの炭素と反応してWCを生成する。従って、その含
有量が5.0重量部以上になると、生成するWCが多く
なって金属化層のシート抵抗が上昇するので、5.0重
量部未満に抑える必要がある。一方、粒径5.0μm以
上の粗大なW粉末は比表面積が小さいため、周囲のW粒
子との接触面積が少ないので、その含有量が10重量部
を越えると焼結が困難になると共に、金属化層のシート
抵抗の低下につながる。
In particular, fine W powder having a particle size of less than 1.0 μm has a very active surface, and reacts with the carbon of the remaining organic binder to form WC. Therefore, if the content is 5.0 parts by weight or more, the WC produced increases and the sheet resistance of the metallized layer increases, so it is necessary to suppress it to less than 5.0 parts by weight. On the other hand, since coarse W powder having a particle size of 5.0 μm or more has a small specific surface area, the contact area with the surrounding W particles is small, and if the content exceeds 10 parts by weight, sintering becomes difficult and This leads to a reduction in the sheet resistance of the metallized layer.

【0012】しかしながら、W粉末の粒径のみを最適化
したとしても、W粉末の見掛密度が高過ぎたり又は低過
ぎたりすると、やはり金属化層のシート抵抗が上昇して
しまう。即ち、W粉末の見掛密度が0.9g/cm3(タ
ップ密度で2.0g/cm3)未満では、W粒子相互の接
触面積が下がるため、焼結が困難であると共に、金属化
層中の空隙が増大してシート抵抗が大きくなる。逆に、
見掛密度が3.2g/cm3(タップ密度で7.0g/c
3)を越えると、粒径によらずW粒子間の隙間が極め
て少なくなるため、乾燥時や焼成時にペースト中の有機
バインダーがそのまま又は炭化物として残留し易くな
り、この炭素や炭化物とWが反応して多量のWCを生成
し、金属化層のシート抵抗を上昇させるのである。
However, even if only the particle size of the W powder is optimized, if the apparent density of the W powder is too high or too low, the sheet resistance of the metallized layer also rises. That is, when the apparent density of the W powder is less than 0.9 g / cm 3 (tap density is 2.0 g / cm 3 ), the contact area between the W particles is reduced, so that it is difficult to sinter and the metallized layer is formed. The voids in the inside increase and the sheet resistance increases. vice versa,
Apparent density 3.2g / cm 3 (Tap density 7.0g / c
If it exceeds m 3 ), the gap between W particles becomes extremely small regardless of the particle size, so that the organic binder in the paste tends to remain as it is or as a carbide at the time of drying or firing, and this carbon or carbide and W The reaction produces a large amount of WC, which increases the sheet resistance of the metallized layer.

【0013】この様に、本発明においては粒径と見掛密
度の両方を最適化させたW粉末を使用するので、W粒子
同士の接触面積を大きく出来ると同時に、焼成時まで残
留する有機バインダーや炭化物の量を極めて少なく出来
る結果、シート抵抗の低下原因となるWCの生成を抑え
ることが出来る。従って、WCの生成を抑制させるため
にペースト中の有機バインダーの含有量を特に低減させ
る必要はない。好ましい有機バインダーの含有量は2.
0〜10.0重量%(固形分)であり、特に含有量が2.
0重量%未満になるとペーストの印刷性が低下する。
As described above, in the present invention, since the W powder having the optimized particle size and the apparent density is used, the contact area between the W particles can be increased, and at the same time, the organic binder remaining until the firing is performed. As a result of the extremely small amount of carbides and carbides, it is possible to suppress the formation of WC which causes a reduction in sheet resistance. Therefore, it is not necessary to particularly reduce the content of the organic binder in the paste in order to suppress the generation of WC. The preferred organic binder content is 2.
0 to 10.0% by weight (solid content), especially the content is 2.
If it is less than 0% by weight, the printability of the paste will deteriorate.

【0014】更に、本発明方法に使用するペーストに
は、Wの金属化層と窒化アルミニウム焼結体との密着強
度を高め、及び焼結時におけるWのペーストと窒化アル
ミニウムを主成分とするグリーンシートとの収縮挙動の
ずれを緩和して収縮率を一致又は近似させるため、セラ
ミックス粉末を添加することが好ましい。セラミックス
粉末の種類は、Al、Si、Y、Ti、Zr、Mg、C
a及び希土類元素の酸化物の少なくとも1種が好まし
い。
Further, the paste used in the method of the present invention is one in which the adhesion strength between the metallized layer of W and the aluminum nitride sintered body is increased, and the green paste containing W paste and aluminum nitride as a main component at the time of sintering. It is preferable to add ceramic powder in order to alleviate the deviation of the contraction behavior from the sheet and to make the contraction rate equal or approximate. The types of ceramic powder are Al, Si, Y, Ti, Zr, Mg, and C.
At least one of oxides of a and rare earth elements is preferable.

【0015】又、添加するセラミックス粉末の粒径は1
μm以下であることが好ましく、更にセラミックス粉末
の添加量は、タングステン粉末100重量部に対して1
0重量%を越えると金属層のシート抵抗が増大するの
で、10重量%以下とすることが好ましい。
The particle size of the ceramic powder to be added is 1
The ceramic powder content is preferably 1 μm or less.
If it exceeds 0% by weight, the sheet resistance of the metal layer increases, so that it is preferably 10% by weight or less.

【0016】[0016]

【実施例】実施例1 W粉末は、表1に示す粒径分布となるように、粒径の異
なる数種のW原料粉をそれぞれ秤量し、混合して調整し
た。更に、粒径を調整した各W粉末を乾燥器にて105
℃で1時間乾燥し、デシケーター中で室温まで冷却した
後、JIS Z2504の金属粉の見掛密度試験法に従
って見掛密度を測定した。使用するW粉末の粒径分布と
見掛密度を下記表1に示した。更に、各W粉末100重
量部に、粒径がいずれも1μm以下のY23粉末、Al
23粉末及びSiO2粉末を各1.0重量部添加して混合
した。
EXAMPLES Example 1 W powder was prepared by weighing and mixing several kinds of W raw material powders having different particle sizes so as to have the particle size distribution shown in Table 1. Further, each W powder having a controlled particle size was dried with a drier.
After drying at 0 ° C. for 1 hour and cooling to room temperature in a desiccator, the apparent density was measured according to the apparent density test method for metal powder of JIS Z2504. The particle size distribution and apparent density of the W powder used are shown in Table 1 below. Further, 100 parts by weight of each W powder, Y 2 O 3 powder having a particle size of 1 μm or less, Al
2.0 parts by weight of 2 O 3 powder and 1.0 part by weight of SiO 2 powder were added and mixed.

【0017】次に、各Wとセラミックスの混合粉末に有
機バインダーとして4重量%のエチルセルロースと8重
量%のテルピネオールをそれぞれ添加し、3本ロールミ
ルにより十分混練して、金属化層形成用のペーストをそ
れぞれ作成した。得られた各ペーストを用いて、AlN
を主成分とするセラミックスグリーンシート上に、長さ
40.0mm、幅2.0mm、厚さ25μmの配線パター
ンを30本スクリーン印刷により印刷し、乾燥した後、
窒素ガス雰囲気中1800℃で焼成して、それぞれW金
属化層を有するAlN焼結体を得た。
Next, 4% by weight of ethyl cellulose and 8% by weight of terpineol were added as organic binders to the mixed powder of each W and ceramics, and they were sufficiently kneaded by a three-roll mill to form a paste for forming a metallized layer. Created respectively. Using each obtained paste, AlN
After printing 30 wiring patterns with a length of 40.0 mm, a width of 2.0 mm and a thickness of 25 μm by screen printing on a ceramics green sheet containing as a main component, and drying,
By firing at 1800 ° C. in a nitrogen gas atmosphere, AlN sintered bodies each having a W metallized layer were obtained.

【0018】得られた各AlN焼結体の金属化層につい
て、4端子法によりシート抵抗を測定し、その平均値を
求めて下記表1に示した。表1の結果から、比較例の各
試料のシート抵抗値は7.0mΩ/□以上であるのに対
して、本発明例の各試料のシート抵抗値は4.4〜6.1
mΩ/□と非常に小さくなっており、特に試料1及び2
と試料16の比較、試料5及び6と試料17の比較か
ら、粒径分布が最適化されていても見掛密度が所定の範
囲内になければ、シート抵抗が増大してしまうことが判
る。
The sheet resistance of each of the obtained metallized layers of AlN sintered bodies was measured by the four-terminal method, and the average value thereof was calculated and shown in Table 1 below. From the results of Table 1, the sheet resistance value of each sample of the comparative example is 7.0 mΩ / □ or more, while the sheet resistance value of each sample of the present invention example is 4.4 to 6.1.
Very small as mΩ / □, especially for samples 1 and 2
From the comparison of Sample 17 with Sample 16 and the comparison of Samples 5 and 6 with Sample 17, it can be seen that the sheet resistance increases if the apparent density is not within the predetermined range even if the particle size distribution is optimized.

【0019】[0019]

【表1】 W 粉 末 の 粒 径 分 布(重量部) 見掛密度 シート抵抗試料 <1.0μm 1〜2μm 5μm≦ その他 (g/cm3) (mΩ/□) 1 4.0 50.0 5.0 41.0 2.3(5.1) 5.5 2 4.0 50.0 5.0 41.0 1.5(3.6) 5.7 3 4.0 50.0 1.0 45.0 2.4(5.3) 5.1 4 1.0 50.0 5.0 44.0 1.8(4.1) 4.4 5 4.0 70.0 5.0 21.0 2.9(6.5) 5.8 6 4.0 70.0 5.0 21.0 2.4(5.5) 5.9 7 4.0 70.0 1.0 25.0 3.1(6.7) 5.3 8 1.0 70.0 5.0 24.0 2.8(5.9) 4.6 9 4.0 90.0 5.0 1.0 1.7(4.0) 6.1 10 4.0 90.0 5.0 1.0 1.1(2.7) 6.3 11 4.0 90.0 1.0 5.0 1.8(4.3) 5.8 12 4.0 90.0 5.0 4.0 1.4(3.2) 4.9 13* 4.0 40.0 5.0 51.0 0.7(1.7) 8.5 14* 10.0 50.0 5.0 35.0 1.5(3.3) 6.9 15* 10.0 70.0 5.0 15.0 2.1(5.0) 7.4 16* 4.0 50.0 5.0 41.0 3.4(7.4) 9.0 17* 4.0 70.0 5.0 21.0 3.7(8.3) 9.6 18* 30.0 50.0 5.0 15.0 3.5(8.4) 11.9 19* 30.0 70.0 0 0 4.2(9.4) 12.5 20* 1.0 50.0 10.0 39.0 1.3(2.9) 7.0 21* 1.0 50.0 10.0 39.0 0.8(1.7) 8.0 (注)表中の*を付した試料は比較例である。又、見掛
密度の欄の括弧内の数値は同一W粉末のタップ密度を表
す。
[Table 1] Particle size distribution of W powder (weight part) Apparent density Sheet resistance sample <1.0 μm 1 to 2 μm 5 μm ≦ Other (g / cm 3 ) (mΩ / □) 1 4.0 50.0 5.0 41.0 2.3 (5.1 ) 5.5 2 4.0 50.0 5.0 41.0 1.5 (3.6) 5.7 3 4.0 50.0 1.0 45.0 2.4 (5.3) 5.1 4 1.0 50.0 5.0 44.0 1.8 (4.1) 4.4 5 4.0 70.0 5.0 21.0 2.9 (6.5) 5.8 6 4.0 70.0 5.0 21.0 2.4 (5.5 ) 5.9 7 4.0 70.0 1.0 25.0 3.1 (6.7) 5.3 8 1.0 70.0 5.0 24.0 2.8 (5.9) 4.6 9 4.0 90.0 5.0 1.0 1.7 (4.0) 6.1 10 4.0 90.0 5.0 1.0 1.1 (2.7) 6.3 11 4.0 90.0 1.0 5.0 1.8 (4.3 ) 5.8 12 4.0 90.0 5.0 4.0 1.4 (3.2) 4.9 13 * 4.0 40.0 5.0 51.0 0.7 (1.7) 8.5 14 * 10.0 50.0 5.0 35.0 1.5 (3.3) 6.9 15 * 10.0 70.0 5.0 15.0 2.1 (5.0) 7.4 16 * 4.0 50.0 5.0 41.0 3.4 (7.4) 9.0 17 * 4.0 70.0 5.0 21.0 3.7 (8.3) 9.6 18 * 30.0 50.0 5.0 15.0 3.5 (8.4) 11.9 19 * 30.0 70.0 0 0 4.2 (9.4) 12.5 20 * 1.0 50.0 10.0 39.0 1.3 (2.9) 7.0 21 * 1.0 50.0 10.0 39.0 0.8 (1.7) 8.0 (Note) The samples marked with * in the table are comparative examples. The numerical value in the parentheses in the apparent density column indicates the tap density of the same W powder.

【0020】実施例2 実施例1の試料3に相当する粒径分布に調整したW粉末
に、表2に示すセラミックス粉末をそれぞれ添加混合し
た後、実施例1と同様の方法に従って、ペーストを作成
し、各ペーストを用いてセラミックスグリーンシート上
に配線パターンをスクリーン印刷し、焼成してW金属化
層を有するAlN焼結体を得た。
Example 2 Ceramic powders shown in Table 2 were added to and mixed with W powders having a particle size distribution adjusted to that of Sample 3 of Example 1, and then a paste was prepared in the same manner as in Example 1. Then, using each paste, a wiring pattern was screen-printed on the ceramic green sheet and fired to obtain an AlN sintered body having a W metallized layer.

【0021】得られた各AlN焼結体の金属化層につい
て、4端子法によりシート抵抗を測定し、その平均値を
求めて下記表2に示した。表2の結果から、本発明例の
各試料のシート抵抗値は、セラミックス粉末を全く含ま
ない試料22で最低の4.3mΩ/□であり、最高でも
6.3mΩ/□であるのに対して、セラミックス粉末の
添加量が10重量%を越える比較例の各試料のシート抵
抗値は最低でも6.9mΩ/□と増大していることが判
る。
With respect to the metallized layer of each of the obtained AlN sintered bodies, the sheet resistance was measured by the 4-terminal method, and the average value thereof was calculated and shown in Table 2 below. From the results of Table 2, the sheet resistance value of each sample of the present invention is 4.3 mΩ / □, which is the minimum in Sample 22 containing no ceramic powder, and the maximum is 6.3 mΩ / □. It can be seen that the sheet resistance value of each sample of the comparative example in which the addition amount of the ceramic powder exceeds 10% by weight is increased to at least 6.9 mΩ / □.

【0022】[0022]

【表2】 セラミックス粉末の添加量(重量部) シート抵抗試料 Al2O3 SiO2 Y2O3 MgO CaO 合 計 (mΩ/□) 22 0 0 0 0 0 0 4.2 23 0.5 0.5 0.5 0 0 1.5 4.3 24 1.0 1.0 1.0 0 0 3.0 4.4 25 2.0 2.0 2.0 0 0 6.0 4.8 26 3.0 3.0 3.0 0 0 9.0 5.4 27 4.0 3.0 3.0 0 0 10.0 5.9 28* 5.0 5.0 5.0 0 0 15.0 6.9 29 0.5 0.5 0 0.5 0 1.5 4.5 30 1.0 1.0 0 1.0 0 3.0 4.9 31 2.0 2.0 0 2.0 0 6.0 5.3 32 3.0 3.0 0 3.0 0 9.0 6.3 33* 5.0 5.0 0 5.0 0 15.0 7.4 34 0.5 0.5 0 0 0.5 1.5 4.4 35 1.0 1.0 0 0 1.0 3.0 4.8 36 2.0 2.0 0 0 2.0 6.0 5.3 37 3.0 3.0 0 0 3.0 9.0 6.0 38* 5.0 5.0 0 0 5.0 15.0 7.2 (注)表中の*を付した試料は比較例である。[Table 2] Addition amount of ceramic powder (parts by weight) Sheet resistance sample Al 2 O 3 SiO 2 Y 2 O 3 MgO CaO total (mΩ / □) 22 0 0 0 0 0 0 4.2 23 0.5 0.5 0.5 0 0 1.5 4.3 24 1.0 1.0 1.0 0 0 3.0 4.4 25 2.0 2.0 2.0 0 0 6.0 4.8 26 3.0 3.0 3.0 0 0 9.0 5.4 27 4.0 3.0 3.0 0 0 10.0 5.9 28 * 5.0 5.0 5.0 0 0 15.0 6.9 29 0.5 0.5 0 0.5 0 1.5 4.5 30 1.0 1.0 0 1.0 0 3.0 4.9 31 2.0 2.0 0 2.0 0 6.0 5.3 32 3.0 3.0 0 3.0 0 9.0 6.3 33 * 5.0 5.0 0 5.0 0 15.0 7.4 34 0.5 0.5 0 0 0.5 1.5 4.4 35 1.0 1.0 0 0 1.0 3.0 4.8 36 2.0 2.0 0 0 2.0 6.0 5.3 37 3.0 3.0 0 0 3.0 9.0 6.0 38 * 5.0 5.0 0 0 5.0 15.0 7.2 (Note) * marked samples in the table are comparative examples.

【0023】[0023]

【発明の効果】本発明によれば、ペーストの印刷性の低
下を招くほど有機バインダー量を低減させることなく、
W粉末の粒径分布と見掛密度の最適化を図ることによっ
て、Wの金属化層のシート抵抗を著しく低減させること
ができ、よって配線幅が従来より狭くても電気抵抗の小
さい金属化層を有する窒化アルミニウム焼結体を得るこ
とが出来る。本発明の金属化層を有する窒化アルミニウ
ム焼結体は、半導体用の配線基板又はパッケージとし
て、配線の高密度化あるいは多層配線化に対して有効で
ある。
According to the present invention, the amount of the organic binder is not reduced to such an extent that the printability of the paste is deteriorated.
By optimizing the particle size distribution and apparent density of the W powder, the sheet resistance of the W metallization layer can be significantly reduced, and thus the metallization layer having a smaller electric resistance even if the wiring width is narrower than the conventional one. It is possible to obtain an aluminum nitride sintered body having INDUSTRIAL APPLICABILITY The aluminum nitride sintered body having the metallized layer of the present invention is effective as a wiring board or a package for semiconductors for increasing the density of wiring or for forming multi-layered wiring.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 請川 治平 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内 (72)発明者 仲田 博彦 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Jihei Jikawa 1-1-1 Kunyo Kita, Itami City, Hyogo Prefecture Sumitomo Electric Industries, Ltd. Itami Works (72) Inventor Hirohiko Nakata 1-chome, Koyo Kita, Itami City, Hyogo Prefecture No. 1 in Sumitomo Electric Industries Itami Works

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 窒化アルミニウムを主成分とするセラミ
ックスグリーンシート上にタングステン粉末と有機バイ
ンダーとからなるペーストを印刷した後、非酸化性雰囲
気中において同時焼成することによりタングステンの金
属化層を有する窒化アルミニウム焼結体を製造する方法
において、前記ペーストに含まれるタングステン粉末
が、当該タングステン粉末全体を100重量部としたと
き、粒径1.0μm未満のものが5.0重量部未満、粒径
1.0〜2.0μmのものが50重量部以上、粒径5.0
μm以上のものが10重量部以下であって、且つ見掛密
度が0.9〜3.2g/cm3の範囲にあることを特徴と
する金属化層を有する窒化アルミニウム焼結体の製造方
法。
1. A nitride having a metallized layer of tungsten by printing a paste composed of a tungsten powder and an organic binder on a ceramic green sheet containing aluminum nitride as a main component and co-firing in a non-oxidizing atmosphere. In the method for producing an aluminum sintered body, the tungsten powder contained in the paste has a particle size of less than 1.0 μm and a particle size of less than 5.0 parts by weight and a particle size of 1 when the total amount of the tungsten powder is 100 parts by weight. 50 parts by weight or more with particle size of 5.0 to 2.0 μm, particle size of 5.0
A method for producing an aluminum nitride sintered body having a metallized layer, characterized in that the particles having a thickness of μm or more are 10 parts by weight or less and the apparent density is in the range of 0.9 to 3.2 g / cm 3. .
【請求項2】 タングステン粉末100重量部に対し
て、Al、Si、Y、Ti、Zr、Mg、Ca及び希土
類元素の酸化物の少なくとも1種からなる粒径1μm以
下のセラミックス粉末を10重量部以下添加することを
特徴とする、請求項1記載の金属化層を有する窒化アル
ミニウム焼結体の製造方法。
2. To 100 parts by weight of tungsten powder, 10 parts by weight of a ceramic powder having a particle size of 1 μm or less and made of at least one of Al, Si, Y, Ti, Zr, Mg, Ca and oxides of rare earth elements. The method for producing an aluminum nitride sintered body having a metallized layer according to claim 1, characterized by adding the following.
【請求項3】 前記ペーストに含まれる有機バインダー
(固形分)の量が、ペースト全体の2.0〜10.0重量
%であることを特徴とする、請求項1又は2に記載の金
属化層を有する窒化アルミニウム焼結体の製造方法。
3. The metallization according to claim 1, wherein the amount of the organic binder (solid content) contained in the paste is 2.0 to 10.0% by weight of the whole paste. A method for manufacturing an aluminum nitride sintered body having a layer.
JP09720193A 1993-03-31 1993-03-31 Method for producing aluminum nitride sintered body having metallized layer Expired - Lifetime JP3316923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09720193A JP3316923B2 (en) 1993-03-31 1993-03-31 Method for producing aluminum nitride sintered body having metallized layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09720193A JP3316923B2 (en) 1993-03-31 1993-03-31 Method for producing aluminum nitride sintered body having metallized layer

Publications (2)

Publication Number Publication Date
JPH06287093A true JPH06287093A (en) 1994-10-11
JP3316923B2 JP3316923B2 (en) 2002-08-19

Family

ID=14186000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09720193A Expired - Lifetime JP3316923B2 (en) 1993-03-31 1993-03-31 Method for producing aluminum nitride sintered body having metallized layer

Country Status (1)

Country Link
JP (1) JP3316923B2 (en)

Also Published As

Publication number Publication date
JP3316923B2 (en) 2002-08-19

Similar Documents

Publication Publication Date Title
US4109377A (en) Method for preparing a multilayer ceramic
JP5872998B2 (en) Alumina sintered body, member comprising the same, and semiconductor manufacturing apparatus
CA2072727A1 (en) Copper-based paste containing copper aluminate, for microstructural and shrinkage control of copper-filled vias
KR100259562B1 (en) Nickel powder containing a composite oxide of la and ni and process for preparing the same
JPH0387091A (en) Alumina multilayer wiring board having high dielectric layer
JP3517062B2 (en) Copper metallized composition and glass-ceramic wiring board using the same
US6171988B1 (en) Low loss glass ceramic composition with modifiable dielectric constant
JPH06287093A (en) Production of sintered aluminum nitride product having metallized layer
EP0834368A1 (en) Nickel powder and process for preparing the same
JP3537698B2 (en) Wiring board and method of manufacturing the same
JPH01167291A (en) Metallized composition for ceramic
JPH04285073A (en) Aluminum nitride-based substrate
JP2891518B2 (en) Manufacturing method of aluminum nitride multilayer wiring board
JPH11274725A (en) Multilayer wiring board and manufacture thereof
JPH0697659A (en) Low temperature baked ceramics multi-layer substrate and its manufacture
JPH11163487A (en) Conductive paste for ceramic multilayered circuit board
JPH08323925A (en) Alumina-mullite laminated structure and production thereof
JP2600778B2 (en) Low temperature sintering porcelain composition for multilayer substrate
JP3709062B2 (en) Aluminum nitride wiring board and manufacturing method thereof
JPS63265858A (en) Low-temperature sintered ceramics composition for multi-layered substrate
JP2002231049A (en) Conductive paste
Chen et al. Effect of metal oxide precursor on sintering shrinkage, microstructure evolution and electrical properties of silver-based pastes
JPH0936521A (en) Manufacture of ceramic circuit board
JPH05283274A (en) Paste composition for copper-based conductor and manufacture of laminated ceramic element
JPH02279577A (en) Production of ceramic substrate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120614

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130614

Year of fee payment: 11