JPH06281903A - Magneto-optical element and magnetic field measuring instrument - Google Patents

Magneto-optical element and magnetic field measuring instrument

Info

Publication number
JPH06281903A
JPH06281903A JP5069631A JP6963193A JPH06281903A JP H06281903 A JPH06281903 A JP H06281903A JP 5069631 A JP5069631 A JP 5069631A JP 6963193 A JP6963193 A JP 6963193A JP H06281903 A JPH06281903 A JP H06281903A
Authority
JP
Japan
Prior art keywords
magneto
magnetic field
optical
optical element
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5069631A
Other languages
Japanese (ja)
Other versions
JP3008721B2 (en
Inventor
Nobuki Itou
伸器 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5069631A priority Critical patent/JP3008721B2/en
Priority to US08/214,462 priority patent/US5485079A/en
Priority to DE69434204T priority patent/DE69434204T2/en
Priority to EP94104978A priority patent/EP0618456A3/en
Priority to EP01125240A priority patent/EP1176427B1/en
Publication of JPH06281903A publication Critical patent/JPH06281903A/en
Priority to US08/547,870 priority patent/US5635830A/en
Priority to US08/769,374 priority patent/US5861741A/en
Priority to US09/168,905 priority patent/US6232763B1/en
Application granted granted Critical
Publication of JP3008721B2 publication Critical patent/JP3008721B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To provide the magneto-optical element having high measurement accuracy to magnetic fields. CONSTITUTION:The value of X in the compsn. range of the rare earth iron garnet crystal expressed by the formula is specified to 0.8<=X<=1.3, the value of Y to 0.2<=Y<=0.4, the value of Z to 0.1<=Z<=0.9 and the value of W to 0<=W<=0.3 and at least >=1 kinds of rare earth elements are used for an R element to obtain the magneto-optical element having good linearity to magnetic fields. The magnetic field measuring instrument is constituted by using this magneto-optical element. The magneto-optical element has <=+ or -1.0% measurement accuracy in a 5.0 to 200Oe magnetic field range.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ファラデー効果を有す
る磁気光学素子とそれを用いて磁界を検出し、その磁界
強度を測定する磁界測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical element having a Faraday effect and a magnetic field measuring device for detecting a magnetic field using the magneto-optical element and measuring the magnetic field strength.

【0002】[0002]

【従来の技術】近年、特に電力分野において、電線の周
りに発生する磁界強度を光を用いて測定する方法とし
て、ファラデー効果を有する磁気光学素子と光ファイバ
を組み合わせた磁界測定装置が提案され、実用化されつ
つある。電流が流れている導体の周りの磁界強度を測定
して電流を検知する方法は、光を媒体とするために絶縁
性が良好であり、電磁誘導ノイズを受けないなどの特徴
を持ち、送配電設備への適用が考えられている。
2. Description of the Related Art In recent years, particularly in the field of electric power, as a method of measuring the magnetic field strength generated around an electric wire by using a light, a magnetic field measuring apparatus combining a magneto-optical element having a Faraday effect and an optical fiber has been proposed. It is being put to practical use. The method of detecting the current by measuring the magnetic field strength around the conductor in which the current flows is characterized by good insulation because it uses light as a medium and that it does not receive electromagnetic induction noise. Application to equipment is considered.

【0003】図7にファラデー効果を用いた磁界の測定
方法の原理図を示す。図7において、磁界H中に磁気光
学素子19が配置されている。この磁気光学素子19に
偏光子18で直線偏光とされた光を通過させる。ファラ
デー効果により偏光面は磁界強度Hに比例して回転を受
ける。図7はファラデー回転が負符号を示す場合を示し
ている。回転を受けた直線偏光は偏光子18と透過偏光
方向を45度に異ならしめた検光子20を通過し、回転
角θの大きさが光量変化に変換される。この磁気光学変
換部を構成するために、一般に図6のように構成される
センサヘッド部が使用される(National Technical Rep
ort Vol.38 No.2 P.127 (1992) 参照)。
FIG. 7 shows the principle of a magnetic field measurement method using the Faraday effect. In FIG. 7, the magneto-optical element 19 is arranged in the magnetic field H. Light that has been linearly polarized by the polarizer 18 passes through the magneto-optical element 19. Due to the Faraday effect, the polarization plane is rotated in proportion to the magnetic field strength H. FIG. 7 shows a case where the Faraday rotation has a negative sign. The linearly polarized light that has been rotated passes through the polarizer 18 and the analyzer 20 in which the transmission polarization direction is different by 45 degrees, and the magnitude of the rotation angle θ is converted into a light amount change. In order to configure this magneto-optical conversion unit, a sensor head unit generally configured as shown in FIG. 6 is used (National Technical Rep.
ort Vol.38 No.2 P.127 (1992)).

【0004】このような原理を応用した磁界測定装置を
用いたものとして、送配電線路における複数点に磁界測
定器を配置して、各測定器からの電気出力を演算器に入
力し、その波形の和あるいは差を取って参照信号とし、
例えば送配電線路における零相電流を検出して事故の判
定を行なうものが提案されている。
As an apparatus using a magnetic field measuring device to which such a principle is applied, magnetic field measuring devices are arranged at a plurality of points in a power transmission and distribution line, and an electric output from each measuring device is input to a calculator, and its waveform is obtained. The sum or difference of is taken as the reference signal,
For example, there has been proposed a device that detects a zero-phase current in a power transmission and distribution line to determine an accident.

【0005】しかしながら、磁界測定装置に用いられる
磁気光学素子にフェリ磁性希土類鉄ガーネット結晶を使
用した場合、希土類鉄ガーネット結晶に特有の磁区構造
によって、結晶を透過した光は回折される。回折光は図
5に示すように中心から0次光11、1次光12、2次
光13、・・・と定義される。図6に示すように構成さ
れたセンサヘッド部では、出射側レンズ22での回折光
の観測条件がほぼ0次光観測であるために、その出力は
(数1)で示される(日本応用磁気学会誌 Vol.14, No.
4 P.642 (1990) 参照)。
However, when the ferrimagnetic rare earth iron garnet crystal is used for the magneto-optical element used in the magnetic field measuring apparatus, the light transmitted through the crystal is diffracted by the magnetic domain structure peculiar to the rare earth iron garnet crystal. The diffracted light is defined as 0th order light 11, 1st order light 12, 2nd order light 13, ... From the center as shown in FIG. In the sensor head portion configured as shown in FIG. 6, since the observation condition of the diffracted light at the exit side lens 22 is almost zero-order light observation, its output is represented by (Equation 1) (Japan Applied Magnetics). Academic Journal Vol.14, No.
4 P.642 (1990)).

【0006】[0006]

【数1】 [Equation 1]

【0007】ここで、θFは材料が磁気的に飽和したと
きのファラデー回転角であり、θF=F・Lと表され
る。また、Fは材料固有のファラデー回転係数で、Lは
光路長(素子長)である。Mは、磁界が印加されたとき
の材料の磁化であり、MSは、材料が磁気的に飽和した
ときの磁化(飽和磁化)である。
Here, θ F is the Faraday rotation angle when the material is magnetically saturated, and is represented by θ F = F · L. Further, F is a Faraday rotation coefficient peculiar to the material, and L is an optical path length (element length). M is the magnetization of the material when a magnetic field is applied, and M S is the magnetization when the material is magnetically saturated (saturation magnetization).

【0008】上述の様なセンサヘッド部に用いられてい
る磁気光学素子として、一般式(化5)で示され、Xの
値がX=1.3、かつYの値がY=0.1、かつZの値がZ=0.1、か
つWの値がW=0.6である希土類鉄ガーネット結晶が開示さ
れている(電子情報通信学会技術研究報告 OQE92-105
(1992) 参照)。この従来の技術においては、YをBi
やGdで置換することにより温度特性の良い磁気光学素
子を実現している。この従来例で用いられている結晶の
化学式を(化5)に示す。
As a magneto-optical element used in the sensor head section as described above, it is represented by the general formula (Formula 5), and the value of X is X = 1.3, the value of Y is Y = 0.1, and the value of Z is A rare earth iron garnet crystal having a value of Z = 0.1 and a value of W = 0.6 is disclosed (Technical Report of the Institute of Electronics, Information and Communication Engineers OQE92-105).
(1992)). In this conventional technique, Y is Bi
By substituting with Gd or Gd, a magneto-optical element with good temperature characteristics is realized. The chemical formula of the crystal used in this conventional example is shown in Chemical formula 5.

【0009】[0009]

【化5】 [Chemical 5]

【0010】しかしながら、この磁気光学素子を用いて
磁界測定装置を構成した場合には、図4に示すように、
5.0 Oe〜190 Oeの範囲で±2.0%以下の磁界測定の直線性
誤差が示されており、磁界測定装置の精度に実用上問題
がある。
However, when a magnetic field measuring device is constructed using this magneto-optical element, as shown in FIG.
The linearity error of the magnetic field measurement of ± 2.0% or less is shown in the range of 5.0 Oe to 190 Oe, and there is a practical problem in the accuracy of the magnetic field measurement device.

【0011】[0011]

【発明が解決しようとする課題】従来の技術で述べたよ
うに、磁界測定装置に用いられる磁気光学素子にBi置
換希土類鉄ガーネット結晶を使用した場合、フェリ磁性
体であるガーネット結晶に光を透過すると、ガーネット
結晶の磁区構造によって、光の回折が生じ、出射側の光
学系に結晶を透過した回折光が完全に集光しないため
に、磁界強度に対する測定精度が悪くなるという問題点
があった。
As described in the prior art, when a Bi-substituted rare earth iron garnet crystal is used for a magneto-optical element used in a magnetic field measuring apparatus, light is transmitted through the garnet crystal which is a ferrimagnetic material. Then, due to the magnetic domain structure of the garnet crystal, light is diffracted and the diffracted light transmitted through the crystal is not completely condensed in the optical system on the output side, which causes a problem that the measurement accuracy with respect to the magnetic field strength deteriorates. .

【0012】本発明はかかる点を鑑みてなされたもので
あり、磁界に対する測定精度を向上し、かつ室温付近で
の温度特性が良く、高感度のBi置換希土類鉄ガーネッ
ト結晶を実現し、この結晶を磁気光学素子として用いた
直線性の高い磁界測定装置を提供することを目的として
いる。
The present invention has been made in view of the above points, and has realized a highly sensitive Bi-substituted rare earth iron garnet crystal having improved measurement accuracy with respect to a magnetic field, good temperature characteristics near room temperature, and high sensitivity. It is an object of the present invention to provide a magnetic field measuring apparatus having high linearity, which uses as a magneto-optical element.

【0013】[0013]

【課題を解決するための手段】本発明は上記問題点を解
決するため、一般式(化1)においてXの値を0.8≦X≦
1.3、かつYの値を0.1≦Y≦0.3、かつZの値を0≦Z≦1.
0、かつWの値を0≦W<0.3としたBi置換希土類鉄ガー
ネット結晶、または一般式(化2)において、Xの値を
0.8≦X≦1.3、かつYの値を0.1≦Y≦0.2としたBi置換
希土類鉄ガーネット結晶を磁気光学素子として提供する
ものである。
In order to solve the above-mentioned problems, the present invention sets the value of X in the general formula (Formula 1) to 0.8 ≦ X ≦
1.3, and the value of Y is 0.1 ≦ Y ≦ 0.3, and the value of Z is 0 ≦ Z ≦ 1.
In the Bi-substituted rare earth iron garnet crystal with 0 and W of 0 ≦ W <0.3, or the general formula (Formula 2), the value of X is
The present invention provides a Bi-substituted rare earth iron garnet crystal in which 0.8≤X≤1.3 and the value of Y is 0.1≤Y≤0.2 as a magneto-optical element.

【0014】また、本発明は、上記の磁気光学素子を用
いた磁気光学変換部で磁界強度の変化を検知する磁界測
定装置を構成するものである。
Further, the present invention constitutes a magnetic field measuring device for detecting a change in magnetic field intensity in a magneto-optical conversion section using the above magneto-optical element.

【0015】[0015]

【作用】本発明は、上述の磁気光学素子を用いることに
よって、より広い磁界範囲で測定精度が高い磁気光学素
子を提供するものであり、その作用を以下に説明する。
The present invention provides a magneto-optical element having high measurement accuracy in a wider magnetic field range by using the above-mentioned magneto-optical element, and its operation will be described below.

【0016】式1を展開すると、(数2)のように表さ
れる。
When Expression 1 is expanded, it is expressed as in (Equation 2).

【0017】[0017]

【数2】 [Equation 2]

【0018】ここで、M=χHであり、χは磁化率であ
る。さらに、式2に印加磁界が交流磁界であることを考
慮し、H=H0sinωtを代入し変形すると、出力の交流
成分は、(数3)のように表される。
Here, M = χH, where χ is the magnetic susceptibility. Further, considering that the applied magnetic field is an AC magnetic field in the equation 2, when H = H 0 sin ωt is substituted and transformed, the AC component of the output is expressed as in (Equation 3).

【0019】[0019]

【数3】 [Equation 3]

【0020】と表される。(数3)より、出力を表す式
にsin2ωtの項が含まれ、その係数には磁界強度の2乗
項H0 2がかかることがわかる。したがって、交流磁界に
対しては、sinωtの基本波に対する2倍波の存在が磁界
に対する直線性の歪みの原因になっている。よって、印
加磁界の強度H0が大きくなるほど2倍波の振幅がH0
2乗に比例して大きくなり、出力の線形性が悪化するこ
とになる。
It is expressed as follows. From (Equation 3), it is understood that the expression representing the output includes the term of sin2ωt, and the coefficient is multiplied by the square term H 0 2 of the magnetic field strength. Therefore, for an AC magnetic field, the presence of the second harmonic of the sin ωt fundamental wave causes linear distortion with respect to the magnetic field. Therefore, as the strength H 0 of the applied magnetic field increases, the amplitude of the second harmonic wave increases in proportion to the square of H 0 , and the linearity of the output deteriorates.

【0021】本発明は、このような観点から磁気光学素
子の磁区構造が消滅する磁界、すなわち、ガーネット結
晶の磁気的飽和に要する磁界Hsを組成制御によって大
きくすることにより、直線性歪みの原因となる2倍波の
振幅の係数Bを小さくし、磁界に対する測定精度を改良
することを可能とする。
From this point of view, the present invention causes the linear distortion by increasing the magnetic field at which the magnetic domain structure of the magneto-optical element disappears, that is, the magnetic field Hs required for magnetic saturation of the garnet crystal, by controlling the composition. It becomes possible to improve the measurement accuracy for the magnetic field by reducing the coefficient B of the amplitude of the second harmonic wave.

【0022】[0022]

【実施例】以下本発明の実施例について図面を参照しな
がら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0023】Bi23−PbO−B25系フラックスを
用いてCa−Mg−Zr置換型Gd 3Ga512基板上に
一般式(化1)で示されるBi置換希土類鉄ガーネット
結晶をLPE法で結晶成長した。(表1)に実施例を示
す。数値は各元素に対する組成比を表す。
Bi2O3-PbO-B2OFiveSystem flux
Using Ca-Mg-Zr substitution type Gd 3GaFiveO12On board
Bi-substituted rare earth iron garnet represented by the general formula (Formula 1)
The crystal was grown by the LPE method. Examples are shown in (Table 1).
You The numerical value represents the composition ratio for each element.

【0024】次に、図3に本発明による磁気光学素子を
用いた磁界測定装置の実施例を示す磁気光学変換部1
は、測定磁界(H)中もしくは図3に示すように測定磁
界を強くするために設けた周回積分コア6のギャップ中
に配置される。3は、光伝送路を形成する光ファイバで
ある。2は光信号発生手段であり、波長0.8μm帯のL
EDまたは1.3μm帯、1.5μm帯のLDを用いる。4は
磁気光学変換部1を透過した後の光を検知し電気信号に
変換する検知手段であり、Ge−PD、Si PIN−
PD等を用いるが、今回は0.8μm帯のLEDを用いた
ので、Si PIN−PDを用いた。5は信号処理用電
気回路である。
Next, FIG. 3 shows a magneto-optical conversion unit 1 showing an embodiment of a magnetic field measuring apparatus using a magneto-optical element according to the present invention.
Are arranged in the measurement magnetic field (H) or in the gap of the circular integration core 6 provided to strengthen the measurement magnetic field as shown in FIG. Reference numeral 3 is an optical fiber forming an optical transmission path. 2 is an optical signal generating means, which has an L of 0.8 μm wavelength band.
ED or LD of 1.3 μm band and 1.5 μm band is used. Reference numeral 4 denotes a detection unit that detects the light that has passed through the magneto-optical conversion unit 1 and converts the light into an electric signal, such as Ge-PD, Si PIN-.
Although PD or the like is used, Si PIN-PD was used because the LED of 0.8 μm band was used this time. Reference numeral 5 is an electric circuit for signal processing.

【0025】磁気光学変換部1は図6のように構成され
ており、磁気光学素子19の端面に設けた偏光子18と
磁気光学素子19のもう一方の端面の検光子20は透過
偏光方向が互いに45度傾くように設置している。偏光
子18、検光子20としては、偏光ビームスプリッタを
用いた。本実施例では偏光子18及び検光子20を偏光
ビームスプリッタとしたが、グラントンプソンプリズム
やガラス製偏光板を用いることも可能であった。特に、
ガラス製偏光板を偏光子18と検光子20に用いた磁気
光学変換部は、変換部自体を小型化できるので周回積分
コア6のギャップを狭くすることができ、磁界測定装置
の感度を上げることができた。17および22はレンズ
であり、磁気光学変換部に入射する光を平行光または磁
気光学変換部を透過した光を収束光にするためのもので
ある。
The magneto-optical conversion unit 1 is constructed as shown in FIG. 6, and the polarizer 18 provided on the end surface of the magneto-optical element 19 and the analyzer 20 on the other end surface of the magneto-optical element 19 have different transmission polarization directions. They are installed so that they are inclined at 45 degrees to each other. A polarization beam splitter was used as the polarizer 18 and the analyzer 20. Although the polarizer 18 and the analyzer 20 are polarization beam splitters in this embodiment, a Glan-Thompson prism or a glass polarizing plate could be used. In particular,
The magneto-optical conversion unit using the glass polarizing plate for the polarizer 18 and the analyzer 20 can reduce the size of the conversion unit itself, so that the gap of the circular integration core 6 can be narrowed and the sensitivity of the magnetic field measurement device can be increased. I was able to. Reference numerals 17 and 22 denote lenses for making the light incident on the magneto-optical conversion unit parallel light or the light transmitted through the magneto-optical conversion unit converged light.

【0026】(表1)に示す磁気光学素子を、上述のよ
うに構成した磁界測定装置の磁気光学変換部に用いて、
5.0 Oeから200 Oeの磁界範囲で直線性誤差を測定した結
果を(表1)に示している。交流磁界の周波数は、60Hz
である。(表1)中の直線性特性に#印を付した試料
は、本発明の範囲外のものである。
The magneto-optical element shown in (Table 1) is used in the magneto-optical conversion section of the magnetic field measuring apparatus constructed as described above,
The results of measuring the linearity error in the magnetic field range of 5.0 Oe to 200 Oe are shown in (Table 1). AC magnetic field frequency is 60Hz
Is. The samples marked with # in the linearity characteristics in Table 1 are outside the scope of the present invention.

【0027】この(表1)でNo.5の試料について磁
界に対する直線性の測定データを図1に示している。
FIG. 1 shows the measurement data of the linearity with respect to the magnetic field for the sample No. 5 in this (Table 1).

【0028】[0028]

【表1】 [Table 1]

【0029】本発明の磁気光学素子は、一般式(化1)
で示されるが、結晶組成が、Xの値が0.8≦X≦1.3、かつ
Yの値が0.2≦Y≦0.4、かつZの値が0.1≦Z≦0.9、かつW
の値が0≦W≦0.3の範囲では、5.0 Oeから200 Oeの磁界
範囲で直線性誤差が±1.0%以下に収まっている。従来
例の図4と比較すると著しく直線性が改善されることが
わかる。
The magneto-optical element of the present invention has the general formula (Formula 1).
In the crystal composition, the value of X is 0.8 ≦ X ≦ 1.3, and
Y value is 0.2 ≦ Y ≦ 0.4, Z value is 0.1 ≦ Z ≦ 0.9, and W
In the range of 0 ≤ W ≤ 0.3, the linearity error is within ± 1.0% in the magnetic field range of 5.0 Oe to 200 Oe. It can be seen that the linearity is remarkably improved as compared with FIG. 4 of the conventional example.

【0030】また、表1中のサンプルNo.5と上述の
従来例について、室温で磁気光学素子の磁気飽和に要す
る磁界Hsを測定した結果を(表2)に示す。
Further, Table 2 shows the results of measuring the magnetic field Hs required for magnetic saturation of the magneto-optical element at room temperature for sample No. 5 in Table 1 and the above-mentioned conventional example.

【0031】[0031]

【表2】 [Table 2]

【0032】このことから、Fe元素を非磁性元素で置
換しないフェリ磁性希土類鉄ガーネット結晶ほどHsが
大きく、(数3)に示す係数Bの値が小さくなり、磁界
に対する直線性が改善されることがわかる。また、本発
明の実施例は、交流磁界について記述されているが、直
流磁界についても同様に考えられ、図6に示すような構
成の磁気光学変換部の場合、Hsの大きい磁気光学素子
を用いるほど、磁界に対する直線性は改善される。
From this fact, it is found that the ferrimagnetic rare earth iron garnet crystal in which the Fe element is not replaced by the non-magnetic element has a larger Hs, the coefficient B shown in (Equation 3) becomes smaller, and the linearity with respect to the magnetic field is improved. I understand. Further, although the embodiments of the present invention have been described with respect to an AC magnetic field, a DC magnetic field can be considered in the same manner. In the case of the magneto-optical conversion unit having the configuration shown in FIG. 6, a magneto-optical element having a large Hs is used. The better the linearity with respect to the magnetic field.

【0033】(表1)の磁気光学素子は、温度特性も考
慮するために、Gd元素を置換した磁気光学素子につい
て示している。したがって、これらの磁気光学素子を磁
界測定装置に使用して、その出力の温度変動を-20℃か
ら+80℃の温度範囲で評価した結果は、すべて±1.0%以
下である。一方、温度特性を考慮しない場合には、Gd
元素を置換しない一般式(化6)で示される磁気光学素
子を直線性の良い装置として磁界測定装置に使用するこ
ともできる。
The magneto-optical element shown in Table 1 is a magneto-optical element in which the Gd element is substituted in order to take temperature characteristics into consideration. Therefore, the results obtained by using these magneto-optical elements in the magnetic field measuring apparatus and evaluating the temperature fluctuation of the output in the temperature range of -20 ° C to + 80 ° C are all ± 1.0% or less. On the other hand, when the temperature characteristics are not considered, Gd
The magneto-optical element represented by the general formula (Formula 6) in which no element is replaced can be used as a device having good linearity in a magnetic field measuring device.

【0034】[0034]

【化6】 [Chemical 6]

【0035】一般式(化6)で示される磁気光学素子を
作製し、磁界測定装置として構成した場合の直線性誤差
の測定結果を表3に示す。数値は各元素に対する組成比
を表す。
Table 3 shows the measurement results of the linearity error when the magneto-optical element represented by the general formula (Formula 6) was produced and configured as a magnetic field measuring device. The numerical value represents the composition ratio for each element.

【0036】[0036]

【表3】 [Table 3]

【0037】この磁気光学素子は、一般式(化6)で示
されるが、結晶組成が、Xの値が0.6≦X≦1.3、かつYの
値が0.1≦Y≦0.2の範囲では、5.0 Oeから200 Oeの磁界
範囲で直線性誤差が±1.0%以下に収まっており、温度
特性は悪いものの磁界に対する直線性誤差は充分に使用
可能である特性を示している。
This magneto-optical element is represented by the general formula (Chem. 6), and has a crystal composition of 5.0 Oe when the value of X is 0.6 ≦ X ≦ 1.3 and the value of Y is 0.1 ≦ Y ≦ 0.2. The linearity error is within ± 1.0% in the magnetic field range from 1 to 200 Oe, indicating that the linearity error with respect to the magnetic field is sufficiently usable although the temperature characteristic is poor.

【0038】本実施例では、格子整合性をとるために置
換する元素としてLaを用いた例について記述したが、
一般式(化1)または(化2)のR元素に1種類以上の
希土類元素を用いることも可能であった。その際、Bi
置換希土類鉄ガーネット結晶の飽和磁化に対して影響の
ない非磁性元素であることが良好な結果を与える。ま
た、ガーネット結晶基板に格子定数の異なるCa−Mg
−Zr置換型Gd3Ga512結晶基板以外のものを用い
た場合も、格子整合性をとるために一般式(化1)また
は(化2)のR元素に1種類以上の希土類元素を置換し
て、直線性の良いBi置換希土類鉄ガーネット結晶を成
長することができた。
In the present embodiment, an example in which La is used as an element substituting for achieving lattice matching has been described.
It was also possible to use one or more kinds of rare earth elements as the R element in the general formula (Formula 1) or (Formula 2). At that time, Bi
The non-magnetic element that does not affect the saturation magnetization of the substituted rare earth iron garnet crystal gives good results. In addition, Ca-Mg having different lattice constants on the garnet crystal substrate
Even when used as -Zr non-substituted Gd 3 Ga 5 O 12 crystal substrate, one or more rare earth element R element of the general formula (Formula 1) or (Formula 2) for lattice matching property By substitution, a Bi-substituted rare earth iron garnet crystal having good linearity could be grown.

【0039】なお、この直線性の改善は0.8μm帯の光
源だけでなく、希土類鉄ガーネット結晶を透過する1.3
μm帯や1.5μm帯の他の波長についても認められた。
また、周波数60Hzだけでなく、0から数100Hz程度まで直
線性よく磁界を測定することができた。
It should be noted that this improvement in linearity is achieved by transmitting not only the 0.8 μm band light source but also the rare earth iron garnet crystal.
It was also observed for other wavelengths in the μm band and 1.5 μm band.
In addition to the frequency of 60Hz, the magnetic field could be measured with good linearity from 0 to several 100Hz.

【0040】さらに、以上はCa−Mg−Zr置換型G
3Ga512基板上に磁気光学素子を成長させたもので
あるが、Nd3Ga512基板上にも成長条件を変えて成
長し、同様な結果が得られた。また、気相成長法を用い
てこれらの基板上にエピタキシャル成長させることも可
能である。ただし、いずれの成長法においても成長条件
によって、一般式(化1)で示され、その結晶組成にお
いてXの値が0.8≦X≦1.3、かつYの値が0.2≦Y≦0.4、か
つZの値が0.1≦Z≦0.9、かつWの値が0≦W≦0.3の範囲で
ある磁気光学素子や一般式(化2)で示され、結晶組成
がXの値が0.6≦X≦1.3、かつYの値が0.1≦Y≦0.2の範囲
である磁気光学素子が、エピタキシャル成長せずに多結
晶体として形成されることもあるが、そのような多結晶
体の磁気光学素子でも光吸収損失が少し大きくなるもの
の充分に使用可能である。
Further, the above is Ca-Mg-Zr substitution type G
Although the magneto-optical element was grown on the d 3 Ga 5 O 12 substrate, it was grown on the Nd 3 Ga 5 O 12 substrate under different growth conditions, and similar results were obtained. It is also possible to grow them epitaxially on these substrates by using a vapor phase growth method. However, in any of the growth methods, depending on the growth conditions, it is represented by the general formula (Chemical formula 1), and in the crystal composition, the value of X is 0.8 ≦ X ≦ 1.3, the value of Y is 0.2 ≦ Y ≦ 0.4, and The value is 0.1 ≦ Z ≦ 0.9 and the value of W is in the range of 0 ≦ W ≦ 0.3, which is represented by the general formula (Formula 2), and the crystal composition has a value of X of 0.6 ≦ X ≦ 1.3, and A magneto-optical element having a Y value in the range of 0.1 ≦ Y ≦ 0.2 may be formed as a polycrystalline body without epitaxial growth, but even such a magneto-optical element of a polycrystalline body has a small optical absorption loss. Although it becomes large, it can be used sufficiently.

【0041】[0041]

【発明の効果】以上述べてきたことから明かな様に、本
発明の磁気光学素子とそれを用いた磁界測定装置によれ
ば、従来よりも広い磁界範囲にわたって高精度に測定す
ることが可能となり、その工業的価値は大なるものであ
る。
As is clear from the above description, according to the magneto-optical element of the present invention and the magnetic field measuring apparatus using the same, it is possible to measure with high accuracy over a wider magnetic field range than before. , Its industrial value is enormous.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による磁気光学素子を用いた磁界測定装
置の出力の直線性誤差を示す図
FIG. 1 is a diagram showing an output linearity error of a magnetic field measuring apparatus using a magneto-optical element according to the present invention.

【図2】本発明による磁気光学素子を用いた磁界測定装
置の出力の直線性誤差を示す図
FIG. 2 is a diagram showing an output linearity error of a magnetic field measuring apparatus using a magneto-optical element according to the present invention.

【図3】本発明による磁気光学素子を用いた磁界測定装
置の実施例の概略図
FIG. 3 is a schematic diagram of an embodiment of a magnetic field measuring apparatus using a magneto-optical element according to the present invention.

【図4】従来の磁気光学素子を用いた磁界測定装置の出
力の直線性誤差を示す図
FIG. 4 is a diagram showing an output linearity error of a magnetic field measuring apparatus using a conventional magneto-optical element.

【図5】フェリ磁性ガーネット結晶による光の回折現象
を説明した模式図
FIG. 5 is a schematic diagram illustrating a light diffraction phenomenon by a ferrimagnetic garnet crystal.

【図6】磁気光学変換部の構成図FIG. 6 is a configuration diagram of a magneto-optical conversion unit.

【図7】ファラデー効果を用いた磁界の測定原理を示す
FIG. 7 is a diagram showing a principle of measuring a magnetic field using the Faraday effect.

【符号の説明】[Explanation of symbols]

1 磁気光学変換部 2 光源 3、24 光ファイバ 4 光検出部 5 信号処理用電気回路 6 コア 7 電線 8、15 入射光 9 フェリ磁性希土類鉄ガーネット結晶 10 スクリーン 11 0次光 12 1次光 13 2次光 14 3次光 16 ホルダー 17、22 レンズ 18 偏光子 19 磁気光学素子 20 検光子 21 全反射ミラー 23 出射光 25 フェルール DESCRIPTION OF SYMBOLS 1 Magneto-optical conversion part 2 Light source 3,24 Optical fiber 4 Optical detection part 5 Signal processing electric circuit 6 Core 7 Electric wire 8,15 Incident light 9 Ferrimagnetic rare earth iron garnet crystal 10 Screen 11 0th order light 12 1st order light 13 2 Next light 14 Third light 16 Holder 17, 22 Lens 18 Polarizer 19 Magneto-optical element 20 Analyzer 21 Total reflection mirror 23 Outgoing light 25 Ferrule

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年3月7日[Submission date] March 7, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0006】[0006]

【数1】 [Equation 1]

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】下記一般式(化1)で示されるBi置換希
土類鉄ガーネット結晶において、Xの値を0.8≦X≦1.3、
かつYの値を0.2≦Y≦0.4、かつZの値を0.1≦Z≦0.9、か
つWの値を0≦W≦0.3としたことを特徴とする磁気光学素
子。 【化1】 Rは希土類元素から選択される少なくとも1種類の元素
である。
1. In a Bi-substituted rare earth iron garnet crystal represented by the following general formula (Formula 1), the value of X is 0.8 ≦ X ≦ 1.3,
A magneto-optical element having a Y value of 0.2 ≦ Y ≦ 0.4, a Z value of 0.1 ≦ Z ≦ 0.9, and a W value of 0 ≦ W ≦ 0.3. [Chemical 1] R is at least one element selected from rare earth elements.
【請求項2】下記一般式(化2)で示されるBi置換希
土類鉄ガーネット結晶において、Xの値を0.6≦X≦1.3か
つYの値を0.1≦Y≦0.2としたことを特徴とする磁気光学
素子。 【化2】 Rは希土類元素から選択される少なくとも1種類の元素
である。
2. A Bi-substituted rare earth iron garnet crystal represented by the following general formula (Formula 2), wherein X has a value of 0.6 ≦ X ≦ 1.3 and Y has a value of 0.1 ≦ Y ≦ 0.2. Optical element. [Chemical 2] R is at least one element selected from rare earth elements.
【請求項3】Bi置換希土類鉄ガーネット結晶を、ガー
ネット結晶基板上にエピタキシャル成長させて形成する
ことを特徴とする請求項1または2記載の磁気光学素
子。
3. The magneto-optical element according to claim 1, wherein a Bi-substituted rare earth iron garnet crystal is formed by epitaxial growth on a garnet crystal substrate.
【請求項4】ガーネット結晶基板がCa−Mg−Zr置
換型Gd3Ga512基板またはNd3Ga512基板であ
ることを特徴とする請求項3記載の磁気光学素子。
4. The magneto-optical element according to claim 3, wherein the garnet crystal substrate is a Ca—Mg—Zr substitution type Gd 3 Ga 5 O 12 substrate or an Nd 3 Ga 5 O 12 substrate.
【請求項5】偏光子と、前記偏光子に対して、透過偏光
方向を互いに異ならしめた検光子と、前記偏光子と前記
検光子の間に配置され、一般式が下記(化3)または
(化4)で示される磁気光学素子とからなる磁気光学変
換部と、前記磁気光学素子の一端に、前記偏光子をはさ
んで設けられた第1の光伝送路と、前記第1の光伝送路
に光を入射する光発生手段と、前記磁気光学素子の一端
であって、前記第1の光伝送路に対向する面に、前記検
光子をはさんで設けられた第2の光伝送路と、前記第2
の光伝送路からの光出力を検知し、電気信号に変換する
光検知手段と、前記光検知手段からの電気信号を処理す
る信号処理部を備え、前記磁気光学変換部を磁界中に配
置し、前記入射光が前記磁気光学変換部を透過すること
でおこる出力光の強度変化を、前記信号処理部が検出す
ることにより、磁界強度を直線性よく測定することを特
徴とする磁界測定装置。 【化3】 Rは希土類元素から選択される少なくとも1種類の元素
である。 【化4】 Rは希土類元素から選択される少なくとも1種類の元素
である。
5. A polarizer, an analyzer having transmission polarization directions different from each other with respect to the polarizer, and a polarizer disposed between the polarizer and the analyzer and having a general formula (Formula 3) or A magneto-optical conversion unit including the magneto-optical element represented by (Chemical Formula 4), a first optical transmission line provided with the polarizer at one end of the magneto-optical element, and the first optical transmission line. Light generating means for making light incident on the transmission line and second optical transmission provided on one end of the magneto-optical element facing the first optical transmission line with the analyzer sandwiched therebetween. Road and the second
The optical detection means for detecting the optical output from the optical transmission line and converting it into an electric signal, and a signal processing part for processing the electric signal from the light detection means are provided, and the magneto-optical conversion part is arranged in a magnetic field. The magnetic field measuring device is characterized in that the signal processing unit detects a change in intensity of output light caused by the incident light passing through the magneto-optical conversion unit, thereby measuring the magnetic field intensity with good linearity. [Chemical 3] R is at least one element selected from rare earth elements. [Chemical 4] R is at least one element selected from rare earth elements.
JP5069631A 1993-03-29 1993-03-29 Magneto-optical element and magnetic field measuring device Expired - Fee Related JP3008721B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP5069631A JP3008721B2 (en) 1993-03-29 1993-03-29 Magneto-optical element and magnetic field measuring device
US08/214,462 US5485079A (en) 1993-03-29 1994-03-18 Magneto-optical element and optical magnetic field sensor
EP94104978A EP0618456A3 (en) 1993-03-29 1994-03-29 Magneto-optical element and optical magnetic field sensor.
EP01125240A EP1176427B1 (en) 1993-03-29 1994-03-29 Optical magnetic field sensor
DE69434204T DE69434204T2 (en) 1993-03-29 1994-03-29 Optical magnetic field sensor
US08/547,870 US5635830A (en) 1993-03-29 1995-10-25 Optical magnetic field sensor employing differently sized transmission lines
US08/769,374 US5861741A (en) 1993-03-29 1996-12-19 Magneto-optical element
US09/168,905 US6232763B1 (en) 1993-03-29 1998-10-09 Magneto-optical element and optical magnetic field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5069631A JP3008721B2 (en) 1993-03-29 1993-03-29 Magneto-optical element and magnetic field measuring device

Publications (2)

Publication Number Publication Date
JPH06281903A true JPH06281903A (en) 1994-10-07
JP3008721B2 JP3008721B2 (en) 2000-02-14

Family

ID=13408406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5069631A Expired - Fee Related JP3008721B2 (en) 1993-03-29 1993-03-29 Magneto-optical element and magnetic field measuring device

Country Status (1)

Country Link
JP (1) JP3008721B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6333809B1 (en) 1996-02-21 2001-12-25 Matsushita Electric Industrial Co., Ltd. Magneto-optical element
US6370288B1 (en) 1996-02-21 2002-04-09 Matsushita Electric Industrial Co., Ltd. Optical magnetic field sensor probe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6333809B1 (en) 1996-02-21 2001-12-25 Matsushita Electric Industrial Co., Ltd. Magneto-optical element
US6370288B1 (en) 1996-02-21 2002-04-09 Matsushita Electric Industrial Co., Ltd. Optical magnetic field sensor probe
US6404190B1 (en) 1996-02-21 2002-06-11 Matsushita Electric Industrial Co., Ltd. Optical magnetic field sensor probe

Also Published As

Publication number Publication date
JP3008721B2 (en) 2000-02-14

Similar Documents

Publication Publication Date Title
US5485079A (en) Magneto-optical element and optical magnetic field sensor
KR970000907B1 (en) Magneto-optical element and magnetic field measurement apparatus
EP0935141B1 (en) Optical magnetic field sensor using magneto-optical element
JP3144928B2 (en) Optical sensor
US5075546A (en) Magnetic field measurement apparatus
US6037770A (en) Optical magnetic field sensor probe having drum lenses
KR960015986B1 (en) Magnetic field measurement apparatus
JPH06281903A (en) Magneto-optical element and magnetic field measuring instrument
JP3135744B2 (en) Optical magnetic field sensor
Didosyan et al. Temperature characteristics of a new magneto-optical current transformer
JPH05264603A (en) Apparatus and method for measuring photomagnetic field
JP2000338208A (en) Optical magnetic field sensor
US6333809B1 (en) Magneto-optical element
JPS62150185A (en) Magnetic field measuring apparatus
JPS62150184A (en) Magnetic field measuring apparatus
JPH07209397A (en) Optical magnetic field sensor
JPH07209394A (en) Optical magnetic field sensor
JPS60375A (en) Measuring device of magnetic field
JPH11281722A (en) Optical fiber sensor
JPS62245168A (en) Magnetic field measuring instrument
JPH08278357A (en) Device and method for measuring magnetic field
JPH05126924A (en) Optical magnetic field sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees