JPH06279504A - Production of sequestering oligomer compound and detergent composition containing the same - Google Patents

Production of sequestering oligomer compound and detergent composition containing the same

Info

Publication number
JPH06279504A
JPH06279504A JP9234793A JP9234793A JPH06279504A JP H06279504 A JPH06279504 A JP H06279504A JP 9234793 A JP9234793 A JP 9234793A JP 9234793 A JP9234793 A JP 9234793A JP H06279504 A JPH06279504 A JP H06279504A
Authority
JP
Japan
Prior art keywords
compound
polymer
sequestering
molecular weight
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9234793A
Other languages
Japanese (ja)
Other versions
JP3357996B2 (en
Inventor
Shuichi Matsumura
秀一 松村
Yukihiro Dannoue
幸弘 段ノ上
Haruhiko Toda
晴彦 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lion Corp
Original Assignee
Lion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corp filed Critical Lion Corp
Priority to JP09234793A priority Critical patent/JP3357996B2/en
Publication of JPH06279504A publication Critical patent/JPH06279504A/en
Application granted granted Critical
Publication of JP3357996B2 publication Critical patent/JP3357996B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the compound excellent in sequestering properties, biodegradability, etc., and desirable for use in a detergent by oxidizing a polysaccharide compound into a polycarboxylated polynrer and hydrolyzing this polymer with an alkali. CONSTITUTION:A polysaccharide compound such as starch, amylose, cellulose, inulin, ivory palm mannan, rice straw xylan, pectic acid or konjak mannan is oxidized with an oxidizing agent such as a hypochlorite or chromic acid into a polycarboxylated polymer. This polymer is hydrolyzed under alkaline conditions to effect selective hydrolysis of the acetal bonds and the consequent molecular weight reduction to form an oligomer compound having sequestering properties and biodegradability. A detergent containing this compound shows excellent detergency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多糖化合物を原料とす
る生分解性が高くかつ金属イオン封鎖能にすぐれたオリ
ゴマー化合物の製造方法及びそのオリゴマー化合物を含
む洗浄剤組成物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an oligomer compound using a polysaccharide compound as a raw material, which is highly biodegradable and excellent in sequestering ability, and a detergent composition containing the oligomer compound.

【0002】[0002]

【従来の技術】従来、金属イオン封鎖性を有する糖化合
物としては、例えば、カルボキシル基を導入したα−D
−グルコピラノシド化合物(特開昭63−54390
号)や、糖類とα、β−不飽和ジカルボキシル化合物と
アルカリ土類金属水酸化物の反応生成物を中和したもの
(特開昭50−82106号)等が知られている。一
方、多糖化合物から金属封鎖性化合物を得る方法も知ら
れており、このような方法としては、例えば、多糖類を
構成する単糖単位中の隣接する2級アルコールの結合す
る炭素−炭素結合を酸化開裂させることにより、多糖類
ポリカルボン酸塩を製造する方法がある(特公昭49−
1281号)。しかし、この方法で得られた製品は、金
属イオン封鎖性にすぐれているものの、生分解性の点で
未だ不満足のものである。
2. Description of the Related Art Conventionally, as a sugar compound having sequestering properties, for example, α-D into which a carboxyl group has been introduced.
-Glucopyranoside compound (JP-A-63-54390)
No.), saccharides, .alpha.,. Beta.-unsaturated dicarboxyl compounds, and neutralized reaction products of alkaline earth metal hydroxides (JP-A-50-82106). On the other hand, a method of obtaining a sequestering compound from a polysaccharide compound is also known, and as such a method, for example, a carbon-carbon bond to which an adjacent secondary alcohol in a monosaccharide unit constituting a polysaccharide is bonded is used. There is a method for producing a polysaccharide polycarboxylic acid salt by oxidative cleavage (Japanese Patent Publication No. Sho 49-
1281). However, although the product obtained by this method is excellent in sequestering properties, it is still unsatisfactory in terms of biodegradability.

【0003】[0003]

【発明が解決しようとする課題】本発明は、多糖化合物
を原料として、これから金属イオン封鎖性及び生分解性
にすぐれた製品を製造することをその課題とする。
An object of the present invention is to produce a product excellent in sequestering property and biodegradability from a polysaccharide compound as a raw material.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意研究を重ねた結果、本発明を完成する
に至った。即ち、本発明によれば、多糖化合物を酸化処
理して、ポリカルボキシル基含有重合体となした後、ア
ルカリ性条件下で加水分解処理することを特徴とする金
属イオン封鎖性及び生分解性にすぐれたオリゴマー化合
物の製造方法が提供される。また、本発明によれば、前
記のようにして得られたオリゴマー化合物を含有するこ
とを特徴とする洗浄剤組成物が提供される。
The present inventors have completed the present invention as a result of intensive studies to solve the above problems. That is, according to the present invention, the polysaccharide compound is oxidized to form a polycarboxyl group-containing polymer and then hydrolyzed under alkaline conditions, which is excellent in sequestering property and biodegradability. A method for producing an oligomeric compound is provided. Further, according to the present invention, there is provided a detergent composition comprising the oligomer compound obtained as described above.

【0005】本発明で用いる多糖化合物としては、従来
公知の各種のものが用いられ、このようなものにはホモ
グリカンやヘテログリカンが包含される。ホモグリカン
としては、例えばデンプン、アミロース、アミロペクチ
ン、セルロース、グリコーゲン、カロニン、ラミナラ
ン、デキストラン等のグルカン類、イヌリン、レバン等
のフルクタン類、ゾウゲヤシマンナン等のマンナン類、
イネワラキシラン等のキシラン類、ペクチン酸等のガラ
クツロナン類、アルギン酸等のマンヌロナン類、キチン
等のN−アセチルグルコサミン重合体等が挙げられる。
一方、ヘテログリカンとしては、例えば、グアラン、コ
ンニャクマンナン、ヘパリン、コンドロイチン硫酸、ヒ
アルロン酸等のジヘテログリカン類、メスキットガム、
カッチガム、植物粘質物、ゴム質、細菌多糖類等のトリ
ヘテログリカン類の他、アラビアゴム、アサの実の粘質
物、他の植物粘質物、ゴム質、細菌多糖類等のテトラヘ
テログリカン類が挙げられる。これらは一種単独で又は
二種以上を混合した形のいずれでも使用出来る。
As the polysaccharide compound used in the present invention, various conventionally known compounds are used, and such compounds include homoglycan and heteroglycan. The homoglycan, for example, starch, amylose, amylopectin, cellulose, glycogen, caronine, glucans such as laminaran, dextran, inulin, fructans such as levan, mannans such as elephant palm mannan,
Examples thereof include xylans such as rice straw xylan, galacturonans such as pectic acid, mannuronans such as alginic acid, and N-acetylglucosamine polymers such as chitin.
On the other hand, as the heteroglycan, for example, guaran, konjak mannan, heparin, chondroitin sulfate, diheteroglycans such as hyaluronic acid, Meskit gum,
In addition to tri-heteroglycans such as kutch gum, plant mucilage, gum and bacterial polysaccharide, tetraheteroglycans such as gum arabic, hemp fruit mucilage, other plant mucus, gum and bacterial polysaccharide Can be mentioned. These may be used alone or in a mixture of two or more.

【0006】本発明においては、先ず、これらの多糖化
合物を酸化処理し、ポリカルボキシル基含有重合体に変
換する。この場合の反応を、例えば、アミロースを例に
とると、次式で示すことができる。
In the present invention, first, these polysaccharide compounds are oxidized to convert them into polycarboxyl group-containing polymers. Taking the case of amylose as an example, the reaction in this case can be represented by the following formula.

【0007】[0007]

【化1】 [Chemical 1]

【0008】[0008]

【化2】 [Chemical 2]

【0009】前記式中、Mは水素又は金属イオンを示
す。金属イオンとしては、例えば、ナトリウム、カリウ
ム等のアルカリ金属を示す。x、y、zは重合度を示
す。
In the above formula, M represents hydrogen or a metal ion. Examples of the metal ion include alkali metals such as sodium and potassium. x, y, and z represent the degree of polymerization.

【0010】前記化1で表される1段酸化法において
は、酸化剤として、次亜塩素酸塩、次亜臭素酸塩、ハロ
ゲン(塩素や臭素等)、キセノン酸、クロム酸等を用い
る化学的酸化方法の他、生物学的酸化方法がある。一
方、前記化2で表される2段階酸化方法においてその酸
化Iの工程の酸化方法としては、酸化剤として、過ヨウ
素酸、過ヨウ素酸塩、四酢酸鉛、クロム酸、塩化銅
(I)、水酸化銅(II)、タリウム(I)塩、タリウ
ム(III)塩、酸性硫酸セリウム(IV)、ビスマス
酸塩、過酸化ニッケル、キセノン酸、ペルオキソ硫酸一
銀(I)塩、酸素を用いる方法の他、陽極酸化や生化学
的酸化方法がある。一方、酸化IIの工程の酸化方法と
しては、亜塩素酸、過酸化水素/亜塩素酸、過マンガン
酸塩、クロム酸、有機過酸化物、ペルオキソ硫酸、硝
酸、酸化銀(I)、酸化銀(II)酸素、酸化水銀(I
I)、過酸化水素を用いる方法の他、陽極酸化、生化学
酸化、カニッツァロ反応等がある。
In the one-step oxidation method represented by the above chemical formula 1, chemistry using hypochlorite, hypobromite, halogen (chlorine, bromine, etc.), xenonic acid, chromic acid, etc. as an oxidizing agent. In addition to the selective oxidation method, there is a biological oxidation method. On the other hand, in the two-step oxidation method represented by the above Chemical Formula 2, the oxidation method of the step of the oxidation I includes periodate, periodate, lead tetraacetate, chromic acid, copper (I) chloride as an oxidizing agent. , Copper (II) hydroxide, thallium (I) salt, thallium (III) salt, acidic cerium (IV) sulfate, bismuth acid salt, nickel peroxide, xenonic acid, peroxosulfate monosilver (I) salt, oxygen are used. In addition to the methods, there are anodic oxidation and biochemical oxidation methods. On the other hand, as the oxidation method in the step of oxidation II, chlorous acid, hydrogen peroxide / chlorous acid, permanganate, chromic acid, organic peroxide, peroxosulfuric acid, nitric acid, silver oxide (I), silver oxide (II) Oxygen, mercury oxide (I
I), a method using hydrogen peroxide, anodic oxidation, biochemical oxidation, and Cannizzaro reaction.

【0011】本発明においては、前記のようにして得ら
れたポリカルボキシル基含有重合体(III)(未酸化
のグリコキシド単位(I)を含む)を加水分解してオリ
ゴマーを生成させるが、この場合、その加水分解をpH
7.5〜11のアルカリ性条件下で行うことを特徴とす
る。このようなアルカリ性条件下で行うときには、アセ
タール結合(−O−CH(COOM)−O−)の加水分
解を洗濯的に行わせて、重合体(III)を低分子量化
させることができる。酸性条件下での加水分解では、重
合体(III)のアセタール結合及び未酸化のグルコシ
ド結合がランダムに加水分解されるため、一定構造の製
品を得ることができない。重合体(III)の加水分解
反応によりそのオリゴマー(低分子化物)が得られる
が、このオリゴマーとしては、その数平均分子量が30
00以下、好ましくは1000〜3000の範囲のもの
が好ましい。このようなオリゴマーの収率は加水分解条
件を調節することによって高めることができる。また、
オリゴマーから前記分子量範囲のものを分別することも
できるが、この分別は、従来公知の分別法により行うこ
とができる。
In the present invention, the polycarboxyl group-containing polymer (III) (containing unoxidized glycoloxide unit (I)) obtained as described above is hydrolyzed to form an oligomer. , Its hydrolysis to pH
It is characterized in that it is carried out under alkaline conditions of 7.5 to 11. When carried out under such an alkaline condition, the hydrolysis of the acetal bond (—O—CH (COOM) —O—) can be carried out washing-wise to lower the molecular weight of the polymer (III). By hydrolysis under acidic conditions, the acetal bond and the unoxidized glucoside bond of the polymer (III) are randomly hydrolyzed, so that a product having a constant structure cannot be obtained. The oligomer (low molecular weight compound) is obtained by the hydrolysis reaction of the polymer (III), and the number average molecular weight of this oligomer is 30.
It is preferably 00 or less, preferably in the range of 1000 to 3000. The yield of such oligomers can be increased by adjusting the hydrolysis conditions. Also,
The oligomer having a molecular weight in the above range can be fractionated, and this fractionation can be carried out by a conventionally known fractionation method.

【0012】[0012]

【発明の効果】本発明によれば、多糖化合物から、金属
イオン封鎖能、特にカルシウムイオン封鎖能にすぐれる
とともに、生分解性にすぐれたオリゴマーを得ることが
できる。このオリゴマーは、生分解性ビルダーとしてす
ぐれた作用を示し、しかも、このものを含む洗浄剤は高
い洗浄性能を示す。
INDUSTRIAL APPLICABILITY According to the present invention, an oligomer having excellent sequestering ability, particularly calcium ion sequestering ability and biodegradability can be obtained from a polysaccharide compound. This oligomer exhibits an excellent action as a biodegradable builder, and a detergent containing the oligomer exhibits high detergency.

【0013】[0013]

【実施例】次に本発明を実施例によりさらに詳細に説明
する。なお、以下において示した生分解率、洗浄力、カ
ルシウムイオン封鎖能は以下のようにして測定されたも
のである。また、実験において使用した機器類は以下の
通りである。
EXAMPLES Next, the present invention will be described in more detail by way of examples. The biodegradation rate, detergency, and calcium ion sequestering ability shown below are measured as follows. The equipment used in the experiment is as follows.

【0014】(生分解率)生物化学的酸素要求量(BO
14)は、公共の汚水処理場の活性汚泥を使い、BOD
TESTERによって求めた。生分解試験後の培養液
中の残存ポリマーは少量の非イオン活性剤存在下超音波
処理をした後、直接GPCにより分析した。また、生分
解率はBOD14/ThOD(理論酸素要求量)の比
(%)として求めた。 (洗浄力)洗浄力試験は、はじめにテストポリマーと比
較する標準値を得るために、トリポリリン酸ナトリウム
(STPP)とオキサジ酢酸ナトリウム(ODA)につ
いて洗浄力を求めた。すなわち、STPP又はODA:
25%、ドデシルベンゼンスルホン酸ナトリウム:20
%、ケイ酸ナトリウム:5%、炭酸ナトリウム:3%、
カルボキシメチルセルロース(CMC):0.5%、硫
酸ナトリウム:46.5%を含有する洗浄剤組成物で実
施した。テストポリマーの評価においては、上記組成物
において、そのSTPP又はODAを同じ重さのテスト
ポリマーと置き換えて洗浄力を評価した。洗浄力試験は
人工汚垢布を使用し、Terg−O−Tometerを
用いて25℃の水道水中で浴比1:50にて行い、その
際上記組成物の洗浄剤濃度は1.2g/lにした。試験
布の反射率は緑色のフィルターを付した反射率計で測定
し、K/S比はKubelka−Munk式より算出し
た。なお、洗浄力は下記の式により求められる数値であ
る。 洗浄力(%)=(A−B)/(A−C)×100 ここでA、B、Cそれぞれ洗浄前の汚垢布、洗浄後の汚
垢布、汚垢をつける前の布のK/S比である。またRを
反射率としたときのK/Sは下記のように求められる。 K/S=(1−R)/2R 相対洗浄力はSTPPを10、ODAを0としたときの
各テストポリマーの相対的な値である。 (カルシウムイオン封鎖能)カルシウムイオン封鎖能を
計算するために遊離カルシウムイオンの平均濃度を測定
した。約20mgのポリマーに正確に1.00%となる
ように蒸留水を加え、そのポリマー水溶液1.00gを
50mlの1.00×10-3MCaCl2、0.08M
KCl水溶液に加えた。これをpH 9に調整し30℃
で10分間以上撹拌した後、イオン濃度の測定に供し
た。カルシウムイオン封鎖能はテストポリマー1gあた
りが封鎖したカルシウムイオン量を炭酸カルシウムとし
てmg単位で表した。 (使用機器)13C−NMRスペクトルはJEOLのJN
M−90Aを用い22.5MHzにて測定した。IRス
ペクトルの測定はJASCO,FT/IR−5000を
使用した。また数平均分子量(Mn)、分子量分散(M
w/Mn)はGPCによって測定した。なお、カラムは
東ソー(株)のTSK−gel G5000PW+G2
500PWを用い、溶離液として0.1Mリン酸バッフ
ァー/0.3MNaClを用いた。カルシウムイオン封
鎖能は堀場製作所製のイオン電極(N−8F)とイオン
メーター(8203−06T)を用いて測定した。
(Biodegradation rate) Biochemical oxygen demand (BO
D 14 ) is a BOD using activated sludge from a public sewage treatment plant.
Determined by TESTER. The residual polymer in the culture solution after the biodegradation test was sonicated in the presence of a small amount of a nonionic activator and then directly analyzed by GPC. The biodegradation rate was determined as the ratio (%) of BOD 14 / ThOD (theoretical oxygen demand). (Detergency) In the detergency test, detergency was determined for sodium tripolyphosphate (STPP) and sodium oxadiacetate (ODA) in order to obtain a standard value for comparison with the test polymer. That is, STPP or ODA:
25%, sodium dodecylbenzene sulfonate: 20
%, Sodium silicate: 5%, sodium carbonate: 3%,
It was carried out with a detergent composition containing carboxymethyl cellulose (CMC): 0.5% and sodium sulfate: 46.5%. In the evaluation of the test polymer, the detergency was evaluated by replacing the STPP or ODA with the test polymer of the same weight in the above composition. The detergency test was carried out using an artificial soil cloth and a Terg-O-Tometer in tap water at 25 ° C. with a bath ratio of 1:50, in which case the detergent concentration of the composition was 1.2 g / l. I chose The reflectance of the test cloth was measured with a reflectance meter equipped with a green filter, and the K / S ratio was calculated from the Kubelka-Munk formula. The detergency is a numerical value obtained by the following formula. Detergency (%) = (A−B) / (A−C) × 100 where A, B, and C are the dirty cloth before cleaning, the dirty cloth after cleaning, and the K of the cloth before applying dirt, respectively. / S ratio. K / S, where R is the reflectance, is calculated as follows. K / S = (1-R) / 2R Relative detergency is a relative value of each test polymer when STPP is 10 and ODA is 0. (Calcium ion sequestration ability) To calculate the calcium ion sequestration ability, the average concentration of free calcium ions was measured. Distilled water was added to about 20 mg of the polymer so that the concentration was exactly 1.00%, and 1.00 g of the polymer aqueous solution was added to 50 ml of 1.00 × 10 −3 MCaCl 2 , 0.08M.
It was added to the aqueous KCl solution. Adjust this to pH 9 and 30 ℃
After stirring for 10 minutes or more, the sample was subjected to measurement of ion concentration. The calcium ion sequestering ability was expressed in mg unit, where the amount of sequestered calcium ions per 1 g of the test polymer was calcium carbonate. (Used equipment) 13 C-NMR spectrum is JEOL's JN
It measured at 22.5 MHz using M-90A. For the measurement of IR spectrum, JASCO, FT / IR-5000 was used. In addition, number average molecular weight (Mn), molecular weight dispersion (M
w / Mn) was measured by GPC. The column is TSK-gel G5000PW + G2 manufactured by Tosoh Corporation.
500 PW was used with 0.1 M phosphate buffer / 0.3 M NaCl as eluent. The calcium ion sequestering ability was measured by using an ion electrode (N-8F) and an ion meter (8203-06T) manufactured by Horiba Ltd.

【0015】実施例1 遮光したフラスコに200mlの水と0.57gのNa
OH(0.25eq.vs.単糖)を加え氷冷し、10
g(0.028mol 単糖)のペクチン酸を加えた。
この懸濁液に13.37g(1.leq.vs.単糖)
のNaIO4を加え、4℃で24時間撹拌した。反応
後、3N NaOHでPH11に調整し、蒸留水中で二
日間透析した後、エバポレーターで溶媒を留去した。
9.01gのジアルデヒドペクチン酸ナトリウム塩が8
0.9%の収率で得られた。得られたジアルデヒド体
8.55gを320mlの蒸留水に加え50℃で1時間
撹拌した後アイスバス中で冷却しながら窒素置換し、3
0.7g(6.6eq.vs.単糖)のNaClO2
加えた。反応溶液のpHを氷酢酸で4に調整し、室温で
24時間撹拌した。生じたClO2が完全に除かれるま
で窒素を通じることにより得られた白色の溶液のpHを
11とし、蒸留水中で5日間透析した。少量の不溶物を
濾別後母液をエバポレーターで濃縮し凍結乾燥した。
7.41gのジカルボキシペクチン酸ナトリウム塩DC
Pa−9300(69)(数平均分子量=9300、ジ
カルボキシル化率=69mol%)が白色粉末として6
2.5%の収率で得られた。ジカルボキシル化率は、N
ealら及び松村らの方法により求めた。このDCPa
−9300(69)の生分解率は0%であった。
Example 1 200 ml of water and 0.57 g of Na were placed in a light-proof flask.
OH (0.25 eq. Vs. monosaccharide) was added, and the mixture was ice-cooled, then 10
g (0.028 mol monosaccharide) of pectic acid was added.
13.37 g (1. eq. Vs. monosaccharide) in this suspension
NaIO 4 was added and the mixture was stirred at 4 ° C. for 24 hours. After the reaction, the pH was adjusted to 11 with 3N NaOH, dialyzed in distilled water for 2 days, and then the solvent was distilled off with an evaporator.
9.01 g of dialdehyde pectic acid sodium salt is 8
Obtained in a yield of 0.9%. The obtained dialdehyde derivative (8.55 g) was added to 320 ml of distilled water, stirred at 50 ° C. for 1 hour, and then replaced with nitrogen while cooling in an ice bath.
0.7 g (6.6 eq. Vs. monosaccharide) of NaClO 2 was added. The pH of the reaction solution was adjusted to 4 with glacial acetic acid, and the mixture was stirred at room temperature for 24 hours. The pH of the white solution obtained was 11 by bubbling nitrogen until the ClO 2 formed was completely removed and dialyzed in distilled water for 5 days. After filtering off a small amount of insoluble matter, the mother liquor was concentrated with an evaporator and freeze-dried.
7.41 g of dicarboxypectic acid sodium salt DC
Pa-9300 (69) (number average molecular weight = 9300, dicarboxylation rate = 69 mol%) was 6 as white powder.
Obtained in a yield of 2.5%. Dicarboxylation rate is N
It was determined by the method of Eal et al. and Matsumura et al. This DCPa
The biodegradation rate of -9300 (69) was 0%.

【0016】実施例2 実施例1で得られた3.0gのDCPa−9300(6
9)を1%となるように蒸留水に溶解すると溶液のpH
は塩基性を示した。この溶液を110℃のオイルバス中
で27時間加熱還流した。得られた黄色溶液を蒸留水中
で48時間透析し、濃縮後凍結乾燥した。この操作によ
り低分子量化ジカルボキシペクチン酸ナトリウム塩DC
Pa−1700が、1.21g得られた。収率は40.
3%であった。今、Mn=数平均分子量、Mn=量平均
分子量とすると、GPCにより測定したMn、Mw/M
nはそれぞれ1700、2.0であった。IR,NMR
の結果を以下に示した。 IR(KBr):3441cm-1(OH)、2937
(CH)、1612,1402(COONa)、109
5、1024(C−O−C)13C−NMR(22.5M
Hz,D2O):δ=69.9(C−2)、72.6(C
−4)、74.4(C−3)、78.4(C−5)、7
9.8〜81.0(C−4’、C−5’)、100.5
(C−1)、102.5〜103.1(C−1’)、1
74.5〜179.1(C−6、C−2’C−3’、C
−6’)ここでC−1〜C−6は酸化開裂された単糖単
位の炭素である。このDCPa−1700のカルシウム
イオン封鎖能を測定したところ、213の値が得られ
た。また洗浄力は、9.7であったり、生分解率は30
%に向上した。
Example 2 3.0 g of DCPa-9300 (6 obtained in Example 1
When 9) is dissolved in distilled water to 1%, the pH of the solution
Showed basicity. This solution was heated under reflux in an oil bath at 110 ° C. for 27 hours. The obtained yellow solution was dialyzed in distilled water for 48 hours, concentrated and freeze-dried. By this operation, low molecular weight dicarboxypectic acid sodium salt DC
1.21 g of Pa-1700 was obtained. The yield is 40.
It was 3%. Now, assuming that Mn = number average molecular weight and Mn = weight average molecular weight, Mn and Mw / M measured by GPC.
n was 1700 and 2.0, respectively. IR, NMR
The results are shown below. IR (KBr): 3441 cm -1 (OH), 2937
(CH), 1612, 1402 (COONa), 109
5,1024 (C-O-C) 13C -NMR (22.5M
Hz, D 2 O): δ = 69.9 (C-2), 72.6 (C
-4), 74.4 (C-3), 78.4 (C-5), 7
9.8-81.0 (C-4 ', C-5'), 100.5
(C-1), 102.5 to 103.1 (C-1 '), 1
74.5 to 179.1 (C-6, C-2'C-3 ', C
-6 ') where C-1 to C-6 are the carbons of the oxidatively cleaved monosaccharide unit. When the calcium ion sequestering ability of this DCPa-1700 was measured, a value of 213 was obtained. The detergency is 9.7 and the biodegradation rate is 30.
Improved to%.

【0017】実施例3 実施例1と同様の方法(NaOH不使用)でアミロース
の2,3位を酸化開裂し、反応後透析のかわりに濾過す
ると、ジアルデヒドアミロースが80.8%の収率で得
られた。ジアルデヒド体を更に実施例1と同様の方法で
酸化すると、ジカルボキシアミロースナトリウム塩、D
CAm−11900(82)(数平均分子量Mn=11
900、ジカルボキシル化率=82mol%)が87.
3%の収率で得られ、その生分解率は8.4%であっ
た。
Example 3 In the same manner as in Example 1 (without using NaOH), the 2,3-position of amylose was oxidatively cleaved, and after the reaction, filtration was carried out instead of dialysis, and the yield of dialdehyde amylose was 80.8%. Obtained in. When the dialdehyde derivative was further oxidized in the same manner as in Example 1, dicarboxyamylose sodium salt, D
CAm-11900 (82) (number average molecular weight Mn = 11)
900, dicarboxylation rate = 82 mol%) is 87.
The yield was 3%, and the biodegradation rate was 8.4%.

【0018】実施例4 実施例3で得られたDCAm−11900(82)を、
実施例2と同様の方法で熱加水分解すると、DCAm−
2500(数平均分子量Mn=2500、Mw/Mn=
1.4)が42.3%の収率で得られた。このDCAm
−2500のカルシウムイオン封鎖能は、173、洗浄
力は9.3、生分解率は18%に向上した。
Example 4 DCAm-11900 (82) obtained in Example 3 was
When it is thermally hydrolyzed in the same manner as in Example 2, DCAm-
2500 (number average molecular weight Mn = 2500, Mw / Mn =
1.4) was obtained with a yield of 42.3%. This DCAm
-2500 had a calcium ion sequestering ability of 173, a detergency of 9.3, and a biodegradation rate of 18%.

【0019】実施例5 実施例1と同様の方法(NaOH不使用)でアミロペク
チンの2,3位を酸化開裂し、反応後透析のかわりに濾
過すると、ジアルデヒドアミロペクチンが89.2%の
収率で得られた。ジアルデヒド体を更に、実施例1と同
様の方法で酸化すると、ジカルボキシアミロペクチンナ
トリウム塩DCAp−11000(71)(数平均分子
量Mn=11000、ジカルボキシル化率=71mol
%)が88.1%の収率で得られ、生分解率は3.9%
であった。
Example 5 In the same manner as in Example 1 (without using NaOH), the amylopectin was oxidatively cleaved at the 2- and 3-positions, and after the reaction, filtration was carried out instead of dialysis, and the yield of dialdehyde amylopectin was 89.2%. Obtained in. When the dialdehyde form was further oxidized by the same method as in Example 1, dicarboxyamylopectin sodium salt DCAp-11000 (71) (number average molecular weight Mn = 11000, dicarboxylation rate = 71 mol
%) Was obtained with a yield of 88.1%, and the biodegradation rate was 3.9%.
Met.

【0020】実施例6 実施例5で得られたDCAp−11000(71)を実
施例2と同様の方法で熱加水分解すると、DCAp−1
400(Mn=2500、Mw/Mn=1.4)が、5
0.5%の収率で得られた。このDCAp−1400の
カルシウム封鎖能は141、洗浄力は5.5、生分解率
は45%に向上した。
Example 6 DCAp-11000 (71) obtained in Example 5 was thermally hydrolyzed in the same manner as in Example 2 to give DCAp-1.
400 (Mn = 2500, Mw / Mn = 1.4) is 5
Obtained in a yield of 0.5%. The calcium sequestering ability of this DCAp-1400 was improved to 141, the detergency was increased to 5.5, and the biodegradation rate was improved to 45%.

【手続補正書】[Procedure amendment]

【提出日】平成5年5月24日[Submission date] May 24, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】本発明においては、前記のようにして得ら
れたポリカルボキシル基含有重合体(III)(未酸化
のグリコキシド単位(I)を含む)を加水分解してオリ
ゴマーを生成させるが、この場合、その加水分解をpH
7.5〜11のアルカリ性条件下で行うことを特徴とす
る。このようなアルカリ性条件下で行うときには、アセ
タール結合(−O−CH(COOM)−O−)の加水分
解を選択的に行わせて、重合体(III)を低分子量化
させることができる。酸性条件下での加水分解では、重
合体(III)のアセタール結合及び未酸化のグルコシ
ド結合がランダムに加水分解されるため、一定構造の製
品を得ることができない。重合体(III)の加水分解
反応によりそのオリゴマー(低分子化物)が得られる
が、このオリゴマーとしては、その数平均分子量が30
00以下、好ましくは1000〜3000の範囲のもの
が好ましい。このようなオリゴマーの収率は加水分解条
件を調節することによって高めることができる。また、
オリゴマーから前記分子量範囲のものを分別することも
できるが、この分別は、従来公知の分別法により行うこ
とができる。
In the present invention, the polycarboxyl group-containing polymer (III) (containing unoxidized glycoloxide unit (I)) obtained as described above is hydrolyzed to form an oligomer. , Its hydrolysis to pH
It is characterized in that it is carried out under alkaline conditions of 7.5 to 11. When carried out under such alkaline conditions, the hydrolysis of the acetal bond (-O-CH (COOM) -O-) can be selectively carried out to lower the molecular weight of the polymer (III). By hydrolysis under acidic conditions, the acetal bond and the unoxidized glucoside bond of the polymer (III) are randomly hydrolyzed, so that a product having a constant structure cannot be obtained. The oligomer (low molecular weight compound) is obtained by the hydrolysis reaction of the polymer (III), and the number average molecular weight of this oligomer is 30.
It is preferably 00 or less, preferably in the range of 1000 to 3000. The yield of such oligomers can be increased by adjusting the hydrolysis conditions. Also,
The oligomer having a molecular weight in the above range can be fractionated, and this fractionation can be carried out by a conventionally known fractionation method.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0016】実施例2 実施例1で得られた3.0gのDCPa−9300(6
9)を1%となるように蒸留水に溶解すると溶液のpH
は塩基性を示した。この溶液を110℃のオイルバス中
で27時間加熱還流した。得られた黄色溶液を蒸留水中
で48時間透析し、濃縮後凍結乾燥した。この操作によ
り低分子量化ジカルボキシペクチン酸ナトリウム塩DC
Pa−1700が、1.21g得られた。収率は40.
3%であった。今、Mn=数平均分子量、M=量平均
分子量とすると、GPCにより測定したMn、Mw/M
nはそれぞれ1700、2.0であった。IR,NMR
の結果を以下に示した。 IR(KBr):3441cm-1(OH)、2937
(CH)、1612,1402(COONa)、109
5、1024(C−O−C)13C−NMR(22.5M
Hz,D2O):δ=69.9(C−2)、72.6(C
−4)、74.4(C−3)、78.4(C−5)、7
9.8〜81.0(C−4’、C−5’)、100.5
(C−1)、102.5〜103.1(C−1’)、1
74.5〜179.1(C−6、C−2’C−3’、C
−6’)ここでC−1〜C−6は酸化開裂された単糖単
位の炭素である。このDCPa−1700のカルシウム
イオン封鎖能を測定したところ、213の値が得られ
た。また洗浄力は、9.7であり、生分解率は30%に
向上した。
Example 2 3.0 g of DCPa-9300 (6 obtained in Example 1
When 9) is dissolved in distilled water to 1%, the pH of the solution
Showed basicity. This solution was heated under reflux in an oil bath at 110 ° C. for 27 hours. The obtained yellow solution was dialyzed in distilled water for 48 hours, concentrated and freeze-dried. By this operation, low molecular weight dicarboxypectic acid sodium salt DC
1.21 g of Pa-1700 was obtained. The yield is 40.
It was 3%. Now, assuming that Mn = number average molecular weight and Mw = weight average molecular weight, Mn and Mw / M measured by GPC
n was 1700 and 2.0, respectively. IR, NMR
The results are shown below. IR (KBr): 3441 cm -1 (OH), 2937
(CH), 1612, 1402 (COONa), 109
5,1024 (C-O-C) 13C -NMR (22.5M
Hz, D 2 O): δ = 69.9 (C-2), 72.6 (C
-4), 74.4 (C-3), 78.4 (C-5), 7
9.8-81.0 (C-4 ', C-5'), 100.5
(C-1), 102.5 to 103.1 (C-1 '), 1
74.5 to 179.1 (C-6, C-2'C-3 ', C
-6 ') where C-1 to C-6 are the carbons of the oxidatively cleaved monosaccharide unit. When the calcium ion sequestering ability of this DCPa-1700 was measured, a value of 213 was obtained. The detergency was 9.7 and the biodegradation rate was improved to 30%.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0020】実施例6 実施例5で得られたDCAp−11000(71)を実
施例2と同様の方法で熱加水分解すると、DCAp−1
400(Mn=1400、Mw/Mn=1.4)が、5
0.5%の収率で得られた。このDCAp−1400の
カルシウムイオン封鎖能は141、洗浄力は5.5、生
分解率は45%に向上した。
Example 6 DCAp-11000 (71) obtained in Example 5 was thermally hydrolyzed in the same manner as in Example 2 to give DCAp-1.
400 (Mn = 1400 , Mw / Mn = 1.4) is 5
Obtained in a yield of 0.5%. This DCAp-1400 had a calcium ion sequestering ability of 141, a detergency of 5.5, and a biodegradation rate of 45%.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C08B 37/00 Z 7433−4C C09K 3/00 108 9155−4H C11D 3/37 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification number Office reference number FI Technical display location C08B 37/00 Z 7433-4C C09K 3/00 108 9155-4H C11D 3/37

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 多糖化合物を酸化処理して、ポリカルボ
キシル基含有重合体となした後、アルカリ性条件下で加
水分解処理することを特徴とする金属イオン封鎖性及び
生分解性を有するオリゴマー化合物の製造方法。
1. An oligomeric compound having sequestration and biodegradability, which comprises subjecting a polysaccharide compound to an oxidation treatment to form a polycarboxyl group-containing polymer, and then subjecting it to hydrolysis under alkaline conditions. Production method.
【請求項2】 前記請求項1の方法で得られたオリゴマ
ー化合物を含有することを特徴とする洗浄剤組成物。
2. A cleaning composition comprising the oligomeric compound obtained by the method of claim 1.
JP09234793A 1993-03-26 1993-03-26 Method for producing sequestering oligomer compound and detergent composition containing the oligomer compound Expired - Fee Related JP3357996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09234793A JP3357996B2 (en) 1993-03-26 1993-03-26 Method for producing sequestering oligomer compound and detergent composition containing the oligomer compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09234793A JP3357996B2 (en) 1993-03-26 1993-03-26 Method for producing sequestering oligomer compound and detergent composition containing the oligomer compound

Publications (2)

Publication Number Publication Date
JPH06279504A true JPH06279504A (en) 1994-10-04
JP3357996B2 JP3357996B2 (en) 2002-12-16

Family

ID=14051876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09234793A Expired - Fee Related JP3357996B2 (en) 1993-03-26 1993-03-26 Method for producing sequestering oligomer compound and detergent composition containing the oligomer compound

Country Status (1)

Country Link
JP (1) JP3357996B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989007292A1 (en) * 1988-02-05 1989-08-10 Fanuc Ltd Method for part program preparation for similar shape
WO1996038484A1 (en) * 1995-06-02 1996-12-05 Coöperatieve Verkoop- En Productievereniging Van Aardappelmeel En Derivaten Avebe B.A. Oxidized polymeric carbohydrate ethers for use as sequestering agent, and methods for the preparation thereof
WO1998000446A1 (en) * 1996-06-28 1998-01-08 Johnson & Johnson Medical Limited Oxidized oligosaccharides
JP2002521530A (en) * 1998-07-31 2002-07-16 コオペラチイヴェ・ヴェルコオプ−エン・プロダクチイヴェレニギング−ヴァン−アアルダペルメエル・エン・デリヴァテン・アヴェベ・ビー.エイ. Oxidation of starch
US9376648B2 (en) 2008-04-07 2016-06-28 The Procter & Gamble Company Foam manipulation compositions containing fine particles

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989007292A1 (en) * 1988-02-05 1989-08-10 Fanuc Ltd Method for part program preparation for similar shape
WO1996038484A1 (en) * 1995-06-02 1996-12-05 Coöperatieve Verkoop- En Productievereniging Van Aardappelmeel En Derivaten Avebe B.A. Oxidized polymeric carbohydrate ethers for use as sequestering agent, and methods for the preparation thereof
WO1998000446A1 (en) * 1996-06-28 1998-01-08 Johnson & Johnson Medical Limited Oxidized oligosaccharides
GB2314840A (en) * 1996-06-28 1998-01-14 Johnson & Johnson Medical Oxidized oligosaccharides
GB2314840B (en) * 1996-06-28 2000-09-06 Johnson & Johnson Medical Oxidized oligosaccharides and pharmaceutical compositions
JP2002521530A (en) * 1998-07-31 2002-07-16 コオペラチイヴェ・ヴェルコオプ−エン・プロダクチイヴェレニギング−ヴァン−アアルダペルメエル・エン・デリヴァテン・アヴェベ・ビー.エイ. Oxidation of starch
US9376648B2 (en) 2008-04-07 2016-06-28 The Procter & Gamble Company Foam manipulation compositions containing fine particles

Also Published As

Publication number Publication date
JP3357996B2 (en) 2002-12-16

Similar Documents

Publication Publication Date Title
EP0427349B1 (en) Method for the preparation of polydicarboxysaccharides
AU639193B2 (en) Calcium-sequestering agents based on oxidised carbohydrates and their use as builders for detergents
EP0733073B1 (en) Carboxymethyl inulin
US3873614A (en) Process for preparing oxidized carbohydrates and products
JPH08510494A (en) Method for producing polysaccharide-based polycarboxylate
WO1996038484A1 (en) Oxidized polymeric carbohydrate ethers for use as sequestering agent, and methods for the preparation thereof
US4766207A (en) Process for the preparation of water-soluble polysaccharides, the saccharides thus obtainable, and their use
EP1475390B1 (en) Method for preparing glucose polymer having ion-exchanging ability and composition containing the same
JPH06279504A (en) Production of sequestering oligomer compound and detergent composition containing the same
WO2009122953A1 (en) Method for manufacturing polyuronate
JP5544107B2 (en) Polymer builder
NL1004738C2 (en) Fructan polycarboxylic acid.
DE2040948A1 (en) Detergents and cleaning agents
EP2626373A1 (en) Method for the manufacture of concentrated aqueous solutions of alkali metal salt of carboxymethyl fructan
US5981742A (en) Glucuronyl arabinarates and process for producing them
EP0892041A1 (en) Use of oxidised polysaccharides in detergent compositions
JP4186294B2 (en) Method for producing polyguluronic acid
EP0840777B1 (en) Process for the production of a detergent builder/activators
CN1167713C (en) Prepn. of water soluble chitosan with controllable molecular weight
JPS58108206A (en) Preparation of stable aqueous solution of polyacrylamide modified with cation
Besemer et al. Calcium sequestering agents based on carbohydrates
MXPA97008497A (en) Adjuvants / activators for deterge
JP2001335532A (en) Method for producing polygalacturonic acid
DE2512770A1 (en) Poly-penta-erythritol oxidn. prods. used as sequestrants - pref prepd by oxidn with hypohalites to convert methylol to carboxyl gps
JP2000001503A (en) Production of carboxy polysaccharide

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20071011

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20081011

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081011

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091011

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091011

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20101011

LAPS Cancellation because of no payment of annual fees