JPH06280108A - Highly strong polyethylene fiber excellent in adhesivity and its production - Google Patents

Highly strong polyethylene fiber excellent in adhesivity and its production

Info

Publication number
JPH06280108A
JPH06280108A JP6523293A JP6523293A JPH06280108A JP H06280108 A JPH06280108 A JP H06280108A JP 6523293 A JP6523293 A JP 6523293A JP 6523293 A JP6523293 A JP 6523293A JP H06280108 A JPH06280108 A JP H06280108A
Authority
JP
Japan
Prior art keywords
fiber
strength
polyethylene
polyethylene fiber
intrinsic viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6523293A
Other languages
Japanese (ja)
Inventor
Yasuo Ota
康雄 大田
Tadao Kuroki
忠雄 黒木
Kaoru Ban
薫 伴
Menke Koosu
メンケ コース
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP6523293A priority Critical patent/JPH06280108A/en
Publication of JPH06280108A publication Critical patent/JPH06280108A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a high strength polyethylene fiber having an adhesive strength sufficient for practical uses at a high production rate without damaging the surface of the fiber. CONSTITUTION:The characteristic of this highly strong polyethylene fiber is that the oxygen/carbon ratio of its surface is <5% and that the interlaminar shear strength of a product using the fiber is >=13MPa, and its production method is provided. The highly strong polyethylene fiber has a practically sufficient adhesive strength without applying any specific surface treatment and can be formed at a non-conventional level drawing rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複合素材の補強素材な
どに広く用いることの可能な、接着強度を特別な表面処
理を施す事無く有し、かつ製造工程上での延伸速度が従
来に無く極めて高く、従って、強度等の力学特性と接着
特性と生産性という、いわゆるコストパフォーマンスに
非常に優れた新規な高強度ポリエチレン繊維並びにその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has an adhesive strength that can be widely used as a reinforcing material for composite materials, etc. without any special surface treatment, and has a conventional stretching speed in the manufacturing process. The present invention relates to a novel high-strength polyethylene fiber excellent in so-called cost performance such as mechanical properties such as strength, adhesive properties and productivity, and a method for producing the same.

【0002】[0002]

【従来の技術】極限粘度〔η〕が10を越えるようない
わゆる超高分子量ポリエチレンを原料にして高強度・高
弾性率繊維を得ようとする試みは、近年活発であり、非
常に高い強度・弾性率が報告されている。例えば、特開
昭56−15408号公報には、超高分子量ポリエチレ
ンを溶剤に溶解し得られたゲル状の繊維を高倍率に延伸
するという、いわゆるゲル紡糸法が開示されている。
2. Description of the Related Art Attempts to obtain high-strength, high-modulus fibers using so-called ultra-high-molecular-weight polyethylene having an intrinsic viscosity [η] of more than 10 have been active in recent years, and have extremely high strength. Elastic moduli have been reported. For example, Japanese Patent Application Laid-Open No. 56-15408 discloses a so-called gel spinning method in which a gel fiber obtained by dissolving ultrahigh molecular weight polyethylene in a solvent is stretched at a high ratio.

【0003】ゲル紡糸法により得られた高強度ポリエチ
レン繊維は有機繊維としては非常に高い強度・弾性率を
有するもののポリエチレンを主原料とする故に樹脂との
接着性に劣るという問題点があり、該繊維の例えば複合
素材の補強材などへの応用を困難にしていた。
The high-strength polyethylene fiber obtained by the gel-spinning method has a very high strength and elastic modulus as an organic fiber, but since polyethylene is the main raw material, it has a problem that it has poor adhesiveness with a resin. It has been difficult to apply the fibers to, for example, a reinforcing material of a composite material.

【0004】かかる問題点を克服するために、従来技術
として例えば特開昭60−146078号公報や特開昭
62−184110号公報あるいは特開昭63−213
50号公報に開示されているように糸表面にコロナ放電
やプラズマ放電を行い表面上に官能基を導入しようとい
う試みが広く行われてきた。しかし、これらの手法は高
強度ポリエチレンの製造工程に別の表面処理工程を必要
とするものであり、さらに処理スピードの制約から糸製
造工程そのものの速度も低く抑える必要があり、コスト
の著しい増加を避ける事はできなかった。また、これら
表面処理の手法は糸の表面でのダメージを避けることが
原理的に難しく、必然的に強度などが低下するという問
題点があった。
In order to overcome such a problem, conventional techniques such as JP-A-60-146078, JP-A-62-184110 and JP-A-63-213 are known.
As disclosed in Japanese Patent Laid-Open No. 50, there have been widely made attempts to introduce a functional group onto the surface by performing corona discharge or plasma discharge on the yarn surface. However, these methods require a separate surface treatment step in the production process of high-strength polyethylene, and it is necessary to keep the speed of the yarn production process low due to the limitation of the processing speed, resulting in a significant increase in cost. I couldn't avoid it. Further, these surface treatment methods have a problem that it is difficult in principle to avoid damage on the surface of the yarn, and the strength and the like are inevitably lowered.

【0005】[0005]

【発明が解決しようとする課題】以上の観点基づき、本
発明は、高強度ポリエチレン繊維の接着性を従来の煩雑
な処理を施す事無く改善し、同時に製糸工程での延伸速
度を落とす事無く、さらには従来よりも高速度の延伸速
度で製造可能な、接着性に優れる高強度ポリエチレン繊
維およびその製造方法に関する。
Based on the above viewpoints, the present invention improves the adhesiveness of high-strength polyethylene fibers without performing conventional complicated processing, and at the same time, without lowering the drawing speed in the yarn making process, Furthermore, the present invention relates to a high-strength polyethylene fiber having excellent adhesiveness, which can be produced at a higher drawing speed than ever before, and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】すなわち本発明は、実質
エチレン成分を主体とするポリエチレン繊維であり、そ
の強度が28g/d以上、弾性率が700g/d以上で
あり、かつ、その繊維の表面における酸素と炭素の比率
が5%未満であり、かつ、その層間せん断強度が13M
Pa以上、好ましくは15MPa以上である高強度ポリ
エチレン繊維。さらには、その繊維の延伸速度指数(E
F)が次式を満足する事を特徴とする高強度ポリエチレ
ン繊維を提供するものである。 EF>10A A=−2.75−0.25〔ηB〕 好ましくは A=−2.25−0.25〔ηB〕
[Means for Solving the Problems] That is, the present invention is a polyethylene fiber mainly composed of an ethylene component, having a strength of 28 g / d or more and an elastic modulus of 700 g / d or more, and the surface of the fiber. The ratio of oxygen to carbon is less than 5%, and the interlaminar shear strength is 13M.
A high-strength polyethylene fiber having a Pa or higher, preferably 15 MPa or higher. Furthermore, the drawing speed index (E
F) provides a high strength polyethylene fiber characterized by satisfying the following formula. EF> 10 A A = −2.75−0.25 [ηB] Preferably A = −2.25−0.25 [ηB]

【0007】さらに本特許は極限粘度〔ηA〕が10以
上好ましくは13以上さらに好ましくは15以上の超高
分子量ポリエチレン5重量部乃至50重量部と、溶剤9
5重量部乃至50重量部の混合物を加熱溶解し押し出し
て得られた半完成糸を10倍以上の延伸倍率にて延伸し
て得られた糸が、少なくとも28g/d以上の強度と、
700g/d以上の弾性率を有し、かつ、該繊維状態で
の極限粘度〔ηB〕が次式で定義される範囲にあり、か
つ、その繊維の層間せん断強度が13MPa以上好まし
くは15MPa以上であることを特徴とする高強度ポリ
エチレン繊維の製造方法を提供するものである。 0.7×〔ηA〕≦〔ηB〕≦0.9×〔ηA〕 さらに、後述する本発明の効果のより好ましい範囲とし
ては次式が挙げられる 0.7×〔ηA〕≦〔ηB〕≦0.8×〔ηA〕
Further, the present patent discloses that 5 to 50 parts by weight of ultrahigh molecular weight polyethylene having an intrinsic viscosity [ηA] of 10 or more, preferably 13 or more, more preferably 15 or more, and a solvent 9
A yarn obtained by drawing a semi-finished yarn obtained by heating and melting 5 parts by weight to 50 parts by weight of a mixture and extruding the mixture at a draw ratio of 10 times or more has a strength of at least 28 g / d or more,
It has an elastic modulus of 700 g / d or more, the intrinsic viscosity [ηB] in the fiber state is in the range defined by the following equation, and the interlaminar shear strength of the fiber is 13 MPa or more, preferably 15 MPa or more. The present invention provides a method for producing a high-strength polyethylene fiber, which is characterized in that 0.7 × [ηA] ≦ [ηB] ≦ 0.9 × [ηA] Further, as a more preferable range of the effect of the present invention described later, the following formula can be mentioned: 0.7 × [ηA] ≦ [ηB] ≦ 0.8 x [ηA]

【0008】本発明における超高分子量ポリエチレンと
は、その繰り返し単位が実質的にエチレンであることを
特徴とし、少量の他のモノマー例えばα−オレフィン、
アクリル酸及びその誘導体、メタクリル酸及びその誘導
体、ビニルシラン及びその誘導体などとの共重合体であ
ってもよいし、これら共重合物同志あるいはエチレン単
独ポリマーと共重合体、さらには他のα−オレフィン等
のホモポリマーとのブレンド体であってもよい。エチレ
ン以外の含有量は本発明の原理 効果そのものには影響
しないが、高強度繊維を高い延伸速度で得ると言う観点
からはモノマー単位で5mol%以下であることが好ま
しい。
The ultrahigh molecular weight polyethylene in the present invention is characterized in that its repeating unit is substantially ethylene, and a small amount of another monomer such as α-olefin,
It may be a copolymer with acrylic acid and its derivative, methacrylic acid and its derivative, vinyl silane and its derivative, etc., or these copolymers may be the same or copolymers with ethylene homopolymer, and other α-olefins. It may be a blend with a homopolymer such as. Although the content other than ethylene does not affect the principle effect of the present invention itself, it is preferably 5 mol% or less in monomer unit from the viewpoint of obtaining high-strength fiber at a high drawing speed.

【0009】本発明の骨子は、ポリマーを溶解する段階
でポリマーの劣化を促進し、ある適当な範囲に劣化させ
ると、得られた延伸糸も強度・弾性率が優れていること
に加え、驚くべき事に繊維の接着性に極めて優れ、しか
も延伸速度も極めて高くする事ができるという点にあ
る。特に、ポリマーの極限粘度を〔ηA〕、得られた延
伸糸の極限粘度を〔ηB〕とすると、〔ηB〕が下記の
式を満足する範囲にあるとき極めて優れた接着性および
延伸性が期待できる。 0.7×〔ηA〕≦〔ηB〕≦0.9×〔ηA〕 さらに、次式の範囲はより好ましい。 0.7×〔ηA〕≦〔ηB〕≦0.8×〔ηA〕
The skeleton of the present invention accelerates the deterioration of the polymer in the step of dissolving the polymer, and when it is deteriorated to a certain suitable range, the drawn yarn obtained has excellent strength and elastic modulus, and is surprising. What is essential is that the adhesion of the fibers is extremely excellent, and the stretching speed can be made extremely high. In particular, assuming that the intrinsic viscosity of the polymer is [ηA] and the intrinsic viscosity of the obtained drawn yarn is [ηB], extremely excellent adhesiveness and stretchability are expected when [ηB] is in the range satisfying the following formula. it can. 0.7 × [ηA] ≦ [ηB] ≦ 0.9 × [ηA] Furthermore, the range of the following equation is more preferable. 0.7 × [ηA] ≦ [ηB] ≦ 0.8 × [ηA]

【0010】従来技術として、得られた糸の劣化度につ
いてほとんど議論されてきておらず、かりに触れられて
も、いかに劣化度を押さえるかという目的が主眼であっ
た。これは、紡糸段階でポリマーの劣化がおこると強度
の低下がおこり、高物性の観点から好ましくないと信じ
られていた為であり、実際の紡糸では各種の酸化防止剤
が用いられるのが通常であった。従って、故意にある適
正度ポリマーを劣化させることを促進する事により、か
えって成形性・延伸性が向上し、高速延伸が可能であ
り、しかも得られた繊維の接着特性が特別な表面処理を
行わないのにも係わらず極めて優れたものが得られると
いう本発明は真に意外な事実である。
As the prior art, there has been little discussion about the degree of deterioration of the obtained yarn, and the main purpose was to suppress the degree of deterioration of the yarn even if it was touched. This is because it was believed that deterioration of the polymer at the spinning stage causes a decrease in strength, which is not preferable from the viewpoint of high physical properties.In actual spinning, various antioxidants are usually used. there were. Therefore, by deliberately promoting deterioration of the polymer, the moldability / stretchability is improved, high-speed stretching is possible, and the adhesive properties of the resulting fiber undergo special surface treatment. The present invention is a truly surprising fact that an extremely excellent product can be obtained despite the absence.

【0011】劣化度が増加すると接着性が向上する理由
は明確でないが、例えば分子鎖が切断される際に生じる
活性種が微量に存在する酸素などと反応を行い結果とし
て、接合性を向上させるに十分な官能基を生成せしめる
のではないかと推定している。しかしながら、本発明に
よる繊維は十分な接着性を有するにもかかわらず、後に
示す手法により測定した糸表面での酸素原子数と炭素原
子数との比率は予想に反して5%以下であり、例えばプ
ラズマ処理などにより得られた繊維が示す10%などの
値より遥かに低い。このことから、本繊維の接着性は表
面における酸素に代表される官能基だけでなく、新規な
表面テキスチャーがその向上に関与しているものと推定
しているが定かではない。また、コロナ処理やプラズマ
処理などにより接着性を付与された従来技術の繊維と
は、前記の表面酸素量と表面炭素量の比率で区別される
ものであり、少なくとも本繊維は従来の接着の概念から
はずれた新規な物質であるということができる。従っ
て、本発明で得られる繊維の表面酸素量は5%未満、好
ましくは4%以下であり、その繊維を用いて得られる層
間せん断強度は13MPa以上好ましくは15MPa以
上である。表面酸素量が5%を越えると、表面が必要以
上の酸化処理を受けた事を示し、強度などの力学特性に
好ましくない影響を受ける。又層間せん断強度が13M
Pa未満の場合は得られた繊維と樹脂との接着性が良好
とは言えず、複合素材としての実用に適さない。
Although the reason why the adhesiveness is improved as the degree of deterioration is increased is not clear, for example, active species generated when the molecular chain is cleaved reacts with a small amount of oxygen and the like to improve the bondability. It is presumed that sufficient functional groups can be generated in However, despite the fact that the fiber according to the present invention has sufficient adhesiveness, the ratio of the number of oxygen atoms to the number of carbon atoms on the yarn surface measured by the method described later is unexpectedly 5% or less, and for example, It is much lower than the value such as 10% shown by the fiber obtained by plasma treatment or the like. From this, it is presumed that not only the functional group represented by oxygen on the surface but also the novel surface texture is involved in the improvement of the adhesiveness of the present fiber, but it is not clear. Further, the fibers of the prior art to which the adhesiveness is imparted by the corona treatment or the plasma treatment are distinguished by the ratio of the surface oxygen amount and the surface carbon amount, and at least the present fiber is a conventional adhesion concept. It can be said that it is a new substance that is out of order. Therefore, the surface oxygen content of the fiber obtained in the present invention is less than 5%, preferably 4% or less, and the interlaminar shear strength obtained using the fiber is 13 MPa or more, preferably 15 MPa or more. If the surface oxygen content exceeds 5%, it means that the surface has been subjected to an excessive oxidation treatment, which adversely affects the mechanical properties such as strength. The interlaminar shear strength is 13M
When it is less than Pa, the adhesiveness between the obtained fiber and resin cannot be said to be good, and it is not suitable for practical use as a composite material.

【0012】本発明において、劣化度に上限があるの
は、劣化度を上げすぎると平均的分子量自体の低下が著
しくなり、強度が低下するからであり、場合によって
は、分子切断で発生したラジカルによる架橋反応もおこ
り延伸性の著しい低下につながる。従って、得られる繊
維の極限粘度は重要であって、少なくも10以上、好ま
しくは13以上であることが必要である。また、原材料
の重合体の極限粘度も少なくとも10以上、好ましくは
13以上さらに好ましくは15以上である必要がある。
In the present invention, the upper limit of the degree of deterioration is that if the degree of deterioration is increased too much, the average molecular weight itself is remarkably reduced and the strength is lowered. In some cases, radicals generated by molecular cleavage are generated. The cross-linking reaction also occurs and leads to a marked decrease in stretchability. Therefore, the intrinsic viscosity of the obtained fiber is important and needs to be at least 10 or more, preferably 13 or more. Also, the intrinsic viscosity of the raw material polymer must be at least 10 or more, preferably 13 or more, and more preferably 15 or more.

【0013】本発明において劣化度を促進する手段とし
て、熱・機械的剪断・酸化・紫外線等のエネルギーや過
酸化物等の劣化促進剤を添加する、等の種々の手法が挙
げられるが基本的には、劣化させる程度が重要であっ
て、その作用は手法の選択にはよらない。基本的に推奨
される手法としては、酸化防止剤類を用いない事であ
り、そのためには溶解工程での条件の設計が非常に重要
となる。
In the present invention, various means such as adding energy such as heat / mechanical shearing / oxidation / ultraviolet rays or a deterioration accelerating agent such as peroxide may be used as means for promoting the degree of deterioration. For this reason, the degree of deterioration is important, and its effect does not depend on the method selected. Basically, the recommended method is to use no antioxidants, and for that purpose the design of conditions in the dissolution process is very important.

【0014】また、本特許により提供される接着性に優
れた高強度ポリエチレン繊維の延伸速度は、延伸後の繊
維を用いて、後に示す方法による延伸速度指数として特
定する事ができる。
Further, the stretching speed of the high-strength polyethylene fiber having excellent adhesiveness provided by the present patent can be specified by using the stretched fiber as a stretching speed index by a method described later.

【0015】以下に本明細書記載の特性値に関する測定
法および測定条件を説明する。 (延伸速度指数)本発明でいう延伸速度指数(EF)と
は、50℃の温度に調節した無荷重時の長さ50Ccm
の糸サンプルに9g/dの荷重を加える。2時間後およ
び22時間後の試料の長さをそれぞれL1.L2(c
m)とし、EF(sec-1)は次式で求めた。 EF′(sec-1)=(L2−L1)/(20×360
0×50) さらに次式に従いその測定に使用したサンプルのヤーン
デニール(D)及びその引っ張り弾性率(E)(その単
位はg/dである)により換算が必要で真の延伸速度指
数(DI)は次式で与えられる。単位は秒-1で表す。 EF=10B ×EF′ B=(−6.5×10-4×E)−(1×10-5×D)+
0.83
The measuring method and measuring conditions for the characteristic values described in this specification will be described below. (Stretching speed index) The stretching speed index (EF) referred to in the present invention means a length of 50 Ccm when no load is applied and adjusted to a temperature of 50 ° C.
A load of 9 g / d is applied to the yarn sample. The lengths of the samples after 2 hours and after 22 hours were respectively set to L1. L2 (c
m) and EF (sec −1 ) was calculated by the following equation. EF '(sec -1 ) = (L2-L1) / (20 × 360
0 × 50) Furthermore, conversion based on the yarn denier (D) of the sample used for the measurement and its tensile elastic modulus (E) (its unit is g / d) according to the following equation is necessary, and the true stretching speed index (DI ) Is given by the following equation. The unit is seconds- 1 . EF = 10 B × EF ′ B = (− 6.5 × 10 −4 × E) − (1 × 10 −5 × D) +
0.83

【0016】(強度・弾性率)本明細書での強度、弾性
率は、オリエンティック社製「テンシロン」を用い、試
料長200mm、伸長速度100%/分の条件で歪一応
力曲線を雰囲気温度20℃、相対湿度65%条件下で測
定し、曲線の破断点での応力を強度(g/d)、曲線の
原点付近の最大勾配を与える接線より弾性率(g/d)
を計算して求めた。なお、各値は10回の測定値の平均
値を使用した。
(Strength / Elastic Modulus) The strength and elastic modulus in the present specification are "tensilon" manufactured by Orientic Co., Ltd., and the strain-stress curve is measured under the conditions of a sample length of 200 mm and an elongation rate of 100% / min. Measured at 20 ° C and 65% relative humidity, the stress at the break point of the curve is strength (g / d), and the elastic modulus (g / d) is obtained from the tangent line that gives the maximum gradient near the origin of the curve
Was calculated and calculated. In addition, each value used the average value of the measured value of 10 times.

【0017】(極限粘度)135℃のデカリンにてウベ
ローデ型毛細粘度管により、種々の希薄溶液の比粘度を
測定し、その粘度の濃度にたいするプロットの最小2乗
近似で得られる直線の原点への外挿点より極限粘度を測
定した。測定に際し、原料ポリマーのがパウダー状場合
はその形状のまま、パウダーが塊状であったり糸状サン
プルの場合は約5mm長にサンプルを分割または切断
し、ポリマーに対して1wt%の酸化防止剤(商品名
「ヨシノックスBHT」吉富製薬製)を添加し、135
℃で4時間撹拌溶解して測定溶液を調整した。
(Intrinsic Viscosity) The specific viscosities of various dilute solutions were measured with decalin at 135 ° C. using an Ubbelohde-type capillary viscous tube, and the straight line to the origin of the straight line obtained by the least square approximation of the plot of the concentration of the viscosity was measured. The intrinsic viscosity was measured from the extrapolated points. In the measurement, if the raw material polymer is in the form of powder, the shape is kept as it is, and if the powder is a lump or a filamentous sample, the sample is divided or cut into about 5 mm length, and 1 wt% of the antioxidant (commercial Name "Yoshinox BHT" made by Yoshitomi Pharmaceutical Co., Ltd., and added 135
A measurement solution was prepared by stirring and dissolving at 4 ° C. for 4 hours.

【0018】(層間せん断強度)繊維体積分率50%に
処方した、試料繊維とエポキシ樹脂(商標名「エポン9
102A」油化シェル社製)に対して、76phrの硬
化剤(商標名「エポン9102B」)及び1Phrの促
進剤(商標名「エポン9102C」)を添加し、加熱・
加圧成形により、厚さ3mm、幅6mm、長さ18mm
の直方体状の試料体を成形した。この成形体を、支点間
隔12mm(1/h=4)、クロスヘッド速度1mm/
分の速度で曲げ応力を測定し、その最大応力値P(K
g)と成形体の平均断面積A(mm2 )から層間せん断
強度(ILSS)を求めた。 ILSS(MPa)=9.8×3×P/4/A
(Interlaminar Shear Strength) A sample fiber and an epoxy resin (trade name "Epon 9") formulated to have a fiber volume fraction of 50%.
102A "manufactured by Yuka Shell Co., Ltd.), 76 phr of a curing agent (trade name" Epon 9102B ") and 1 Phr accelerator (trade name" Epon 9102C ") were added and heated.
By pressure molding, thickness 3mm, width 6mm, length 18mm
A rectangular parallelepiped sample body was molded. This molded product was subjected to a fulcrum interval of 12 mm (1 / h = 4) and a crosshead speed of 1 mm /
The bending stress is measured at the speed of minute, and the maximum stress value P (K
The interlaminar shear strength (ILSS) was determined from g) and the average cross-sectional area A (mm 2 ) of the molded body. ILSS (MPa) = 9.8 × 3 × P / 4 / A

【0019】(表面酸素および炭素の比率)島津製作所
製の装置「ESCA−850」を用い室温、約5×10
-6Paの真空度条件および8KV30mAのフィラメン
ト加電圧条件で発生する励起X線のMg−Kα線を使用
し得られるESCAスペクトルの285eVに補正され
た探索原子スペクトルC18の面積(H0 )、および53
2eV付近で得られる酸素原子スペクトルO18ピークの
面積(H0 )を2.85の感度係数で除した値の比より
算出した。具体的には次式で計算した。 表面酸素原子数/炭素原子数比(O/C)(%)=10
0×(H0 /H0 )/2.85 なお、測定に先だって試料に付着の油剤類は十分に脱離
させた。
(Ratio of Surface Oxygen and Carbon) Room temperature, about 5 × 10, using an apparatus “ESCA-850” manufactured by Shimadzu Corporation.
Area (H0) of the search atomic spectrum C18 corrected to 285 eV of the ESCA spectrum obtained by using Mg-Kα line of excited X-ray generated under the vacuum degree condition of −6 Pa and the filament applied voltage condition of 8 KV30 mA, and 53
It was calculated from the ratio of the values obtained by dividing the area (H0) of the oxygen atom spectrum O18 peak obtained at around 2 eV by the sensitivity coefficient of 2.85. Specifically, it was calculated by the following formula. Surface oxygen atom number / carbon atom number ratio (O / C) (%) = 10
0 × (H0 /H0)/2.85 The oils adhering to the sample were sufficiently desorbed before the measurement.

【0020】[0020]

【実施例】以下、実施例をもって本特許を説明する。 (実施例1〜3)極限粘度〔ηA〕が18.5、主鎖炭
素1000個あたり0.8個のメチル分岐を有する超高
分子量ポリエチレンを10重量部とデカヒドロナフタレ
ン90重量部を混合したスラリー状液体をスクリュー型
押し出し機(30mmφ)に供給した。この際、酸化防
止剤は用いなかった。
EXAMPLES The present invention will be described below with reference to examples. (Examples 1 to 3) 10 parts by weight of an ultrahigh molecular weight polyethylene having an intrinsic viscosity [ηA] of 18.5 and 0.8 methyl branch per 1000 main chain carbons and 90 parts by weight of decahydronaphthalene were mixed. The slurry liquid was supplied to a screw type extruder (30 mmφ). At this time, no antioxidant was used.

【0021】スクリュー内の押し出し条件をコントロー
ルする事により表1に示すように種々の極限粘度を有す
る高強度ポリエチレン繊維を作成した。各種条件で押し
出された溶解物は引き続いて180℃に調整した0.8
φの穴を30個有する紡糸口金から押し出されゲル状フ
ィラメントは空気流で冷却され60m/分の速度で引き
取りローラーを通過し、引き続いて120℃に温度調節
された空気加熱オーブン中で3倍に延伸、巻取られた。
従って、巻取り速度は180m/分であった。
High-strength polyethylene fibers having various intrinsic viscosities as shown in Table 1 were prepared by controlling the extrusion conditions in the screw. The melt extruded under various conditions was subsequently adjusted to 180 ° C.
The gel-like filament extruded from the spinneret having 30 holes of φ was cooled by an air stream, passed through a take-off roller at a speed of 60 m / min, and then tripled in an air-heated oven temperature-controlled at 120 ° C. It was stretched and wound.
Therefore, the winding speed was 180 m / min.

【0022】巻取られた部分延伸糸は、同じく145℃
に温度調節された空気加熱オーブンにて最終の延伸速度
300m/分の高速度で延伸され、破断が起こらない倍
率までの糸を試作した。表1に各実験での安定延伸可能
な到達延伸倍率(1段延伸倍率×2段延伸倍率)、及び
その倍率での諸物性(極限粘度・強度・弾性率・層間せ
ん断強度・延伸速度指数・O/C)をまとめる。
The partially drawn yarn wound is the same at 145 ° C.
A yarn was drawn in a temperature-controlled air heating oven at a final drawing speed of 300 m / min at a high speed, and a yarn up to a ratio at which breakage did not occur was made as a trial. Table 1 shows the ultimate stretch ratio (1 stage stretch ratio x 2 stage stretch ratio) that allows stable stretching in each experiment, and the various physical properties at that ratio (intrinsic viscosity, strength, elastic modulus, interlayer shear strength, stretching speed index, etc.). O / C) are summarized.

【0023】(実施例5〜9)極限粘度〔ηA〕が1
5.2であり、メチル分岐が主鎖1000炭素あたり、
1.0個を有する超高分子量ポリエチレンを用いた他
は、実施例1−4と同一の条件で紡糸を行った。表1に
その結果をまとめる。実施例1−4に比較すると相対的
に強度は低下するものの、同様の傾向と好ましい結果が
得られた。
(Examples 5 to 9) The intrinsic viscosity [ηA] was 1
5.2, the methyl branch is per 1000 carbons of the main chain,
Spinning was performed under the same conditions as in Examples 1-4, except that ultra high molecular weight polyethylene having 1.0 was used. The results are summarized in Table 1. Although the strength was relatively reduced as compared with Examples 1-4, a similar tendency and favorable results were obtained.

【0024】(実施例9)極限粘度〔ηA〕が20.0
であり、エチル分岐が主鎖1000炭素あたり、0.3
個を有する超高分子量ポリエチレンを用いた他は、実施
例4と同一の条件で紡糸を行った。到達延伸倍率および
諸物性は、表1に示すように極めて優れた物であった。
Example 9 Intrinsic viscosity [ηA] is 20.0
And the ethyl branch is 0.3 per 1000 carbons in the main chain.
Spinning was carried out under the same conditions as in Example 4, except that ultra high molecular weight polyethylene having a number of pieces was used. The ultimate draw ratio and various physical properties were extremely excellent as shown in Table 1.

【0025】[0025]

【表1】 [Table 1]

【0026】(比較例1〜3)実施例1、5、9とまっ
たく同一ポリマーおよび同一紡糸条件で紡糸を行った。
ただしポリマーと溶剤の混合物、ポリマーに対して1重
量%の酸化防止剤(商標名「ヨシノックスBHT」吉富
製薬(株)製)を添加した。得られた糸の延伸性および
到達可能物性を表2に示す。表のごとく、酸化防止剤に
より劣化が抑制された本実験例では、接着性の指標とな
る層間せん断強度も低くまた延伸性も悪く、かつ、強
度、弾性率も満足にいく値とはならない。この結果の悪
さは、押し出し後の極限粘度だけでは説明できないの
は、例えば、実施例2−4と比較例2−4の比較におい
て明らかであり、分子量の適度の劣化が繊維の接着性と
延伸性を極めて改良することを示すものである。
(Comparative Examples 1 to 3) Spinning was performed under the same polymer and spinning conditions as in Examples 1, 5, and 9.
However, a 1% by weight antioxidant (trade name "Yoshinox BHT" manufactured by Yoshitomi Pharmaceutical Co., Ltd.) was added to the mixture of the polymer and the solvent. Table 2 shows the drawability and reachable physical properties of the obtained yarn. As shown in the table, in the present experimental example in which the deterioration was suppressed by the antioxidant, the interlaminar shear strength, which is an index of adhesiveness, was low, the stretchability was poor, and the strength and elastic modulus were not satisfactory values. The reason why this poor result cannot be explained only by the intrinsic viscosity after extrusion is clear in, for example, a comparison between Example 2-4 and Comparative Example 2-4. It shows that the property is extremely improved.

【0027】(比較例4〜5)実施例4および、8とま
ったく同一の製糸条件で糸を作成した。ただしポリマー
と溶剤の混合物をスクリューに供給するとき、常圧の酸
素存在下にする点のみ変更した。酸化防止剤は用いなか
った。表2に示すように、そこそこの接着性は得られた
ものの、強度、弾性率が低かった。劣化の度合が高すぎ
たと考えられる。
(Comparative Examples 4 to 5) Threads were prepared under the same spinning conditions as in Examples 4 and 8. However, when supplying the mixture of the polymer and the solvent to the screw, the only difference was that the presence of oxygen under normal pressure was changed. No antioxidant was used. As shown in Table 2, although moderate adhesiveness was obtained, the strength and elastic modulus were low. It is considered that the degree of deterioration was too high.

【0028】(比較例6)比較例5により得られた繊維
をコロナ処理することにより接着性を付与する事を試み
た、処理速度は20m/分と低速度であり、使用電極の
電極密度は20KW/cm2 で常圧大気中で処理を行っ
た。得られた糸の強度・弾性率はそれぞれ28g/d、
1002g/dであり、若干の低下が見られた。層間せ
ん断強度は19MPaと良好であったり、O/Cは6%
であった。また、糸の延伸速度指数は2.6×10-6
処理糸前と変化しなかった。
(Comparative Example 6) An attempt was made to impart adhesiveness by subjecting the fiber obtained in Comparative Example 5 to corona treatment. The treatment speed was as low as 20 m / min, and the electrode density of the electrode used was The treatment was carried out in the atmospheric pressure at 20 kW / cm 2 . The obtained yarn has a strength and elastic modulus of 28 g / d, respectively.
It was 1002 g / d, and a slight decrease was observed. Interlaminar shear strength is as good as 19 MPa, and O / C is 6%
Met. The drawing speed index of the yarn was 2.6 × 10 −6 , which was unchanged from that before the treated yarn.

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【発明の効果】本発明は、コロナ処理などの特別な表面
処理を行うことなく実用レベルに十分の接着性を有する
高強度ポリエチレン繊維を、極めて高い延伸速度で得る
事が可能であり、コストパフォーマンスに優れた本繊維
の活用範囲をさらに広げるものである。
INDUSTRIAL APPLICABILITY According to the present invention, it is possible to obtain a high-strength polyethylene fiber having a sufficient adhesiveness to a practical level at an extremely high drawing speed without performing a special surface treatment such as corona treatment, and the cost performance is improved. This will further expand the range of utilization of this excellent fiber.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 コース メンケ オランダ国 6229 イー・エー マースト リヒト、ヤクエス シーゼダマイン 13 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor's course Menke Netherlands 6229 EA Maastricht, Yakussiezedamine 13

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 エチレン成分を主体とするポリエチレン
繊維であり、その強度が28g/d以上、弾性率が70
0g/d以上であり、かつ、その繊維の表面における酸
素原子数と炭素原子数の比率が5%未満であり、かつ、
その繊維を用いて得られる層間せん断強度が13MPa
以上であることを特徴とする接着性に優れた高強度ポリ
エチレン繊維。
1. A polyethylene fiber mainly comprising an ethylene component, having a strength of 28 g / d or more and an elastic modulus of 70.
0 g / d or more, and the ratio of the number of oxygen atoms and the number of carbon atoms on the surface of the fiber is less than 5%, and
Interlaminar shear strength obtained using the fiber is 13 MPa
The high-strength polyethylene fiber excellent in adhesiveness characterized by the above.
【請求項2】 特許請求の範囲の請求項1項の繊維であ
り、なおかつ、その繊維の延伸速度指数(EF)が次式
を満足する事を特徴とする高強度ポリエチレン繊維。 EF≧10A A=−2.75−0.25〔ηB〕
2. A high-strength polyethylene fiber, which is the fiber according to claim 1 and has a drawing speed index (EF) satisfying the following equation. EF ≧ 10 A A = −2.75−0.25 [ηB]
【請求項3】 極限粘度〔ηA〕が10以上の超高分子
量ポリエチレン5重量部乃至50重量部と、溶剤95重
量部乃至50重量部の混合物を加熱溶解し、押し出して
得られた半完成糸を10倍以上の延伸倍率にて延伸して
得られた糸が、少なくとも28g/d以上の強度と、7
00g/d以上の弾性率を有し、かつ、該繊維状態での
極限粘度〔ηB〕が次式で定義される範囲にあり、層間
せん断強度が13MPa以上であることを特徴とする高
強度ポリエチレン繊維の製造方法。 0.7×〔ηA〕≦〔ηB〕≦0.9×〔ηA〕
3. A semi-finished yarn obtained by heat-melting and extruding a mixture of 5 to 50 parts by weight of ultrahigh molecular weight polyethylene having an intrinsic viscosity [ηA] of 10 or more and 95 to 50 parts by weight of a solvent. The yarn obtained by drawing at a draw ratio of 10 times or more has a strength of at least 28 g / d,
A high-strength polyethylene having an elastic modulus of 00 g / d or more, an intrinsic viscosity [ηB] in the fiber state within a range defined by the following equation, and an interlaminar shear strength of 13 MPa or more. Fiber manufacturing method. 0.7 × [ηA] ≦ [ηB] ≦ 0.9 × [ηA]
JP6523293A 1993-03-24 1993-03-24 Highly strong polyethylene fiber excellent in adhesivity and its production Pending JPH06280108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6523293A JPH06280108A (en) 1993-03-24 1993-03-24 Highly strong polyethylene fiber excellent in adhesivity and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6523293A JPH06280108A (en) 1993-03-24 1993-03-24 Highly strong polyethylene fiber excellent in adhesivity and its production

Publications (1)

Publication Number Publication Date
JPH06280108A true JPH06280108A (en) 1994-10-04

Family

ID=13280965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6523293A Pending JPH06280108A (en) 1993-03-24 1993-03-24 Highly strong polyethylene fiber excellent in adhesivity and its production

Country Status (1)

Country Link
JP (1) JPH06280108A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010529319A (en) * 2007-06-08 2010-08-26 ハネウェル・インターナショナル・インコーポレーテッド Strong polyethylene thread
JP2014510851A (en) * 2011-04-13 2014-05-01 ディーエスエム アイピー アセッツ ビー.ブイ. Creep optimized UHMWPE fiber
JP2014523975A (en) * 2011-06-30 2014-09-18 ハネウェル・インターナショナル・インコーポレーテッド Ultra high strength ultra high molecular weight polyethylene fiber and products

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010529319A (en) * 2007-06-08 2010-08-26 ハネウェル・インターナショナル・インコーポレーテッド Strong polyethylene thread
JP2014510851A (en) * 2011-04-13 2014-05-01 ディーエスエム アイピー アセッツ ビー.ブイ. Creep optimized UHMWPE fiber
JP2014523975A (en) * 2011-06-30 2014-09-18 ハネウェル・インターナショナル・インコーポレーテッド Ultra high strength ultra high molecular weight polyethylene fiber and products

Similar Documents

Publication Publication Date Title
EP0145475B1 (en) Polymer irradiation
EP1023388B2 (en) Polypropylene composition useful for making solid state oriented film
JPS6248527A (en) Manufacture of polyethylene product having high tensile strength and high modulus
EP0173572A2 (en) Graft-modified ultrahigh-molecular-weight polyethylene and process for producing same
DE602008004754D1 (en) METHOD FOR THE PRODUCTION OF POLYMER YARNS FROM ULTRAHOCHMOLECULAR HOMOPOLYMERS OR COPOLYMERS, POLYMER YARN, POLYMERFORMING BODY AND THE USE OF POLYMER YARN
EP1311564B1 (en) Production of polypropylene having improved properties
CA2473584A1 (en) Method of producing high strength elongated products containing nanotubes
KR950013728B1 (en) Molecularly oriented, silane-cross linked ultra-high-molecular-weight polyethylene molded articla and process for preparation thereof
WO2019177089A1 (en) Polyethylene fibers, and product using same
JPH06280108A (en) Highly strong polyethylene fiber excellent in adhesivity and its production
JP4742211B2 (en) Long fiber reinforced polypropylene resin composition and molded product
JPH06280109A (en) Highly strong polyethylene fiber excellent in adhesivity and its production
JPH10501297A (en) Propylene polymer composition, method of processing the same, and articles made therefrom
JP3226062B2 (en) High strength polyethylene fiber
JPH07238416A (en) Production of high-strength polyethylene fiber
CN1037020C (en) Plyolefin mdded body lhaving improved adhesiveness and process for preparation thereof
JP3034934B2 (en) High molecular weight polyethylene molecular orientation molding
JP3997613B2 (en) High-strength polypropylene fiber and method for producing the same
JPH10183421A (en) Production of polypropylene fiber
JPH0655628A (en) Manufacture of modified ultra-high-molecular-weight polyolefin stretched material
CN110964258A (en) Low-shrinkage polypropylene composition and preparation method and application thereof
JPH07166413A (en) High strength polyethylene fiber excellent in light resistance and production thereof
JPH038830A (en) Manufacture of drawing rope
CN114990719B (en) Fiber yarn for artificial lawn and preparation method thereof
JP2992323B2 (en) Molecularly oriented molded body of high-molecular weight polyethylene