JPH0628222B2 - Proximity type exposure system - Google Patents

Proximity type exposure system

Info

Publication number
JPH0628222B2
JPH0628222B2 JP61121029A JP12102986A JPH0628222B2 JP H0628222 B2 JPH0628222 B2 JP H0628222B2 JP 61121029 A JP61121029 A JP 61121029A JP 12102986 A JP12102986 A JP 12102986A JP H0628222 B2 JPH0628222 B2 JP H0628222B2
Authority
JP
Japan
Prior art keywords
substrate
exposed
mask
chuck
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61121029A
Other languages
Japanese (ja)
Other versions
JPS62279629A (en
Inventor
田中  勉
朝宏 久迩
素也 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61121029A priority Critical patent/JPH0628222B2/en
Publication of JPS62279629A publication Critical patent/JPS62279629A/en
Publication of JPH0628222B2 publication Critical patent/JPH0628222B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、被露光基板(ウエハ)とマスクとを微小間隙
形成して前記マスク上に形成された微細な回路パターン
を前記被露光基板に露光転写するプロキシミティ方式の
露光装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is to form a minute gap between a substrate (wafer) to be exposed and a mask to form a fine circuit pattern on the mask on the substrate to be exposed. The present invention relates to a proximity type exposure apparatus that performs exposure and transfer.

〔従来の技術〕[Conventional technology]

従来のプロキシミティ方式の露光装置は、ウエハチャッ
クを球面座方式としている。そして、一度マスクにウエ
ハを押し付けて平行出しを行った後、ウエハチャックを
一定量下降させてプロキシミティギャップを取るように
している。
In the conventional proximity type exposure apparatus, the wafer chuck is a spherical seat type. Then, the wafer is once pressed against the mask to perform parallel alignment, and then the wafer chuck is lowered by a certain amount to establish the proximity gap.

この球面座方式では、ウエハ表面の平面度と球面座の追
従性が平行出し精度に影響する。また、機械的接触によ
る強制であるため、機構系、特に球面座の特性に影響さ
れやすく、摩耗によるガタ等で平行出し精度が経時的に
劣化することが往々にしてある。
In this spherical seat system, the flatness of the wafer surface and the followability of the spherical seat affect the parallelization accuracy. Further, since the force is applied by mechanical contact, the characteristics of the mechanical system, particularly the spherical seat, are easily influenced, and the parallelism accuracy is often deteriorated with time due to backlash due to wear.

さらに、プロキシミティ露光をする場合には、ウエハの
厚さムラ,そりが重要な問題である。そこで、特開昭57
−30330号公報に開示されている従来技術では、ウエハ
の平面度を測定し、ウエハのそりが最小になるように、
ウエハチャックのウエハ真空吸着力を調整するようにし
ている。
Further, in the case of proximity exposure, unevenness in wafer thickness and warpage are important problems. Therefore, JP-A-57
In the prior art disclosed in Japanese Patent Publication No.-30330, the flatness of the wafer is measured so that the warp of the wafer is minimized.
The wafer vacuum suction force of the wafer chuck is adjusted.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

前記従来技術のうちの、ウエハチャックに球面座を用い
る従来技術では、マスクにウエハを押し付けるため、マ
スクの損傷あるいはレジストの剥離等の不良が生じ、歩
留まりが向上しないという問題がある。また、球面座も
受け部との間に、精度的に完全な接触面を作ることは非
常に難しく、さらに摩耗による機械的ガタを生じること
があり、これが平行出し精度を劣化させることにより、
マスクとのプロキシミティギャップを高精度に設定する
ことが難しくしているという課題を有していた。
Among the above-mentioned conventional techniques, the conventional technique in which the spherical surface is used for the wafer chuck presses the wafer against the mask. Therefore, defects such as damage to the mask or peeling of the resist occur, and the yield is not improved. In addition, it is very difficult to form a perfect contact surface accurately between the spherical seat and the receiving portion, and mechanical backlash may occur due to wear, which deteriorates the parallel alignment accuracy.
There is a problem that it is difficult to set the proximity gap with the mask with high accuracy.

一方、ウエハのそりをウエハチャックの真空吸着力を調
整することにより矯正する従来技術では、ウエハの素材
の弾性力と真空吸着力のバランスを取るようにしてお
り、大きなそり,かえりについてはある程度矯正が可能
であるが、比較的小さな領域についての矯正については
非常に難しい構成となっている。また、この従来技術は
ウエハのそりやかえりの矯正について配慮しているにと
どまり、マスクとの平行出し,ギャップ出しについては
特に配慮されておらず、微小なプロキシミティギャップ
を設定するには多少問題が残されているものと考えられ
る。
On the other hand, in the conventional technology for correcting the warp of the wafer by adjusting the vacuum suction force of the wafer chuck, the elastic force of the material of the wafer and the vacuum suction force are balanced, and the large warp and the burr are corrected to some extent. However, it is very difficult to correct a relatively small area. Further, this prior art only considers the correction of the warp and the burr of the wafer, and does not particularly consider the parallel alignment with the mask and the gap alignment, and there is some problem in setting a small proximity gap. Is believed to have been left.

本発明の目的は、上記従来技術の課題を解決すべく、被
露光基板の表面に亘って多数の点の高さ情報を測定する
測定手段を簡素化してしかも露光位置において被露光基
板の厚さムラ等による被露光基板の表面の微小凹凸をな
くしてマスクと被露光基板の表面との微小間隙を均一に
してマスク上に形成された微細な回路パターンを高解像
度で被露光基板に露光転写できるようにしたプロキシミ
ティ方式の露光装置を提供することにある。
An object of the present invention is to simplify the measuring means for measuring the height information of a large number of points over the surface of the substrate to be exposed in order to solve the above-mentioned problems of the prior art, and yet to provide the thickness of the substrate to be exposed at the exposure position. By eliminating fine irregularities on the surface of the substrate to be exposed due to unevenness and so on, the fine gap between the mask and the surface of the substrate can be made uniform, and the fine circuit pattern formed on the mask can be transferred to the substrate to be exposed with high resolution. An object of the present invention is to provide a proximity type exposure apparatus.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記目的を達成するために、被露光基板とマ
スクとを微小間隙形成して前記マスク上に形成された回
路パターンを前記被露光基板上に露光するプロキシミテ
ィ方式の露光装置において、前記被露光基板を吸着する
弾性変形可能な板状部材を有し、内部に前記弾性変形可
能な板状部材を部分的に変形させて前記被露光基板を変
形させる上下動微動素子を複数個配置した基板チャック
と、該基板チャックを少なくとも3点で支持して少なく
とも2点において上下動させて前記マスクに対する前記
被露光基板の傾きを制御するチルト用上下素子を備えて
前記基板チャックを高さ方向に制御するZステージと、
該Zステージを水平方向に移動させて前記被露光基板を
前記マスクの対向する露光位置へ搬入走行させるスライ
ドベースと、該スライドベースの搬入走行方向に対して
ほぼ直角方向に配列させて前記マスクの近傍に設けら
れ、前記スライドベースの搬入走行により前記被露光基
板の表面に亘って多数の点の高さ情報を測定する複数の
測定センサと、該複数の測定センサで測定された前記被
露光基板の表面の高さ情報から被露光基板の表面の平均
的な回帰平面を算出し、該回帰平面に対して前記複数の
測定センサで測定された前記被露光基板の表面の高さ情
報に基づいて前記基板チャック内の上下動微動素子を駆
動して前記弾性変形可能な板状部材を部分的に変形させ
て前記被露光基板を変形させて被露光基板の表面を回帰
平面に合わせる被露光基板変形制御手段と、前記スライ
ドベースの搬入走行により露光位置にもち来され、前記
被露光基板変形制御手段で回帰平面に合わせられた被露
光基板の表面からの光学像と前記マスクからの光学像と
を光電変換手段で受光して得られる信号に基づいて前記
被露光基板の表面と前記マスクとの間の間隙を少なくと
も周辺の3個所において測定する間隙測定手段と、該間
隙測定手段により少なくとも周辺の3個所において測定
された間隙がほぼ等しくなるように前記Zステージにお
けるチルト用上下動素子を駆動制御する被露光基板チル
ト制御手段とを備えたことを特徴とするプロキシミティ
方式の露光装置である。また本発明は、前記プロキシミ
ティ方式の露光装置において、前記測定センサをエアマ
イクロメータで構成したことを特徴とする。また本発明
は、前記プロキシミティ方式の露光装置において、前記
基板チャック内の上下動微動素子および前記Zステージ
におけるチルト用上下動素子をピエゾ素子で構成したこ
とを特徴とする。また本発明は、前記プロキシミティ方
式の露光装置において、前記間隙測定手段として、前記
マスクおよび被露光基板の表面の各々に設けられたパタ
ーンの光学像を結像させて光電変換手段で受光して得ら
れる合焦点検出信号に基づいてマスクと被露光基板の表
面との間隙を測定するように構成したことを特徴とす
る。
The present invention, in order to achieve the above object, in a proximity type exposure apparatus for forming a minute gap between a substrate to be exposed and a mask to expose a circuit pattern formed on the mask onto the substrate to be exposed, A plurality of vertical movement fine movement elements, each of which has an elastically deformable plate-like member that attracts the exposed substrate, and which deforms the exposed substrate by partially deforming the elastically deformable plate-shaped member And a tilting vertical element for supporting the substrate chuck at at least three points and vertically moving the substrate chuck at at least two points to control the tilt of the substrate to be exposed with respect to the mask. Z stage controlled to
A slide base that moves the Z stage in the horizontal direction to carry the substrate to be exposed to an exposure position facing the mask, and a slide base that is arranged in a direction substantially perpendicular to the carry-in traveling direction of the slide base. A plurality of measurement sensors which are provided in the vicinity and measure height information of a large number of points over the surface of the exposed substrate by carrying in and running of the slide base, and the exposed substrate measured by the plurality of measurement sensors Calculate an average regression plane of the surface of the substrate to be exposed from the height information of the surface of the substrate, based on the height information of the surface of the substrate to be exposed measured by the plurality of measurement sensors with respect to the regression plane The vertical fine movement element in the substrate chuck is driven to partially deform the elastically deformable plate member to deform the exposed substrate and align the surface of the exposed substrate with a regression plane. Substrate deformation control means, and an optical image from the surface of the substrate to be exposed brought to an exposure position by the carry-in traveling of the slide base and aligned with a regression plane by the substrate to be exposed deformation control means and an optical image from the mask. And a mask for measuring a gap between the surface of the substrate to be exposed and the mask on at least three peripheral portions based on a signal obtained by receiving the light by a photoelectric conversion means, and at least a peripheral portion by the gap measuring means. The exposure apparatus of the proximity type is characterized by further comprising: an exposed substrate tilt control means for driving and controlling the tilting vertical movement element in the Z stage so that the gaps measured at the three positions are substantially equal. . Further, the present invention is characterized in that, in the proximity type exposure apparatus, the measurement sensor is constituted by an air micrometer. Further, the present invention is characterized in that, in the proximity type exposure apparatus, the vertical movement fine movement element in the substrate chuck and the tilt vertical movement element in the Z stage are constituted by piezo elements. In the proximity type exposure apparatus, the present invention provides, as the gap measuring means, an optical image of a pattern provided on each of the surface of the mask and the substrate to be exposed, which is received by a photoelectric conversion means. It is characterized in that the gap between the mask and the surface of the substrate to be exposed is measured based on the obtained focus detection signal.

〔作用〕[Action]

前記構成により、基板チャックおよびZステージを搭載
したスライドベースを水平方向に移動させて被露光基板
をマスクと対向する露光位置へ搬入走行させる動作で複
数の測定センサで被露光基板の表面の全領域に亘って被
露光基板の表面の高さ情報を測定するようにしたので、
被露光基板の表面に亘って多数の点の高さ情報を測定す
る測定手段を簡素化することができ、しかも露光位置に
おいて被露光基板の厚さムラ等による被露光基板の表面
の微小凹凸をなくしてマスクと被露光基板の表面との微
小間隙を均一にしてマスク上に形成された微細な回路パ
ターンを高解像度で被露光基板に露光転写することがで
きる。
With the above configuration, the slide base on which the substrate chuck and the Z stage are mounted is moved in the horizontal direction so that the substrate to be exposed is carried in and moved to the exposure position facing the mask. Since the height information of the surface of the exposed substrate is measured over
It is possible to simplify the measuring means for measuring the height information of a large number of points over the surface of the exposed substrate, and yet to eliminate minute irregularities on the surface of the exposed substrate due to uneven thickness of the exposed substrate at the exposure position. Without this, the fine circuit pattern formed on the mask can be exposed and transferred to the exposure target substrate with high resolution by making the minute gap between the mask and the surface of the exposure target substrate uniform.

〔実施例〕〔Example〕

以下、本発明の実施例を図面により説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図,第2図に本発明露光装置の一実施例の構成を示
す。
1 and 2 show the construction of an embodiment of the exposure apparatus of the present invention.

基板1は、基板チャック2に真空吸着により固定されて
いる。前記基板チャック2は、3本のピエゾ(1)3によ
り3点で支持されている。前記ピエゾ(1)3は、Zステ
ージ4上に配設されている。また、Zステージ4はスラ
イドベース5上に載置されている。
The substrate 1 is fixed to the substrate chuck 2 by vacuum suction. The substrate chuck 2 is supported at three points by three piezos (1) 3. The piezo (1) 3 is arranged on the Z stage 4. The Z stage 4 is mounted on the slide base 5.

前記基板チャック2の進行方向の途中に、測定手段とし
てのエアマイクロメータ6が複数個設置されている。各
エアマイクロメータ6は、基板1が下を通過している途
中において、所定の測定点の高さを測定する。各エアマ
イクロメータ6の出力は、圧力センサ7を介してインタ
フェース回路8に入り、コンピュータ9に記憶される。
A plurality of air micrometers 6 as measurement means are installed in the middle of the substrate chuck 2 in the traveling direction. Each air micrometer 6 measures the height of a predetermined measurement point while the substrate 1 is passing below. The output of each air micrometer 6 enters the interface circuit 8 via the pressure sensor 7 and is stored in the computer 9.

一方、マスク10はマスクベース11に真空吸着により
固定されている。マスク10の上方には、検出光学系1
2が配置されており、検出光学系12からの出力もイン
タフェース回路8を介してコンピュータ9に入力され
る。
On the other hand, the mask 10 is fixed to the mask base 11 by vacuum suction. Above the mask 10, the detection optical system 1
2 is arranged, and the output from the detection optical system 12 is also input to the computer 9 via the interface circuit 8.

また、ピエゾ(1)3はコンピュータ9からの指令により
制御回路(1)13を介して伸縮操作されるようになって
いる。
Further, the piezo (1) 3 is adapted to be expanded and contracted through the control circuit (1) 13 according to a command from the computer 9.

第3図に厚さムラのある基板1が基板チャック2に固定
されている状態を示す。
FIG. 3 shows a state where the substrate 1 having uneven thickness is fixed to the substrate chuck 2.

一般に、基板1を基板チャック2に真空吸着すると、基
板1の下面は基板チャック2の上面にならい、基板チャ
ック2の上面の平面度が高い精度ででているとすれば、
基板1の厚さムラの分の凹凸が生じる。この基板1の表
面の高さを、例えば第3図に示すように、マトリックス
状に測定し、この各測定点の高さからコンピュータ9に
より基板1の表面の平均的高さ、すなわち回帰平面を求
める。
In general, when the substrate 1 is vacuum-sucked to the substrate chuck 2, the lower surface of the substrate 1 follows the upper surface of the substrate chuck 2, and the flatness of the upper surface of the substrate chuck 2 is highly accurate.
Unevenness due to the uneven thickness of the substrate 1 occurs. The height of the surface of the substrate 1 is measured in a matrix as shown in, for example, FIG. 3, and the average height of the surface of the substrate 1, that is, the regression plane, is calculated by the computer 9 from the height of each measurement point. Ask.

第4図(a)に厚さムラのある基板1の回帰平面を1点鎖
線で示す。そして、第4図(b)に基板チャツク2をマス
ク10の下に移動させた時の図を示す。
In FIG. 4 (a), the regression plane of the substrate 1 having uneven thickness is shown by a chain line. Then, FIG. 4B shows a diagram when the substrate chuck 2 is moved under the mask 10.

ここで、あらかじめマスク10のパターン面の傾き(高
さ方向の位置)が分かっていれば、それに合うようにピ
エゾ(1)3を駆動させ、マスク10と基板1の回帰平面
100が平行になるようにする。
Here, if the inclination (position in the height direction) of the pattern surface of the mask 10 is known in advance, the piezo (1) 3 is driven so as to match it, and the regression plane 100 of the mask 10 and the substrate 1 becomes parallel. To do so.

次に、マスク10のパターン面の傾きが分かっていない
場合の平行出しを第5図に示す。
Next, FIG. 5 shows parallelization when the inclination of the pattern surface of the mask 10 is unknown.

マスク10の上方の検出光学系12は、3つの検出光路
から構成されている。すなわち、基板1およびマスク1
0のパターンを検出する対物レンズ14と、光電変換素
子であるC,C,D15と、その駆動回路16とにより
構成されている。
The detection optical system 12 above the mask 10 is composed of three detection optical paths. That is, the substrate 1 and the mask 1
It is composed of an objective lens 14 for detecting a pattern of 0, photoelectric conversion elements C, C and D15, and a drive circuit 16 thereof.

ここで、マスク10のパターン17と基板1のパターン
18の高さ方向の位置を焦点検出法で求め、その差を演
算することにより、マスク10と基板1の3個所におけ
る間隙が分かる。この値を基にピエゾ(1)3をチルト移
動させることにより、マスク10と基板1の平行出しが
可能となる。
Here, the positions of the pattern 17 of the mask 10 and the pattern 18 of the substrate 1 in the height direction are obtained by the focus detection method, and the difference between them is calculated, so that the gaps at the three positions of the mask 10 and the substrate 1 can be known. By tilting the piezo (1) 3 based on this value, the mask 10 and the substrate 1 can be parallelized.

以上説明した実施例は、厚さムラのある基板1について
回帰平面100を求め、その回帰平面100とマスク1
0のパターン面の平行出しをしようとするものであっ
た。
In the embodiment described above, the regression plane 100 is obtained for the substrate 1 having uneven thickness, and the regression plane 100 and the mask 1 are used.
It was intended to parallelize the 0 pattern surface.

次に、さらに高い精度の平行出し、すなわち基板1の面
全体にわたって平行出しをするためには、回帰平面10
0に基板1の表面高さを合わせる必要がある。第6図に
その一手段を示す。
Next, in order to perform parallelization with higher accuracy, that is, parallelization over the entire surface of the substrate 1, the regression plane 10
It is necessary to adjust the surface height of the substrate 1 to 0. FIG. 6 shows one of the means.

基板チャック2の表面は、弾性変形が可能に構成されて
いる。また、前記基板チャック2の内部には、移動装置
としての複数個のピエゾ(II)19が配置されている。こ
れらのピエゾ(II)19は、基板チャック2の表面を内側
から押し上げ、弾性変形させるようになっている。
The surface of the substrate chuck 2 is configured to be elastically deformable. Inside the substrate chuck 2, a plurality of piezo (II) 19 as a moving device are arranged. These piezo (II) 19 push up the surface of the substrate chuck 2 from the inside and elastically deform it.

第7図(a),(b),(C)に基板1の表面の平坦化を含めた
平行出しの概念図を示す。
FIGS. 7 (a), (b), and (C) show conceptual diagrams of parallelization including flattening of the surface of the substrate 1.

第7図(a)は、基板1の表面高さを測定,演算し、回帰
平面100を求めたものである。次に、第7図(b)に示
すように、基板チャック2に内蔵したピエゾ(II)19を
制御回路(II)(図示せず)により駆動させて基板チャッ
ク2の表面を変形させ、基板1の表面高さを回帰平面1
00に合わせる。さらに、第7図(c)に示すように、マ
スク10と平坦化した基板1の表面の間隙を第5図に示
した方法により求め、ピエゾ(I)3を駆動させ、基板チ
ャック2をチルト移動させて平行出しを行う。
FIG. 7A shows a regression plane 100 obtained by measuring and calculating the surface height of the substrate 1. Next, as shown in FIG. 7 (b), the piezo (II) 19 built in the substrate chuck 2 is driven by a control circuit (II) (not shown) to deform the surface of the substrate chuck 2, The surface height of 1 is the regression plane 1
Set to 00. Further, as shown in FIG. 7 (c), the gap between the mask 10 and the flattened surface of the substrate 1 is obtained by the method shown in FIG. 5, the piezo (I) 3 is driven, and the substrate chuck 2 is tilted. Move to parallelize.

以上説明した露光装置では、基板1の表面高さを測定
し、回帰平面100求めて平行出しをする方法、さらに
基板1の表面を平坦化して平行出しをする方法の他に、
一定の値に設定したプロキシミティギャップに対して、
回帰平面100からの厚さムラが大きい場合には、不良
の基板1として排出する方法等、色々な使用形態に適合
するように構成することが可能である。もちろん、基板
1の平坦化を行う場合でも、ピエゾ(II)19のストロー
クに対して、基板1の厚さムラが大きいものについては
不良の基板1として処理し得るように構成することもで
きる。さらに、回帰平面100から基板1の表面の凹凸
が分かること、および第5図に示したマスク10と基板
1の間隙検出法から両者間の間隙が分かることにより、
マスク10と基板1とを互いに接触しない最小間隙まで
接近させることが可能となる。
In the exposure apparatus described above, in addition to the method of measuring the surface height of the substrate 1 and obtaining the regression plane 100 for parallelization, and the method of flattening the surface of the substrate 1 for parallelization,
For the proximity gap set to a certain value,
When the thickness unevenness from the regression plane 100 is large, it can be configured to suit various usage patterns such as a method of discharging the defective substrate 1. Of course, even when the substrate 1 is flattened, a substrate 1 having a large thickness unevenness with respect to the stroke of the piezo (II) 19 can be treated as a defective substrate 1. Further, by knowing the unevenness of the surface of the substrate 1 from the regression plane 100 and by knowing the gap between the mask 10 and the substrate 1 shown in FIG.
It is possible to bring the mask 10 and the substrate 1 close to each other to a minimum gap where they do not contact each other.

〔発明の効果〕〔The invention's effect〕

本発明によれば、基板チャックおよびZステージを搭載
したスライドベースを水平方向に移動させて被露光基板
をマスクと対向する露光位置へ搬入走行させる動作で複
数の測定センサで被露光基板の表面の全領域に亘って被
露光基板の表面の高さ情報を測定するようにしたので、
被露光基板の表面に亘って多数の点の高さ情報を測定す
る測定手段を簡素化することができ、しかも露光位置に
おいて被露光基板の厚さムラ等による被露光基板の表面
の微小凹凸をなくしてマスクと被露光基板の表面との微
小間隙を均一にしてマスク上に形成された微細な回路パ
ターンを高解像度で被露光基板に露光転写することがで
き、ディスプレイ用の被露光基板などのように一基板に
対して一製品のようなものについても高解像度で露光転
写することができ、高歩留まりで製造することができる
効果を奏する。
According to the present invention, the slide base on which the substrate chuck and the Z stage are mounted is moved in the horizontal direction to carry in and move the substrate to be exposed to the exposure position facing the mask. Since the height information of the surface of the exposed substrate is measured over the entire area,
It is possible to simplify the measuring means for measuring the height information of a large number of points over the surface of the exposed substrate, and yet to eliminate minute irregularities on the surface of the exposed substrate due to uneven thickness of the exposed substrate at the exposure position. It is possible to expose and transfer the fine circuit pattern formed on the mask to the exposed substrate with high resolution by making the minute gap between the mask and the surface of the exposed substrate uniform without removing it. As described above, even one product such as one product can be exposed and transferred at a high resolution, and the product can be manufactured with a high yield.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明露光装置の一実施例における基板チャッ
ク部,測定部,マスク部,検出光学系および演算部を示
す構成図、第2図(a),(b)は基板チャックと測定部を示
す平面図と側面図、第3図は厚さムラのある基板と基板
の表面高さの測定点の例を示す斜視図、第4図(a),(b)
は厚さムラのある基板の回帰平面を求める状態、および
マスクとその回帰平面の平行出しを行った状態を示す概
念図、第5図はマスクと基板の非接触平行出しを行うた
めの検出光学系と基板チャックを示す構成図、第6図は
ピエゾを内蔵した基板チャツクを示す斜視図、第7図
(a),(b),(c)はピエゾを内蔵した基板チャツクを用い
て基板の平坦化およびマスクとの平行出しを行う状態を
示す概念図である。 1……基板、2……基板チャック、3……ピエゾ(1)、
6……エアマイクロメータ、9……コンピュータ、10
……マスク、12……検出光学系、19……ピエゾ(I
I)、100……回帰平面。
FIG. 1 is a block diagram showing a substrate chuck section, a measurement section, a mask section, a detection optical system and a calculation section in an embodiment of the exposure apparatus of the present invention, and FIGS. 2 (a) and 2 (b) are the substrate chuck and the measurement section. And FIG. 3 is a plan view and a side view, FIG. 3 is a perspective view showing an example of a substrate having uneven thickness and measurement points of the surface height of the substrate, and FIGS. 4 (a) and 4 (b).
Is a conceptual diagram showing a state in which a regression plane of a substrate with uneven thickness is obtained and a state in which the mask and the regression plane are parallelized. FIG. 5 is a detection optical system for performing non-contact parallelization of the mask and the substrate. FIG. 6 is a configuration diagram showing a system and a substrate chuck, FIG. 6 is a perspective view showing a substrate chuck incorporating a piezo, and FIG.
(a), (b) and (c) are conceptual diagrams showing a state in which a substrate chuck having a piezo built therein is used to planarize the substrate and parallelize it with a mask. 1 ... Substrate, 2 ... Substrate chuck, 3 ... Piezo (1),
6 ... Air micrometer, 9 ... Computer, 10
...... Mask, 12 ...... Detection optical system, 19 ...... Piezo (I
I), 100 ... Regression plane.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−17247(JP,A) 特開 昭60−9125(JP,A) 特開 昭49−122756(JP,A) 特開 昭55−16457(JP,A) 実開 昭52−52579(JP,U) 実開 昭57−84306(JP,U) ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP-A-59-17247 (JP, A) JP-A-60-9125 (JP, A) JP-A-49-122756 (JP, A) JP-A-55- 16457 (JP, A) Actual opening Sho 52-52579 (JP, U) Actual opening Sho 57-84306 (JP, U)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】被露光基板とマスクとを微小間隙形成して
前記マスク上に形成された回路パターンを前記被露光基
板上に露光するプロキシミティ方式の露光装置におい
て、前記被露光基板を吸着する弾性変形可能な板状部材
を有し、内部に前記弾性変形可能な板状部材を部分的に
変形させて前記被露光基板を変形させる上下動微動素子
を複数個配置した基板チャックと、該基板チャックを少
なくとも3点で支持して少なくとも2点において上下動
させて前記マスクに対する前記被露光基板の傾きを制御
するチルト用上下素子を備えて前記基板チャックを高さ
方向に制御するZステージと、該Zステージを水平方向
に移動させて前記被露光基板を前記マスクの対向する露
光位置へ搬入走行させるスライドベースと、該スライド
ベースの搬入走行方向に対してほぼ直角方向に配列させ
て前記マスクの近傍に設けられ、前記スライドベースの
搬入走行により前記被露光基板の表面に亘って多数の点
の高さ情報を測定する複数の測定センサと、該複数の測
定センサで測定された前記被露光基板の表面の高さ情報
から被露光基板の表面の平均的な回帰平面を算出し、該
回帰平面に対して前記複数の測定センサで測定された前
記被露光基板の表面の高さ情報に基づいて前記基板チャ
ック内の上下動微動素子を駆動して前記弾性変形可能な
板状部材を部分的に変形させて前記被露光基板を変形さ
せて被露光基板の表面を回帰平面に合わせる被露光基板
変形制御手段と、前記スライドベースの搬入走行により
露光位置にもち来され、前記被露光基板変形制御手段で
回帰平面に合わせられた被露光基板の表面からの光学像
と前記マスクからの光学像とを光電変換手段で受光して
得られる信号に基づいて前記被露光基板の表面と前記マ
スクとの間の間隙を少なくとも周辺の3個所において測
定する間隙測定手段と、該間隙測定手段により少なくと
も周辺の3個所において測定された間隙がほぼ等しくな
るように前記Zステージにおけるチルト用上下動素子を
駆動制御する被露光基板チルト制御手段とを備えたこと
を特徴とするプロキシミティ方式の露光装置。
1. A proximity type exposure apparatus for forming a minute gap between a substrate to be exposed and a mask to expose a circuit pattern formed on the mask onto the substrate to be exposed, and adsorbing the substrate to be exposed. A substrate chuck having an elastically deformable plate-shaped member, in which a plurality of vertical movement fine movement elements for deforming the substrate to be exposed by partially deforming the elastically deformable plate-shaped member are arranged, and the substrate chuck A Z stage for controlling the substrate chuck in the height direction, comprising a tilting vertical element for supporting the chuck at at least three points and moving it up and down at at least two points to control the tilt of the substrate to be exposed with respect to the mask; A slide base that moves the Z stage in the horizontal direction to carry in the exposed substrate to an exposure position facing the mask, and a method of carrying in the slide base. A plurality of measurement sensors that are provided in the vicinity of the mask arranged in a direction substantially perpendicular to the mask, and measure height information of a large number of points over the surface of the substrate to be exposed by the carry-in traveling of the slide base; An average regression plane of the surface of the exposed substrate was calculated from the height information of the surface of the exposed substrate measured by the plurality of measuring sensors, and measured by the plurality of measuring sensors with respect to the regression plane. The vertical fine movement element in the substrate chuck is driven based on the height information of the surface of the substrate to be exposed to partially deform the elastically deformable plate-like member to deform the substrate to be exposed. The exposed substrate deformation control means for aligning the surface of the exposed substrate with the regression plane, and the exposed substrate brought to the exposure position by the carry-in traveling of the slide base and aligned with the regression plane by the exposed substrate deformation control means A gap between the surface of the substrate to be exposed and the mask is measured at least at three peripheral positions based on a signal obtained by receiving the optical image from the surface and the optical image from the mask by photoelectric conversion means. A gap measuring means and an exposed substrate tilt control means for driving and controlling the tilting up-and-down movement element in the Z stage so that the gaps measured by the gap measuring means at least at three peripheral positions are substantially equal to each other. Proximity type exposure equipment.
【請求項2】前記測定センサをエアマイクロメータで構
成したことを特徴とする特許請求の範囲第1項記載のプ
ロキシミティ方式の露光装置。
2. The proximity type exposure apparatus according to claim 1, wherein the measuring sensor is an air micrometer.
【請求項3】記基板チャック内の上下動微動素子および
前記Zステージにおけるチルト用上下動素子をピエゾ素
子で構成したことを特徴とする特許請求の範囲第1項記
載のプロキシミティ方式の露光装置。
3. A proximity type exposure apparatus according to claim 1, wherein the vertical fine movement element in the substrate chuck and the tilt vertical movement element in the Z stage are constituted by piezo elements. .
【請求項4】前記間隙測定手段として、前記マスクおよ
び被露光基板の表面の各々に設けられたパターンの光学
像を結像させて光電変換手段で受光して得られる合焦点
検出信号に基づいてマスクと被露光基板の表面との間隙
を測定するように構成したことを特徴とする特許請求の
範囲第1項記載のプロキシミティ方式の露光装置。
4. The gap measuring means is based on a focus detection signal obtained by forming an optical image of a pattern provided on each of the surface of the mask and the substrate to be exposed and receiving the light by photoelectric conversion means. The proximity type exposure apparatus according to claim 1, wherein the exposure apparatus is configured to measure a gap between the mask and the surface of the substrate to be exposed.
JP61121029A 1986-05-28 1986-05-28 Proximity type exposure system Expired - Lifetime JPH0628222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61121029A JPH0628222B2 (en) 1986-05-28 1986-05-28 Proximity type exposure system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61121029A JPH0628222B2 (en) 1986-05-28 1986-05-28 Proximity type exposure system

Publications (2)

Publication Number Publication Date
JPS62279629A JPS62279629A (en) 1987-12-04
JPH0628222B2 true JPH0628222B2 (en) 1994-04-13

Family

ID=14801053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61121029A Expired - Lifetime JPH0628222B2 (en) 1986-05-28 1986-05-28 Proximity type exposure system

Country Status (1)

Country Link
JP (1) JPH0628222B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63261727A (en) * 1987-04-20 1988-10-28 Tokyo Electron Ltd Correcting method of surface distortion of plate
JPH02299217A (en) * 1989-05-15 1990-12-11 Hitachi Electron Eng Co Ltd Controlling method for noncontact gap of glass substrate and device therefor
JP4488685B2 (en) * 2003-03-12 2010-06-23 大日本印刷株式会社 Exposure equipment
GB2413009A (en) * 2004-03-25 2005-10-12 Yip * Liu Wai Microfabrication apparatus
JP2006156508A (en) * 2004-11-26 2006-06-15 Nikon Corp Method of deciding target value, moving method, exposing method, exposing device, and lithography system
JP4679172B2 (en) * 2005-02-23 2011-04-27 株式会社日立ハイテクノロジーズ Display panel substrate exposure apparatus, display panel substrate exposure method, and display panel substrate manufacturing method
JP5379638B2 (en) * 2009-10-15 2013-12-25 キヤノン株式会社 Exposure apparatus, exposure method, and device manufacturing method
JP5441770B2 (en) * 2010-03-10 2014-03-12 株式会社日立ハイテクノロジーズ Proximity exposure apparatus, gap control method for proximity exposure apparatus, and method for manufacturing display panel substrate
US8318392B2 (en) 2010-03-12 2012-11-27 Panasonic Corporation Alignment method and method for manufacturing flat panel display
EP2752870A1 (en) * 2013-01-04 2014-07-09 Süss Microtec Lithography GmbH Chuck, in particular for use in a mask aligner

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243692B2 (en) * 1973-03-26 1977-11-01
JPS5252579A (en) * 1975-10-27 1977-04-27 Canon Inc Clearance adjusng method
JPS5516457A (en) * 1978-07-24 1980-02-05 Nippon Telegr & Teleph Corp <Ntt> Gap detecting method
JPS5784306A (en) * 1980-11-14 1982-05-26 Toshiba Corp Method for providing gap
JPS5917247A (en) * 1982-07-21 1984-01-28 Hitachi Ltd Exposure method and its device
JPS609125A (en) * 1983-06-29 1985-01-18 Hitachi Ltd Semiconductor wafer holding and fixing stand

Also Published As

Publication number Publication date
JPS62279629A (en) 1987-12-04

Similar Documents

Publication Publication Date Title
US5117255A (en) Projection exposure apparatus
JP6552329B2 (en) Imprint apparatus, imprint system, and article manufacturing method
KR102169866B1 (en) Chuck, in particular for use in a mask aligner
KR20100135182A (en) Imprint apparatus and method of manufacturing article
US10331027B2 (en) Imprint apparatus, imprint system, and method of manufacturing article
JPH0628222B2 (en) Proximity type exposure system
JPS61196532A (en) Exposure device
US6381002B1 (en) Process for controlling a gap between a mask and a workpiece in proximity exposure and a proximity exposure device
US4648708A (en) Pattern transfer apparatus
JPH0147007B2 (en)
JPH05283310A (en) Method and apparatus for exposure
JP3064372B2 (en) Projection exposure apparatus, projection exposure method, and circuit manufacturing method
JP2001109160A (en) Mask deflection correction mechanism for base plate exposure device
JP4449457B2 (en) Exposure apparatus and exposure method
JP2868548B2 (en) Alignment device
JP2587292B2 (en) Projection exposure equipment
JPH07263316A (en) X-ray aligner
JPH0145217B2 (en)
JPH07226359A (en) Aligning method
JPS62254426A (en) Paralleling device
US20230182356A1 (en) Imprint apparatus and article manufacturing method
JPS62208629A (en) Reduction stepper
US20210379800A1 (en) Imprint device, article manufacturing method, and measuring method for imprint device
JPH01308632A (en) Conforming method of form plate of screen printing machine
JPS58122541A (en) Projection exposing device