JPH06279018A - Composite powder and electroviscous fluid containing same powder as dispersing phase - Google Patents

Composite powder and electroviscous fluid containing same powder as dispersing phase

Info

Publication number
JPH06279018A
JPH06279018A JP4058091A JP4058091A JPH06279018A JP H06279018 A JPH06279018 A JP H06279018A JP 4058091 A JP4058091 A JP 4058091A JP 4058091 A JP4058091 A JP 4058091A JP H06279018 A JPH06279018 A JP H06279018A
Authority
JP
Japan
Prior art keywords
powder
clay mineral
carbon
layered clay
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4058091A
Other languages
Japanese (ja)
Inventor
Yoshiki Fukuyama
良樹 福山
Ikuo Kurachi
育夫 倉地
Yuichi Ishino
裕一 石野
Tasuku Saito
翼 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP4058091A priority Critical patent/JPH06279018A/en
Publication of JPH06279018A publication Critical patent/JPH06279018A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain composite powder of carbon/layered clay mineral expected for uses as dispersing phase solid particles in electroviscous fluid, a filler for providing electric characteristics to high polfmers or improving rubber elasticity, a catalyst, a heat resistant material, an electrically conductive material for electrode materials, etc., and a precursor for synthesizing fine ceramic powder, and an electroviscous fluid containing the powder as a dispersing phase. CONSTITUTION:This composite powder of carbon/layered clay mineral contains 2-20wt.% carbon between layers of powder particles of layer clay mineral. The electroviscous fluid is composed of 1-60wt.% dispersing phase consisting of a carbon/layered clay mineral composite powder containing 2-20wt.% carbon between layers of powder particles of the layered clay mineral and having 0.01-100mum average particle diameter and 40-99wt.% liquid phase consisting of an electrical insulating oil having 0.65-1000cSt kinematic viscosity at ambient temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気粘性流体における
分散相固体粒子、高分子化合物への電気特性付与やゴム
弾性改良のための充填剤、触媒、耐熱材料、電極材料等
の導電材、ファインセラミックス粉体合成のための前駆
体等としての用途が期待されるカーボン/層状粘土鉱物
複合粉体、並びに該粉体を分散相とする電気粘性流体に
関するものである。
TECHNICAL FIELD The present invention relates to dispersed phase solid particles in an electrorheological fluid, a filler for imparting electrical properties to a polymer compound and improving rubber elasticity, a conductive material such as a catalyst, a heat resistant material and an electrode material. The present invention relates to a carbon / layered clay mineral composite powder, which is expected to be used as a precursor for synthesizing fine ceramics powder, and an electrorheological fluid containing the powder as a dispersed phase.

【0002】[0002]

【従来の技術】本発明のカーボン/層状粘土鉱物複合粉
体の代表的な用途である電気粘性流体について先ず説明
する。電気粘性流体は疎水性で非導電性の油の中に微細
に分割した親水性の固体が分散している懸濁液で、十分
に強い電場の作用の下で極めて速やかにしかも可逆的に
流体の粘度が増加し、プラスチックまたは固体の状態と
なるものである。粘度を変化させるためには直流の電場
だけでなく交流の電場も使用することができ、必要な電
流は非常に小さく、少ない電力によって強力な力を与え
るので、例えばクラッチ、水圧弁、ショックアブソーバ
ー、バイブレーター、防振ゴム、或はワークピースを正
常な位置に保持するシステムを制御するための電気−機
械のインターフェイス等における構成要素として使用す
ることができる。
2. Description of the Related Art An electrorheological fluid, which is a typical application of the carbon / layered clay mineral composite powder of the present invention, will first be described. An electrorheological fluid is a suspension in which finely divided hydrophilic solids are dispersed in a hydrophobic, non-conductive oil, and is a fluid that is extremely rapidly and reversibly under the action of a sufficiently strong electric field. It increases in viscosity and becomes a plastic or solid state. To change the viscosity, not only a DC electric field but also an AC electric field can be used, the required current is very small, and a strong power is given by a small amount of electric power, so that, for example, a clutch, a hydraulic valve, a shock absorber, It can be used as a component in a vibrator, an anti-vibration rubber, or an electro-mechanical interface for controlling a system that holds a workpiece in place.

【0003】従来、電気粘性流体の構成要素の一つであ
る分散相固体粒子としては、表面から水を吸収させ微細
化させたセルロース、デンプン、シリカゲル、イオン交
換樹脂、ポリアクリル酸リチウム等を、また他の構成要
素である液相としてはセバシン酸ブチル、トランス油、
塩化パラフィン、シリコーン油等を使用したものが知ら
れているが、実用性に乏しく、実用価値のある極めて高
性能かつ安定性の高い電気粘性流体はいまだに存在しな
い。
Conventionally, as dispersed phase solid particles, which are one of the constituent elements of electrorheological fluid, cellulose, starch, silica gel, ion exchange resin, lithium polyacrylate, etc., which have been made to absorb water from the surface and made fine, In addition, as the liquid phase which is another component, butyl sebacate, trans oil,
Although those using chlorinated paraffin, silicone oil and the like are known, there is still no highly viscous and highly stable electrorheological fluid having practical utility and practical value.

【0004】実用的な電気粘性流体に要求される特性
は、大きな電気粘性効果を示し、電場がかかった時の消
費電力が少なく、かつ電場の印加および除去に瞬時に応
答することである。しかしながら前記のような、電気粘
性効果の発現のために水を吸収させた分散相では水分量
の増加に従って粒子間を流れる電流も同時に増えてしま
うため電力消費の点で大きな問題があった。特にこの傾
向は高温になるにつれて強まり、従来の分散相を用いた
電気粘性流体の使用温度の上限は70〜80℃程度で、
それ以上の高温で使用すると電流が過剰に流れてしまい
消費電力が非常に高くなると共に電気粘性効果の発現力
や応答性の低下等が時間とともに起こり、自動車のエン
ジンルーム等、高温環境下で使用する構成要素への応用
は不可能であった。
The characteristics required for a practical electrorheological fluid are that it exhibits a large electrorheological effect, consumes less power when an electric field is applied, and responds instantly to the application and removal of the electric field. However, as described above, in the dispersed phase in which water is absorbed to exhibit the electrorheological effect, the current flowing between particles simultaneously increases as the amount of water increases, which causes a big problem in terms of power consumption. In particular, this tendency becomes stronger as the temperature becomes higher, and the upper limit of the working temperature of the electrorheological fluid using the conventional dispersed phase is about 70 to 80 ° C.
If it is used at higher temperature than that, the current will flow excessively and the power consumption will be very high, and the electrorheological effect and the responsiveness will decrease over time. It was not possible to apply it to the constituent elements.

【0005】[0005]

【発明が解決しようとする課題】本発明は、高温で高い
電気粘性効果を示し且つ電力消費が少ない電気粘性流体
を得るための分散相固体粒子として優れた特性を示すほ
か、高分子化合物への電気特性付与やゴム弾性改良のた
めの充填剤、触媒、耐熱材料、電極材料等の導電材、フ
ァインセラミックス粉体合成のための前駆体等としての
用途が期待されるカーボン/層状粘土鉱物複合粉体並び
に該粉体の特性を利用する電気粘性流体を提供すること
を目的とする。
DISCLOSURE OF THE INVENTION The present invention shows excellent characteristics as a dispersed phase solid particle for obtaining an electrorheological fluid which exhibits a high electrorheological effect at a high temperature and consumes less electric power, and is also useful for polymer compounds. Carbon / layered clay mineral composite powder expected to be used as fillers for imparting electrical properties and improving rubber elasticity, catalysts, heat-resistant materials, conductive materials such as electrode materials, and precursors for fine ceramic powder synthesis An object is to provide an electrorheological fluid that utilizes the properties of the body and the powder.

【0006】[0006]

【課題を解決するための手段】本発明のカーボン/層状
粘土鉱物複合粉体は、層状粘土鉱物の粉体粒子の層間に
カーボンを2〜20重量%含有していることを特徴とす
る。電気粘性流体の分散相として使用する場合、カーボ
ン/層状粘土鉱物複合粉体中のカーボン含有量が2重量
%未満の場合には満足すべき電気粘性効果が得られな
い。また高分子化合物への電気特性付与やゴム弾性改良
のための充填剤、触媒、耐熱材料、電極材料等の導電
材、ファインセラミックス粉体合成のための前駆体とし
ての用途に用いる場合もカーボン含有に伴う特性の変化
が期待できない。一方層状粘土鉱物複合粉体の層間に2
0重量%を越えるカーボンを含有させることは困難であ
る。
The carbon / layered clay mineral composite powder of the present invention is characterized by containing 2 to 20% by weight of carbon between the layers of the layered clay mineral powder particles. When used as a dispersed phase of an electrorheological fluid, a satisfactory electrorheological effect cannot be obtained if the carbon content in the carbon / layered clay mineral composite powder is less than 2% by weight. Also, when used as a filler for imparting electrical properties to polymer compounds or improving rubber elasticity, a catalyst, a heat-resistant material, a conductive material such as an electrode material, or a precursor for synthesizing fine ceramic powder, it contains carbon. It cannot be expected that the characteristics will change. On the other hand, 2 between layers of layered clay mineral composite powder
It is difficult to contain carbon exceeding 0% by weight.

【0007】また本発明の電気粘性流体は、層状粘土鉱
物の粉体粒子の層間にカーボンを2〜20重量%含有し
ており且つ平均粒径0.01〜100ミクロンのカーボ
ン/層状粘土鉱物複合粉体1〜60重量%よりなる分散
相と、室温における粘度0.65〜1000センチスト
ークス(cSt)の電気絶縁油40〜99重量%よりな
る液相とから構成されていることを特徴とする。
Further, the electrorheological fluid of the present invention contains 2 to 20% by weight of carbon between the layers of the layered clay mineral powder particles and has a carbon / layered clay mineral composite having an average particle size of 0.01 to 100 microns. It is characterized in that it is composed of a dispersed phase composed of 1 to 60% by weight of a powder and a liquid phase composed of 40 to 99% by weight of an electrically insulating oil having a viscosity of 0.65 to 1000 centistokes (cSt) at room temperature. .

【0008】上記のようなカーボン/層状粘土鉱物複合
粉体は、層状粘土鉱物の粉体粒子の層間に高分子量の有
機化合物を存在させた後、不活性ガス雰囲気下400℃
以上600℃未満の温度で熱処理して該高分子量の有機
化合物を炭化することにより得られる。さらに、層間に
高分子量の有機化合物が存在する層状粘土鉱物の粉体粒
子を不活性ガス雰囲気下400℃以上600℃未満の温
度で熱処理する前に、酸化雰囲気中150℃〜250℃
の温度で予備熱処理することによって炭化後の残炭量を
増大することができる。電気粘性流体用における分散相
固体粒子として使用する場合、以上の条件のうち最も重
要なのは、熱処理して炭化する温度を400℃以上、6
00℃未満とすることである。この条件下で得られた層
間にカーボンを2〜20重量%含有する層状粘土鉱物複
合粉体を分散相とする電気粘性流体の消費電力は小さく
なり、経済的効果が著しく大きくなる。
The carbon / layered clay mineral composite powder as described above is prepared by allowing a high molecular weight organic compound to exist between layers of the layered clay mineral powder particles, and then 400 ° C. in an inert gas atmosphere.
It is obtained by carbonizing the high molecular weight organic compound by heat treatment at a temperature of 600 ° C. or lower. Furthermore, before heat treating the powder particles of the layered clay mineral in which a high molecular weight organic compound is present between the layers at a temperature of 400 ° C. or more and less than 600 ° C. in an inert gas atmosphere, 150 ° C. to 250 ° C. in an oxidizing atmosphere.
The amount of residual coal after carbonization can be increased by performing the preliminary heat treatment at the temperature of. When used as dispersed phase solid particles for electrorheological fluids, the most important of the above conditions is that the temperature for carbonizing by heat treatment is 400 ° C. or higher, 6
It is to be less than 00 ° C. The electric power consumption of the electrorheological fluid containing the layered clay mineral composite powder containing 2 to 20% by weight of carbon between the layers obtained under these conditions as the dispersed phase is small, and the economical effect is remarkably increased.

【0009】カーボン/層状粘土鉱物複合粉体を製造す
る際の原料に用いる層状粘土鉱物としては、カオリナイ
ト、ディッカイト、ナクライト、ハロイサイト、アンチ
ゴライト、クリソタイル、パイロフイライト、スクメタ
イト(スクメタイトは同型置換により、さらにモンモリ
ロナイト、バイデライト、ノントロナイト、サポナイ
ト、ヘクトライト、そしてソーゴナイトに分類され、さ
らにモンモリロナイトは交換性陽イオンの種類によりベ
ントナイト、酸性白土に分類される)、白雲母、マーガ
ライト、タルク、バーミキュライト、金雲母、ザンソフ
ィライト、等が挙げられ、大きな有機化合物包接能(第
四級アンモニウム塩およびアクリロニトリルをインター
カレートし易い)と安価の点でスクメタイト中のモンモ
リロナイトが好ましい。さらに、天然のモンモリロナイ
トに含まれるといわれているクリストバライトは少ない
方がより好ましく、層状構造の結晶は大きい方が良い。
As the layered clay mineral used as a raw material for producing the carbon / layered clay mineral composite powder, kaolinite, dickite, nacrite, halloysite, antigorite, chrysotile, pyrophyllite, scumite (smutite is substituted by the same type) By montmorillonite, beidellite, nontronite, saponite, hectorite, and sogonite, further montmorillonite is classified as bentonite, acid clay by the type of exchangeable cations), muscovite, margarite, talc, Vermiculite, phlogopite, xanthophyllite, etc. are preferred, and montmorillonite in scumite is preferred because of its large organic compound inclusion ability (easily intercalating quaternary ammonium salts and acrylonitrile) and its low cost. . Furthermore, it is preferable that the amount of cristobalite, which is said to be contained in natural montmorillonite, is small, and that the crystal of the layered structure is large.

【0010】カーボン/層状粘土鉱物複合粉体粒子中の
カーボンは層状粘土鉱物の粉体粒子の層間に存在させた
高分子量の有機化合物を炭化して得られるが、この高分
子量の有機化合物としては残炭率が大きいものが好まし
く、具体的には極限酸素指数(LOI)が18以上の有
機化合物が良い。
The carbon in the carbon / layered clay mineral composite powder particles is obtained by carbonizing a high molecular weight organic compound present between the layers of the layered clay mineral powder particles. It is preferable that the residual carbon rate is large, and specifically, an organic compound having a limiting oxygen index (LOI) of 18 or more is preferable.

【0011】ここでLOIについて簡単に説明する。L
OIとは、材料が燃焼を持続するのに必要な酸素と窒素
の混合気体中の容量パーセントで表される最低酸素濃度
([O2 ]/〔[O2 ]+[N2 ]〕×100)のこと
であり、この値が大きい程その材料は燃焼し難くなるこ
とを意味する。有機化合物の中には不活性ガス下の高温
度で熱処理すると炭化物を生成する化合物がある。炭化
物を生成する有機化合物の熱処理を不活性ガス中で行う
と一般に500℃まで重量減少が大きく、600℃以降
は徐々に重量減少は小さくなってゆく。800℃以上に
おいても極く僅かの重量減少が認められるが、600℃
までの変化に比べると小さい。故に不活性ガス下850
℃の熱処理における炭化物の生成する割合を残炭率(C
R)と定義する。Van Krevenはこの残炭率(CR)と極
限酸素指数(LOI)とを次式のように関係づけてい
る。(ポリマーの難燃化、西沢仁著、大成社刊) LOI(vol%)=17.5+0.4×CR(wt
%) 上式によると、LOIが17.5以上の化合物であれ
ば、不活性ガス下で熱処理したときに炭化物を生成する
ことが知られている。
Here, the LOI will be briefly described. L
OI is the minimum oxygen concentration ([O 2 ] / [[O 2 ] + [N 2 ]] × 100 expressed as a volume percentage in a mixed gas of oxygen and nitrogen required for the material to continue combustion. ), And the larger this value is, the more difficult the material is to burn. Among organic compounds, there is a compound which forms a carbide when heat-treated at a high temperature under an inert gas. When the heat treatment of the organic compound that forms the carbide is performed in an inert gas, the weight loss is generally large up to 500 ° C, and the weight loss gradually decreases after 600 ° C. A slight weight loss is observed at 800 ° C and above, but 600 ° C
It is small compared to the changes up to. Therefore under inert gas 850
The rate of formation of carbides in the heat treatment at ℃
R). Van Kreven relates the residual coal rate (CR) and the limiting oxygen index (LOI) by the following equation. (Polymer flame-retardant, written by Hitoshi Nishizawa, Taiseisha) LOI (vol%) = 17.5 + 0.4 × CR (wt
%) According to the above formula, it is known that a compound having an LOI of 17.5 or more produces carbides when heat-treated under an inert gas.

【0012】不活性ガス下の熱処理により炭化物を生成
する高分子量の有機化合物中でも、LOIが18以上の
有機化合物が好ましく、その例を挙げれば、セルロー
ス、デンプン等の天然高分子、ポリウレタン、メタクリ
ル樹脂、ポリスチレン、ナイロン、ポリプロピレン、ポ
リアクリロニトリル、ポリ塩化ビニル、フッ素樹脂、ポ
リエステル、エポキシ樹脂、フェノール樹脂、メラミン
樹脂、ユリア樹脂、フラン樹脂等の合成高分子、オリゴ
マー、或はタール、ピッチ等の芳香族多環式化合物、さ
らにデキストリン等を挙げることができ、中でも特に好
ましいのはポリアクリロニトリルである。
Among high molecular weight organic compounds which generate carbides by heat treatment under an inert gas, organic compounds having LOI of 18 or more are preferable, and examples thereof include natural polymers such as cellulose and starch, polyurethane and methacrylic resin. , Polystyrene, nylon, polypropylene, polyacrylonitrile, polyvinyl chloride, fluororesin, polyester, epoxy resin, phenol resin, melamine resin, urea resin, furan resin, and other synthetic polymers, oligomers, or aromatics such as tar and pitch Examples thereof include polycyclic compounds, dextrin, and the like. Among them, polyacrylonitrile is particularly preferable.

【0013】層状粘土鉱物の粉体粒子の層間に上記のよ
うな高分子量の有機化合物を存在させる手段の一つは、
重合性有機モノマー液中に前記粉体粒子を浸漬して粉体
粒子の層間に該モノマーを含浸させた後、モノマーを重
合させる方法である。他の手段としては、オリゴマーや
芳香族多環式化合物などの液中に前記粉体粒子を浸漬し
て含浸する方法がある。
One of means for allowing the above-mentioned high molecular weight organic compound to exist between the layers of the layered clay mineral powder particles is
In this method, the powder particles are immersed in a polymerizable organic monomer liquid to impregnate the particles between the powder particles, and then the monomers are polymerized. As another means, there is a method of immersing and impregnating the powder particles in a liquid such as an oligomer or an aromatic polycyclic compound.

【0014】さらに、前記重合性有機モノマー、或はオ
リゴマー等を層状粘土鉱物の粉体粒子の層間に含浸させ
る際には、層状粘土鉱物の層間が広い方が含浸され易
く、そのため先ず該粉体粒子を第四級アンモニウム塩や
シクロデキストリン等で処理して粉体粒子の層間に第四
級アンモニウム塩やシクロデキストリン等を挿入して粉
体粒子の層間を予め拡大しておいた方が良い。作業性の
点で、シクロデキストリンよりも第四級アンモニウム塩
の方が好ましい。
Further, when the polymerizable organic monomer or oligomer is impregnated between the layers of the powder particles of the layered clay mineral, the layer of the layered clay mineral is more easily impregnated. It is preferable to treat the particles with a quaternary ammonium salt, cyclodextrin, or the like to insert the quaternary ammonium salt, cyclodextrin, or the like between the layers of the powder particles to expand the layers of the powder particles in advance. In terms of workability, the quaternary ammonium salt is preferable to cyclodextrin.

【0015】層状粘土鉱物の層間を拡大するための第四
級アンモニウム塩としては、アルキルトリメチルアンモ
ニウムクロライド、アルキルトリメチルアンモニウムブ
ロマイド、アルキルベンジルジメチルアンモニウムクロ
ライド、アルキルベンジルジメチルアンモニウムブロマ
イド、ジアルキルジメチルアンモニウムクロライド、ジ
アルキルジメチルアンモニウムブロマイド等のアルキル
第四級アンモニウム塩(アルキル基の炭素数10〜1
8)が挙げられ、層状粘土鉱物の層間をより大きく拡大
するという点でアルキル基の炭素数は大きい方が好まし
く、また安価の点でハロゲンイオンとしては塩素イオン
の方が好ましい。代表的なものとしてはセシルトリメチ
ルアンモニウムクロライド(アルキル基の炭素数1
6)、ステアリルトリメチルアンモニウムクロライド
(アルキル基の炭素数18)、テトラデシルベンジルジ
メチルアンモニウムクロライド(アルキル基の炭素数1
4)、ステアリルベンジルジメチルアンモニウムクロラ
イド(アルキル基の炭素数18)、ジステアリルジメチ
ルアンモニウムクロライド(アルキル基の炭素数18)
があるが、それらに限られるものではない。
Examples of the quaternary ammonium salt for expanding the layers of the layered clay mineral include alkyltrimethylammonium chloride, alkyltrimethylammonium bromide, alkylbenzyldimethylammonium chloride, alkylbenzyldimethylammonium bromide, dialkyldimethylammonium chloride and dialkyldimethyl. Alkyl quaternary ammonium salts such as ammonium bromide (alkyl groups having 10 to 1 carbon atoms)
8), and it is preferable that the alkyl group has a large carbon number from the viewpoint of expanding the layers of the layered clay mineral to a greater extent, and the halogen ion is preferably a chlorine ion as it is inexpensive. A typical example is cetyl trimethyl ammonium chloride (alkyl group having 1 carbon atom)
6), stearyltrimethylammonium chloride (alkyl group having 18 carbon atoms), tetradecylbenzyldimethylammonium chloride (alkyl group having 1 carbon atom)
4), stearylbenzyldimethylammonium chloride (alkyl group having 18 carbon atoms), distearyldimethylammonium chloride (alkyl group having 18 carbon atoms)
However, it is not limited to them.

【0016】カーボン/層状粘土鉱物複合粉体が電気粘
性流体の分散相として適している理由は、層間のカーボ
ンを電極、層状粘土鉱物を絶縁層と仮定するとコンデン
サーが直列に配列した構造とみなすことができ、高誘電
率の粉体、そしてそれを分散相とする高電気粘性効果の
電気粘性流体が期待できるところにある。したがって層
間のカーボンはある程度の導電性を持たなければなら
ず、層状粘土鉱物の層間で高分子量の有機化合物を炭化
した後層間には縮合環構造ができなければならない。
The reason why the carbon / layered clay mineral composite powder is suitable as a dispersed phase of an electrorheological fluid is that assuming that carbon between layers is an electrode and layered clay mineral is an insulating layer, it is regarded as a structure in which capacitors are arranged in series. It is possible to expect a powder having a high dielectric constant and an electrorheological fluid having a high electrorheological effect using the powder as a dispersed phase. Therefore, the carbon between the layers must have a certain degree of conductivity, and after the high molecular weight organic compound is carbonized between the layers of the layered clay mineral, a condensed ring structure must be formed between the layers.

【0017】上記のような縮合環形成の手段としては、
層状粘土鉱物の層間に存在する高分子量の有機化合物を
炭化前に酸化雰囲気中150〜250℃の温度で予備熱
処理することによって酸素架橋させ、ある程度の縮合環
を形成しておく方法が良い。これは、例えばポリアクリ
ロニトリル(PAN)系炭素繊維の安定化工程と同じ効
果を狙って行うものである。即ちPAN系炭素繊維の場
合、PAN繊維を安定化工程を行わずに直接炭化工程に
持ち込むと閉環や脱水素などの発熱反応が急激に生じて
繊維が燃焼する。そこで安定化工程でPAN繊維を20
0℃〜300℃の温度で酸化反応による脱水素や架橋反
応を予め行わせ(ピリジン縮合環構造の生成)、繊維の
燃焼を防いでいる(炭素繊維、p106、(株)近代編
集社)。この場合も、酸化雰囲気中での熱処理によって
層間で縮合環構造を形成させ、炭化後の複合粉体粒子の
層間のカーボンを多く残すという狙いがある。
Means for forming a condensed ring as described above include
It is preferable to preliminarily heat-treat a high molecular weight organic compound existing between layers of a layered clay mineral in an oxidizing atmosphere at a temperature of 150 to 250 ° C. for oxygen crosslinking to form a condensed ring to some extent. This is intended to achieve the same effect as, for example, the step of stabilizing the polyacrylonitrile (PAN) -based carbon fiber. That is, in the case of the PAN-based carbon fiber, if the PAN fiber is directly brought into the carbonization process without performing the stabilization process, an exothermic reaction such as ring closure and dehydrogenation rapidly occurs to burn the fiber. Therefore, 20 PAN fibers were used in the stabilization process.
Dehydrogenation and cross-linking reaction by oxidation reaction are performed in advance at a temperature of 0 ° C to 300 ° C (formation of a condensed pyridine ring structure) to prevent the fiber from burning (carbon fiber, p106, Modern Editing Co., Ltd.). In this case as well, there is an aim to form a condensed ring structure between layers by heat treatment in an oxidizing atmosphere and leave a large amount of carbon between layers of the composite powder particles after carbonization.

【0018】次に、カーボン/層状粘土鉱物複合粉体の
製造手順にそってさらに詳細に説明する。
Next, the carbon / layered clay mineral composite powder production procedure will be described in more detail.

【0019】層状粘土鉱物の粉体粒子の層間への第四級
アンモニウム塩の挿入は、第四級アンモニウム塩の水溶
液に層状粘土鉱物を含浸するが、その際には撹拌した方
が好ましい。つまり撹拌した方が挿入効率が良くなり、
第四級アンモニウム塩が層状粘土鉱物の粉体粒子の層間
に入り易くなるため、層間がより確実に拡がる。その結
果、カーボン源である高分子量の有機化合物を層間によ
り多く存在させることができ、炭化処理後の残炭量が多
くなり、電気粘性効果の増大に結びつくからである。ま
た層状粘土鉱物の粉体粒子の層間への第四級アンモニウ
ム塩挿入時の温度は室温から100℃の間で自由に選べ
るが、温度が低いと挿入の効率が悪くなり、温度が高す
ぎると第四級アンモニウム塩水溶液の濃度が変化するの
で、40℃〜80℃の範囲が好ましい。第四級アンモニ
ウム塩水溶液の濃度は第四級アンモニウム塩が水に溶解
しさえすれば自由に選択できる。挿入を十分に行った
後、水及びハロゲンイオン(第四級アンモニウム塩構成
要素)を除去するために、洗浄、乾燥を行う必要があ
る。
The insertion of the quaternary ammonium salt between the layers of the powder particles of the layered clay mineral is performed by impregnating the layered clay mineral in an aqueous solution of the quaternary ammonium salt, and stirring at this time is preferable. In other words, stirring improves the insertion efficiency,
Since the quaternary ammonium salt easily enters the layers of the powder particles of the layered clay mineral, the layers spread more reliably. As a result, a large amount of a high molecular weight organic compound, which is a carbon source, can be present between layers, the amount of residual carbon after carbonization increases, and this leads to an increase in the electrorheological effect. Further, the temperature at the time of inserting the quaternary ammonium salt between the layers of the layered clay mineral powder particles can be freely selected from room temperature to 100 ° C. However, if the temperature is low, the insertion efficiency becomes poor, and if the temperature is too high, Since the concentration of the quaternary ammonium salt aqueous solution changes, the range of 40 ° C to 80 ° C is preferable. The concentration of the quaternary ammonium salt aqueous solution can be freely selected as long as the quaternary ammonium salt is dissolved in water. After sufficient insertion, it is necessary to wash and dry to remove water and halogen ions (quaternary ammonium salt constituents).

【0020】粉体粒子層間へのLOIが18以上の高分
子量有機化合物を生成するモノマーの含浸、或はオリゴ
マーの含浸は、気相から含浸しても良いが、作業性及び
安全性の点で、層状粘土鉱物粉体又は層間に第四級アン
モニウム塩を挿入した層状粘土鉱物粉体をモノマー或は
オリゴマー液中に浸漬する方法が好ましい。含浸温度は
室温で行うことが好ましく、また含浸を十分に行う必要
がある。含浸の際には撹拌した方が好ましい。これは撹
拌した方がモノマー、或はオリゴマーの含浸効率が良く
なり、炭化処理後の残炭量が多くなるからである。
Impregnation of a monomer or an oligomer which forms a high molecular weight organic compound having an LOI of 18 or more between the powder particle layers may be performed from the gas phase, but in view of workability and safety. A preferred method is to immerse the layered clay mineral powder or the layered clay mineral powder having a quaternary ammonium salt inserted between layers in a monomer or oligomer solution. The impregnation temperature is preferably room temperature, and sufficient impregnation is required. It is preferable to stir during impregnation. This is because stirring improves the impregnation efficiency of the monomer or oligomer and increases the amount of residual coal after carbonization.

【0021】粉体粒子の層間に含浸されたモノマーの重
合は、通常の方法なら何でも選択できるが、作業性及び
安全性の点で熱重合が好ましい。
The polymerization of the monomer impregnated between the layers of the powder particles can be selected by any ordinary method, but thermal polymerization is preferable from the viewpoint of workability and safety.

【0022】粉体粒子の層間に含浸されたモノマーを重
合するとか、層間にオリゴマー等を含浸させるとかして
層間に高分子量の有機化合物を存在させた後、層間に含
浸されず粒子外部に付着したモノマーの重合物、或はオ
リゴマー等は、洗浄・乾燥して除去する。洗浄にはモノ
マーの重合物、或はオリゴマー等を溶解する溶剤を用い
る。乾燥処理の温度は室温が好ましい。高温で乾燥する
と粉体粒子の層間に存在している高分子量の有機化合物
までも揮発する可能性があり、結果として炭化した後の
残炭量の低下、そして得られた複合粉体を分散相とする
電気粘性流体の電気粘性効果の低下につながるからであ
る。
After a high molecular weight organic compound was present between the layers by polymerizing the monomer impregnated between the layers of the powder particles or by impregnating an oligomer between the layers, the particles were not impregnated between the layers and adhered to the outside of the particles. Polymerization products of monomers or oligomers are removed by washing and drying. For cleaning, a solvent that dissolves a polymerized product of a monomer or an oligomer is used. The temperature of the drying treatment is preferably room temperature. When dried at high temperature, even high molecular weight organic compounds existing between the layers of powder particles may volatilize, resulting in a decrease in the amount of residual carbon after carbonization, and the resulting composite powder in a dispersed phase. This leads to a decrease in the electrorheological effect of the electrorheological fluid.

【0023】酸化雰囲気中での予備熱処理については、
酸化雰囲気はCOやCO2 でも良いが、空気の方が作業
性の点で好ましい。熱処理温度は150℃〜250℃、
好ましくは180℃〜220℃である。熱処理時間は5
時間〜50時間であり、好ましくは10時間〜30時間
である。熱処理時間が短いと十分な縮合環の生成が出来
なくて炭化後の複合粉体中の炭素が少なくなってしまう
し、熱処理時間が長すぎると縮合環の連続性が増す(環
数が大きくなる)ため複合粉体の導電性が増大し、結果
として電気粘性流体の消費電力が大きくなってしまう。
Regarding the preliminary heat treatment in an oxidizing atmosphere,
The oxidizing atmosphere may be CO or CO 2 , but air is preferred in terms of workability. The heat treatment temperature is 150 ° C to 250 ° C,
It is preferably 180 ° C to 220 ° C. Heat treatment time is 5
Time to 50 hours, preferably 10 to 30 hours. If the heat treatment time is too short, sufficient condensed rings cannot be produced, and the carbon content in the composite powder after carbonization will be small.If the heat treatment time is too long, the continuity of the condensed rings will increase (the number of rings will increase. Therefore, the conductivity of the composite powder is increased, and as a result, the power consumption of the electrorheological fluid is increased.

【0024】最後の熱処理は層間に炭素を生成する工程
である。熱処理温度の設定は最も重要な点であり、40
0℃以上、600℃未満、好ましくは450℃以上、5
50℃以下とする。これが低い(400℃未満)と炭素
の生成が不十分となり、層間にカーボンを2重量%以上
含有させることが困難である。本発明の複合粉体を分散
相として用いた電気粘性流体の電気粘性効果を向上する
ためには、複合粉体中のカーボン量を増大させることが
重要である。一方熱処理温度が600℃以上であると、
複合粉体の導電性が非常に増大し結果として電気粘性流
体の消費電力が大きくなり、更に700℃を越えると粉
体の層状構造の分解が起きてしまう。
The final heat treatment is a step of forming carbon between layers. Setting the heat treatment temperature is the most important point.
0 ° C or higher and lower than 600 ° C, preferably 450 ° C or higher and 5
It shall be 50 ° C or lower. When this is low (less than 400 ° C.), the carbon generation is insufficient, and it is difficult to contain carbon in an amount of 2% by weight or more between layers. In order to improve the electrorheological effect of the electrorheological fluid using the composite powder of the present invention as the dispersed phase, it is important to increase the amount of carbon in the composite powder. On the other hand, when the heat treatment temperature is 600 ° C. or higher,
The electroconductivity of the composite powder is greatly increased, and as a result, the power consumption of the electrorheological fluid is increased, and when the temperature exceeds 700 ° C., the layer structure of the powder is decomposed.

【0025】高分子量の有機化合物を炭化するための熱
処理の雰囲気は不活性ガスであり、好ましくは窒素ガス
またはアルゴンガスである。昇温速度は1〜10℃/min
が好適である。昇温速度が速いと(10℃/minを越える
と)縮合環構造の形成が不十分となり、複合粉体を分散
相とする電気粘性流体の電気粘性効果が小さくなってし
まい、昇温速度が遅いと(1℃/min未満)作業性が悪く
なる。また昇温は均一昇温速度の一段階昇温でも良い
し、場合によっては昇温速度を変えた複数段階昇温でも
良い。前記炭化温度での保持時間は0.1〜10時間で
あり、これが短いと(0.1時間未満)縮合環構造の形
成が不十分となり複合粉体を分散相とする電気粘性流体
の電気粘性効果が小さくなり、保持時間が長いと(10
時間を越えると)作業性が悪くなる。冷却速度は自由に
選択でき、自然放冷でも良い。
The atmosphere of the heat treatment for carbonizing the high molecular weight organic compound is an inert gas, preferably nitrogen gas or argon gas. Temperature rising rate is 1-10 ℃ / min
Is preferred. If the heating rate is high (more than 10 ° C / min), the formation of the condensed ring structure becomes insufficient, and the electrorheological effect of the electrorheological fluid having the composite powder as the dispersed phase becomes small, and the heating rate increases. If it is slow (less than 1 ° C / min), workability will be poor. The temperature may be raised in one step at a uniform heating rate, or may be increased in a plurality of steps at different heating rates in some cases. The holding time at the carbonization temperature is 0.1 to 10 hours, and if the holding time is short (less than 0.1 hours), the formation of the condensed ring structure becomes insufficient and the electroviscosity of the electrorheological fluid in which the composite powder is used as the dispersed phase. If the effect becomes small and the holding time is long (10
(Over time) Workability deteriorates. The cooling rate can be freely selected, and natural cooling may be used.

【0026】このようにして得られたカーボン/層状粘
土鉱物複合粉体は水分によらない粒子自身の分極作用を
示すため、該複合粉体を分散相とすることによって高温
で消費電力が少なく、且つ電気粘性効果を長時間維持で
きる電気粘性流体を得ることができる。
Since the carbon / layered clay mineral composite powder thus obtained exhibits the polarization effect of the particles themselves independent of water content, by using the composite powder as a disperse phase, power consumption is reduced at high temperature, In addition, it is possible to obtain an electrorheological fluid that can maintain the electrorheological effect for a long time.

【0027】電気粘性液体の分散相として適当な該カー
ボン/層状粘土鉱物複合粉体の平均粒径は0.01〜1
00ミクロン、好ましくは0.3〜15ミクロンの範囲
である。0.01ミクロン未満では電場のない状態で初
期粘度が著しく大きくなって電気粘性効果による粘度変
化が小さく、また100ミクロンを越えると電気粘性流
体の分散相としての十分な安定性が得られない。
The carbon / layered clay mineral composite powder suitable as a dispersed phase of the electrorheological liquid has an average particle size of 0.01 to 1
It is in the range of 00 microns, preferably 0.3 to 15 microns. If it is less than 0.01 μm, the initial viscosity is remarkably increased in the absence of an electric field and the change in viscosity due to the electrorheological effect is small, and if it exceeds 100 μm, sufficient stability as a dispersed phase of the electrorheological fluid cannot be obtained.

【0028】電気粘性液体の液相を構成する電気絶縁油
としては炭化水素油、エステル油、芳香族系油、シリコ
ーン油やホスファゼン油などを例示することが出来る。
これらは単独で用いることができ、また二種以上を併用
することもできる。これらの電気絶縁油のなかでもポリ
ジメチルシロキサンやポリメチルフェニルシロキサンな
どのシリコーン油は、ゴム状の弾性を有する材料と直接
接触する状態でも使用できるという点で優れているし、
またホスファゼン油は比重が比較的大きいため分散相の
沈降防止性の点で優れている。
Examples of the electric insulating oil that constitutes the liquid phase of the electrorheological liquid include hydrocarbon oil, ester oil, aromatic oil, silicone oil and phosphazene oil.
These can be used alone or in combination of two or more. Among these electrical insulating oils, silicone oils such as polydimethylsiloxane and polymethylphenylsiloxane are excellent in that they can be used even in a state of being in direct contact with a material having rubber-like elasticity,
Since phosphazene oil has a relatively large specific gravity, it is excellent in terms of preventing the dispersed phase from settling.

【0029】電気絶縁油の粘度としては室温において
0.65〜1000センチストークス(cSt)、好ま
しくは10〜50cStの粘度を有するものを用いる。
液相の粘度が低すぎると揮発分が多くなり電気粘性効果
による粘度変化が小さくなる。また適度に低粘度の電気
絶縁油を液相とすることによって分散相を効率良く懸濁
させることができる。
As the viscosity of the electric insulating oil, one having a viscosity of 0.65 to 1000 centistokes (cSt) at room temperature, preferably 10 to 50 cSt is used.
If the viscosity of the liquid phase is too low, the amount of volatiles increases and the change in viscosity due to the electrorheological effect becomes small. In addition, the dispersed phase can be efficiently suspended by using an electrically insulating oil having a moderately low viscosity as the liquid phase.

【0030】電気粘性流体を構成する分散相と液相の割
合は、前記カーボン/層状粘土鉱物複合粉体から成る分
散相の含有量が1〜60重量%、好ましくは20〜50
重量%であり、電気絶縁油からなる液相の含有量が40
〜99重量%、好ましくは50〜80重量%である。分
散相の量が1重量%未満では電気粘性効果が小さく、6
0重量%を越えると電場がない時の初期粘度が著しく大
きくなり、好ましくない。
The ratio of the dispersed phase and the liquid phase constituting the electrorheological fluid is such that the content of the dispersed phase composed of the carbon / layered clay mineral composite powder is 1 to 60% by weight, preferably 20 to 50%.
% By weight, and the content of the liquid phase consisting of electrically insulating oil is 40
˜99 wt%, preferably 50-80 wt%. When the amount of the dispersed phase is less than 1% by weight, the electrorheological effect is small and 6
If it exceeds 0% by weight, the initial viscosity in the absence of an electric field becomes extremely large, which is not preferable.

【0031】また、電気粘性流体には本発明の効果を損
なわない範囲で他の分散相や界面活性剤、分散剤、無機
塩などの添加剤を配合することもできる。
Further, the electrorheological fluid may be blended with other disperse phase, a surfactant, a dispersant, an additive such as an inorganic salt, etc. within a range not impairing the effects of the present invention.

【0032】以下、実施例により、本発明をさらに詳細
に説明する。
Hereinafter, the present invention will be described in more detail with reference to examples.

【0033】[0033]

【実施例1】平均粒径3.26ミクロン(レーザ回折式
粒度分布計により測定)のモンモリロナイト系の層状粘
土鉱物粉体(水澤化学工業(株)製 Benclay MK-101、
110℃乾燥基準組成:SiO2 :73.21wt%、
Ai23 :12.45wt%、Fe23 :2.94
Wt%、CaO:1.37wt%、MgO:2.25w
t%、Na2 O:1.82wt%、K2 O:0.26w
t%、X線回折測定による001面間隔:1.19ナノ
メーター)70gを第四級アンモニウム塩であるセシル
トリメチルアンモニウムクロライド(東京化成工業
(株)製)の0.05モル/リッター水溶液1.5リッ
ターに加え50℃で100時間撹拌した後、瀘過、洗
浄、乾燥して第四級アンモニウム塩が層状粘土鉱物の層
間に挿入された粉体を得た。この粉体の001面間隔を
X線回折計にて測定したところ1.91ナノメーターに
拡大していた。更にこの粉体をアクリロニトリル(関東
化学工業(株)製)500ミリリッターに浸漬し室温で
100時間撹拌することによって層間にアクリロニトリ
ルを含浸させた。その後50℃で30時間加熱処理して
層状粘土鉱物層間のアクリロニトリルを重合させポリア
クリロニトリルとした。次いで粉体を瀘過、アセトン洗
浄後、室温にて6時間真空乾燥して第四級アンモニウム
塩とポリアクリロニトリルが層状粘土鉱物の層間に存在
する粉体を得た。この粉体を空気中200℃で30時間
予備熱処理した後アルゴンガス雰囲気中500℃で1時
間(昇温速度5℃/分)熱処理しポリアクリロニトリル
を炭化することによってカーボン/層状粘土鉱物複合粉
体を得た。この粉体の平均粒径は9.6ミクロン(レー
ザ回折式粒度分布計により測定)、001面間隔は1.
31ナノメーター、炭素量含有は5.3重量%であっ
た。この複合粉体34.5重量%を液相成分である25
℃における粘度10cStのシリコーン油(東芝シリコ
ーン(株)製TSF-451-10)65.5重量%に良く分散し
懸濁液として電気粘性流体を得た。
Example 1 Montmorillonite-based layered clay mineral powder having an average particle size of 3.26 microns (measured by a laser diffraction type particle size distribution analyzer) (Benclay MK-101 manufactured by Mizusawa Chemical Industry Co., Ltd.)
110 ° C. dry standard composition: SiO 2 : 73.21 wt%,
Ai 2 O 3: 12.45wt%, Fe 2 O 3: 2.94
Wt%, CaO: 1.37 wt%, MgO: 2.25w
t%, Na 2 O: 1.82 wt%, K 2 O: 0.26 w
t%, 001 plane spacing measured by X-ray diffraction: 1.19 nanometers) (70 g), 0.05 mol / liter aqueous solution of quaternary ammonium salt cesyltrimethylammonium chloride (Tokyo Chemical Industry Co., Ltd.) 1. The mixture was added to 5 liters, stirred at 50 ° C. for 100 hours, filtered, washed and dried to obtain a powder in which a quaternary ammonium salt was inserted between layers of a layered clay mineral. When the 001 plane spacing of this powder was measured by an X-ray diffractometer, it was expanded to 1.91 nanometers. Further, this powder was immersed in 500 ml of acrylonitrile (manufactured by Kanto Chemical Industry Co., Ltd.) and stirred at room temperature for 100 hours to impregnate the layers with acrylonitrile. Then, heat treatment was carried out at 50 ° C. for 30 hours to polymerize acrylonitrile between the layered clay mineral layers to obtain polyacrylonitrile. Then, the powder was filtered and washed with acetone, and then vacuum dried at room temperature for 6 hours to obtain a powder in which a quaternary ammonium salt and polyacrylonitrile were present between the layers of the layered clay mineral. This powder is preheated in air at 200 ° C. for 30 hours, and then heat-treated in an argon gas atmosphere at 500 ° C. for 1 hour (heating rate 5 ° C./min) to carbonize polyacrylonitrile to form a carbon / layered clay mineral composite powder. Got The average particle size of this powder was 9.6 microns (measured by a laser diffraction type particle size distribution meter), and the 001 plane spacing was 1.
The content of carbon was 31 nanometers and was 5.3% by weight. 34.5% by weight of this composite powder is used as the liquid phase component 25
A silicone oil (TSF-451-10, manufactured by Toshiba Silicone Co., Ltd.) having a viscosity of 10 cSt at 6 ° C. was well dispersed in 65.5% by weight to obtain an electrorheological fluid as a suspension.

【0034】[0034]

【実施例2】実施例1と同様の層状粘土鉱物粉体70g
を第四級アンモニウム塩であるベンジルジメチルテトラ
デシルアンモニウムクロライド(東京化成工業(株)
製)の0.05モル/リッター水溶液1.5リッターに
加え50℃で100時間撹拌した後、瀘過、洗浄、乾燥
して第四級アンモニウム塩が層状粘土鉱物の層間に挿入
された粉体を得た。この粉体の001面間隔をX線回折
計にて測定したところ、1.82ナノメーターに拡大し
ていた。以下この粉体をアクリロニトリルへの浸漬以降
実施例1と同様の処理を行ってカーボン/層状粘土鉱物
複合粉体を得た。この粉体の平均粒径は8.2ミクロ
ン、001面間隔は1.28ナノメーター、炭素含有量
は3.6重量%であった。この複合粉体34.5重量%
を、液相成分である25℃における粘度10cStのシ
リコーン油(東芝シリコーン(株)製TSF-451-10)6
5.5重量%に良く分散し懸濁液として電気粘性流体を
得た。
Example 2 70 g of layered clay mineral powder similar to that of Example 1
Is a quaternary ammonium salt, benzyldimethyltetradecyl ammonium chloride (Tokyo Kasei Kogyo Co., Ltd.)
(1) 0.05 mol / liter aqueous solution (1.5 liters), stirred at 50 ° C. for 100 hours, filtered, washed, and dried to insert a quaternary ammonium salt between the layers of the layered clay mineral. Got When the 001 plane spacing of this powder was measured by an X-ray diffractometer, it was expanded to 1.82 nanometers. Thereafter, this powder was immersed in acrylonitrile and then treated in the same manner as in Example 1 to obtain a carbon / layered clay mineral composite powder. The powder had an average particle size of 8.2 microns, a 001 spacing of 1.28 nanometers, and a carbon content of 3.6% by weight. 34.5% by weight of this composite powder
Is a liquid phase component of a silicone oil having a viscosity of 10 cSt at 25 ° C. (TSF-451-10 manufactured by Toshiba Silicone Co., Ltd.) 6
It was well dispersed to 5.5% by weight to obtain an electrorheological fluid as a suspension.

【0035】[0035]

【実施例3】平均粒径3.94ミクロンのモンモリロナ
イト系の層状粘土鉱物粉体(水澤化学工業(株)製 Sil
ton LP-1、110℃乾燥基準組成:SiO2 :73.3
2wt%、Al23 :13.17wt%、Fe2
3 :2.94Wt%、CaO:1.42wt%、Mg
O:2.13wt%、Na2 O:0.27wt%、K2
O:0.29wt%、X線回折測定による001面間
隔:1.50ナノメーター)の乾式分級後の粗粉(平均
粒径4.97ミクロン)60gを、第四級アンモニウム
塩であるセシルトリメチルアンモニウムクロライド(東
京化成工業(株)製)0.05モル/リッター水溶液
1.5リッターに加え50℃で100時間撹拌した後、
瀘過、洗浄、乾燥して第四級アンモニウム塩が層状粘土
鉱物の層間に挿入された粉体を得た。この粉体の001
面間隔をX線回折計にて測定したところ、1.94ナノ
メーターに拡大していた。以下この粉体をアクリロニト
リルへの浸漬以降実施例1と同様の処理を行ってカーボ
ン/層状粘土鉱物複合粉体を得た。この粉体の平均粒径
は9.4ミクロン、001面間隔は1.26ナノメータ
ー、炭素含有量は4.3重量%であった。この複合粉体
34.5重量%を、液相成分である25℃における粘度
10cStのシリコーン油(東芝シリコーン(株)製TS
F-451-10)65.5重量%に良く分散し懸濁液として電
気粘性流体を得た。
Example 3 A montmorillonite-based layered clay mineral powder having an average particle size of 3.94 microns (Sil manufactured by Mizusawa Chemical Co., Ltd.)
ton LP-1, 110 ° C dry standard composition: SiO 2 : 73.3
2 wt%, Al 2 O 3 : 13.17 wt%, Fe 2 O
3 : 2.94 Wt%, CaO: 1.42 wt%, Mg
O: 2.13 wt%, Na 2 O: 0.27 wt%, K 2
O: 0.29 wt%, 001 plane interval by X-ray diffraction measurement: 1.50 nanometer) 60 g of coarse powder (average particle size 4.97 microns) after dry classification was used as quaternary ammonium salt cecil trimethyl. After adding ammonium chloride (manufactured by Tokyo Kasei Kogyo Co., Ltd.) 0.05 mol / liter aqueous solution 1.5 liters and stirring at 50 ° C. for 100 hours,
It was filtered, washed and dried to obtain a powder in which the quaternary ammonium salt was inserted between the layers of the layered clay mineral. 001 of this powder
When the surface spacing was measured with an X-ray diffractometer, it was found to have expanded to 1.94 nanometers. Thereafter, this powder was immersed in acrylonitrile and then treated in the same manner as in Example 1 to obtain a carbon / layered clay mineral composite powder. The powder had an average particle size of 9.4 microns, a 001 spacing of 1.26 nanometers, and a carbon content of 4.3% by weight. 34.5% by weight of this composite powder was used as a liquid phase component of a silicone oil having a viscosity of 10 cSt at 25 ° C. (TS manufactured by Toshiba Silicone Co., Ltd.).
F-451-10) was well dispersed in 65.5% by weight to obtain an electrorheological fluid as a suspension.

【0036】[0036]

【実施例4】実施例1と同様の層状粘土鉱物粉体の分級
粗粉60gを第四級アンモニウム塩であるトリメチルス
テアリルアンモニウムクロライド(東京化成工業(株)
製)0.05モル/リッター水溶液1.5リッターに加
え、50℃で100時間撹拌した後、瀘過、洗浄、乾燥
して第四級アンモニウム塩が層状粘土鉱物の層間に挿入
された粉体を得た。この粉体の001面間隔をX線回折
計にて測定したところ2.06ナノメーターに拡大して
いた。以下この粉体をアクリロニトリルへの浸漬以降実
施例1と同様の処理を行ってカーボン/層状粘土鉱物複
合粉体を得た。この粉体の平均粒径は8.3ミクロン、
001面間隔は1.32ナノメーター、炭素含有量は
6.0重量%であった。この複合粉体34.5重量%
を、液相成分である25℃における粘度10cStのシ
リコーン油(東芝シリコーン(株)製TSF-451-10)6
5.5重量%に良く分散し懸濁液として電気粘性流体を
得た。
Example 4 60 g of the classified coarse powder of the layered clay mineral powder similar to that of Example 1 was used as quaternary ammonium salt trimethylstearyl ammonium chloride (Tokyo Chemical Industry Co., Ltd.).
A powder in which a quaternary ammonium salt is inserted between layers of a layered clay mineral by adding to a 0.05 mol / liter aqueous solution (1.5 liters), stirring at 50 ° C. for 100 hours, filtering, washing and drying. Got When the 001 plane spacing of this powder was measured by an X-ray diffractometer, it was expanded to 2.06 nanometers. Thereafter, this powder was immersed in acrylonitrile and then treated in the same manner as in Example 1 to obtain a carbon / layered clay mineral composite powder. The average particle size of this powder is 8.3 microns,
The 001 spacing was 1.32 nanometers, and the carbon content was 6.0% by weight. 34.5% by weight of this composite powder
Is a liquid phase component of a silicone oil having a viscosity of 10 cSt at 25 ° C. (TSF-451-10 manufactured by Toshiba Silicone Co., Ltd.) 6
It was well dispersed to 5.5% by weight to obtain an electrorheological fluid as a suspension.

【0037】[0037]

【実施例5】実施例3と同様の層状粘土鉱物粉体の乾式
分級後の粗粉(平均粒径5.62ミクロン)100g
を、第四級アンモニウム塩であるジステアリルジメチル
アンモニウムクロライド(東京化成工業(株)製)の
0.025モル/リッター水溶液1.7リッターに加え
80℃で100時間撹拌した後、瀘過、洗浄、乾燥して
第四級アンモニウム塩が層状粘土鉱物の層間に挿入され
た粉体を得た。この粉体の001面間隔をX線回折計に
て測定したところ2.63ナノメーターに拡大してい
た。以下この粉体をアクリロニトリルへの浸漬以降実施
例1と同様の処理を行ってカーボン/層状粘土鉱物複合
粉体を得た。この粉体の平均粒径は9.9ミクロン、0
01面間隔は1.31ナノメーター、炭素含有量は7.
0重量%であった。この複合粉体34.5重量%を、液
相成分である25℃における粘度10cStのシリコー
ン油(東芝シリコーン(株)製TSF-451-10)65.5重
量%に良く分散し懸濁液として電気粘性流体を得た。
Fifth Embodiment 100 g of coarse powder (average particle diameter of 5.62 μm) after dry classification of layered clay mineral powder similar to that of the third embodiment
Was added to 1.7 liters of 0.025 mol / liter aqueous solution of quaternary ammonium salt distearyldimethylammonium chloride (manufactured by Tokyo Kasei Kogyo Co., Ltd.) and stirred at 80 ° C. for 100 hours, then filtered and washed. Then, it was dried to obtain a powder in which the quaternary ammonium salt was inserted between the layers of the layered clay mineral. When the 001 plane spacing of this powder was measured by an X-ray diffractometer, it was expanded to 2.63 nanometers. Thereafter, this powder was immersed in acrylonitrile and then treated in the same manner as in Example 1 to obtain a carbon / layered clay mineral composite powder. The average particle size of this powder is 9.9 microns, 0
01 plane spacing is 1.31 nanometers, carbon content is 7.
It was 0% by weight. 34.5% by weight of this composite powder was well dispersed in 65.5% by weight of a liquid phase component of silicone oil (TSF-451-10 manufactured by Toshiba Silicone Co., Ltd.) having a viscosity of 10 cSt at 25 ° C. to give a suspension. An electrorheological fluid was obtained.

【0038】[0038]

【実施例6】実施例5と同様であるが、最後の炭化処理
の温度のみ450℃に低下してカーボン/層状粘度鉱物
複合粉体を得た。この粉体の平均粒径は6.8ミクロ
ン、001面間隔は1.30ナノメーター、炭素含有量
は5.1重量%であった。この複合粉体34.5重量%
を、液相成分である25℃における粘度10cStのシ
リコーン油(東芝シリコーン(株)製TSF-451-10)6
5.5重量%に良く分散し懸濁液として電気粘性流体を
得た。
Example 6 Similar to Example 5, but only the temperature of the last carbonization treatment was lowered to 450 ° C. to obtain a carbon / layered clay mineral composite powder. The powder had an average particle size of 6.8 microns, a 001 spacing of 1.30 nanometers, and a carbon content of 5.1% by weight. 34.5% by weight of this composite powder
Is a liquid phase component of a silicone oil having a viscosity of 10 cSt at 25 ° C. (TSF-451-10 manufactured by Toshiba Silicone Co., Ltd.) 6
It was well dispersed to 5.5% by weight to obtain an electrorheological fluid as a suspension.

【0039】次に比較として、層状粘土鉱物の層間にカ
ーボンが無いか、または少ない粉体から得られた電気粘
性流体の例を示す。
Next, as a comparison, an example of an electrorheological fluid obtained from a powder having no or little carbon between layers of a layered clay mineral will be shown.

【0040】[0040]

【比較例1】平均粒径2.5ミクロンのモンモリロナイ
ト系の層状粘土鉱物粉体(水澤化学工業(株)製 Silto
n LP-1、110℃乾燥基準組成:SiO2 :73.32
wt%、Al23 :13.17wt%、Fe23
2.94Wt%、CaO:1.42wt%、MgO:
2.13wt%、Na2 O:0.27wt%、K2 O:
0.29wt%、X線回折測定による001面間隔:
1.50ナノメーター、水分保有量9.3wt%)30
重量%を、液相成分である25℃における粘度10cS
tのシリコーン油(東芝シリコーン(株)製TSF-451-1
0)70重量%に良く分散し懸濁液として電気粘性流体
を得た。
[Comparative Example 1] Montmorillonite-based layered clay mineral powder having an average particle size of 2.5 microns (Silto manufactured by Mizusawa Chemical Industry Co., Ltd.)
n LP-1, 110 ° C dry standard composition: SiO 2 : 73.32
wt%, Al 2 O 3 : 13.17 wt%, Fe 2 O 3 :
2.94 Wt%, CaO: 1.42 wt%, MgO:
2.13 wt%, Na 2 O: 0.27 wt%, K 2 O:
0.29 wt%, 001 plane spacing by X-ray diffraction measurement:
1.50 nanometer, water content 9.3wt%) 30
% By weight represents a liquid phase component having a viscosity of 10 cS at 25 ° C.
t silicone oil (TSF-451-1 manufactured by Toshiba Silicone Co., Ltd.)
0) Dispersed well to 70% by weight to obtain an electrorheological fluid as a suspension.

【0041】[0041]

【比較例2】比較例1と同様の層状粘土鉱物粉体を20
0℃で6時間真空乾燥して層間の水分を除去した。この
時、粉体の水分保有量は0.3重量%であった。この乾
燥粉体16.7重量%を、液相成分である25℃におけ
る粘度10cStのシリコーン油(東芝シリコーン
(株)製TSF-451-10)83.3重量%に良く分散し、懸
濁液として電気粘性流体を得た。
Comparative Example 2 The same layered clay mineral powder as in Comparative Example 1 was used.
Vacuum drying was performed at 0 ° C. for 6 hours to remove moisture between layers. At this time, the water content of the powder was 0.3% by weight. 16.7% by weight of this dry powder was well dispersed in 83.3% by weight of a liquid phase component of silicone oil (TSF-451-10 manufactured by Toshiba Silicone Co., Ltd.) having a viscosity of 10 cSt at 25 ° C. to obtain a suspension. As a result, an electrorheological fluid was obtained.

【0042】[0042]

【比較例3】平均粒径2.5ミクロンのモンモリロナイ
ト系の層状粘土鉱物粉末(水澤化学工業(株)製Silton
LP-1)100gをベンジルジメチルテトラデシルアン
モニウムクロライド(東京化成工業(株)製)の0.0
5モル/リッター水溶液に加え24時間放置した後、瀘
過、洗浄、乾燥して第四級アンモニウム塩が層状粘土鉱
物の層間に挿入された粉体を得た。さらにこの粉末80
gをアクリロニトリル(関東化学工業(株)製)500
ミリリッターに浸漬し室温で30時間放置することによ
って層間にアクリロニトリルを含浸させた。その後50
℃で30時間加熱処理することによって層状粘土鉱物層
間のアクリロニトリルを重合させポリアクリロニトリル
とした。次いでこの粉体を瀘過、アセトン洗浄、乾燥し
て第四級アンモニウム塩とポリアクリロニトリルが層状
粘土鉱物の層間に存在する粉体を得た。この粉体を窒素
ガス雰囲気中600℃で3時間(昇温速度5℃/分)熱
処理しポリアクリロニトリルを炭化することによってカ
ーボン/層状粘土鉱物複合粉体を得た。炭化を600℃
で行ったこの複合粉体中の炭素含有量は0.98重量%
であった。この粉末25重量%を、液相成分である25
℃における粘度10cStのシリコーン油(東芝シリコ
ーン(株)製TSF-451-10)75重量%に良く分散し懸濁
液として電気粘性流体を得た。
[Comparative Example 3] Montmorillonite-based layered clay mineral powder having an average particle size of 2.5 microns (manufactured by Mizusawa Chemical Industry Co., Ltd., Silton)
LP-1) 100 g of 0.0 of benzyl dimethyl tetradecyl ammonium chloride (Tokyo Chemical Industry Co., Ltd.)
The mixture was added to a 5 mol / liter aqueous solution and allowed to stand for 24 hours, then filtered, washed and dried to obtain a powder in which a quaternary ammonium salt was inserted between layers of a layered clay mineral. Further this powder 80
g is acrylonitrile (manufactured by Kanto Chemical Co., Inc.) 500
Acrylonitrile was impregnated between the layers by immersing in a milliliter and leaving at room temperature for 30 hours. Then 50
Acrylonitrile between the layered clay mineral layers was polymerized by heat treatment at 30 ° C. for 30 hours to obtain polyacrylonitrile. Next, this powder was filtered, washed with acetone, and dried to obtain a powder in which the quaternary ammonium salt and polyacrylonitrile were present between the layers of the layered clay mineral. This powder was heat-treated in a nitrogen gas atmosphere at 600 ° C. for 3 hours (heating rate of 5 ° C./min) to carbonize polyacrylonitrile to obtain a carbon / layered clay mineral composite powder. Carbonization at 600 ° C
The carbon content in this composite powder was 0.98% by weight.
Met. 25% by weight of this powder is used as a liquid phase component
A 75% by weight silicone oil (TSF-451-10 manufactured by Toshiba Silicone Co., Ltd.) having a viscosity of 10 cSt at 0 ° C. was well dispersed to obtain an electrorheological fluid as a suspension.

【0043】実施例1〜6及び比較例1〜3で得られた
各電気粘性流体について、電気粘性効果の測定を行っ
た。電気粘性効果は二重円筒型回転粘度計を使用して、
内外円筒間に0〜2kV/mmの直流電圧を印加した時
の剪断速度366sec-1、温度25℃の剪断力で評価
し、同時に内外円筒間に流れる電流を測定した。また、
実施例1〜3及び比較例2,3については高温での電気
粘性効果を評価するため70℃(ただし実施例3は80
℃、比較例3は100℃)でも同様の測定を行った。電
圧をかけない場合の剪断力T0 、電圧2kV/mmを印
加した時の剪断力T、その差T−T0 、および電圧2k
V/mmを印加した時の電流密度を次に示す。
The electrorheological effects of the electrorheological fluids obtained in Examples 1 to 6 and Comparative Examples 1 to 3 were measured. The electro-viscous effect uses a double cylinder type rotational viscometer,
The evaluation was made by applying a direct current voltage of 0 to 2 kV / mm between the inner and outer cylinders at a shear rate of 366 sec −1 and a shearing force of 25 ° C., and at the same time measuring the current flowing between the inner and outer cylinders. Also,
For Examples 1 to 3 and Comparative Examples 2 and 3, in order to evaluate the electrorheological effect at high temperature, 70 ° C (80% in Example 3).
The same measurement was performed at 0 ° C and 100 ° C in Comparative Example 3. Shear force T 0 when no voltage is applied, shear force T when a voltage of 2 kV / mm is applied, the difference T−T 0 , and voltage 2 k
The current density when V / mm is applied is shown below.

【0048】 電 気 粘 性 効 果 測定流体 粉体中 測定温度 T0 T T-T0 電流密度 C含有量 ℃ (g・cm) (g・cm) (g・cm) (μA/cm2) 実施例1 5.3 wt% 25 59 408 349 0.71 実施例1 5.3 wt% 70 48 293 245 1.70 実施例2 3.6 wt% 25 65 318 253 0.16 実施例2 3.6 wt% 70 30 271 241 0.55 実施例3 4.3 wt% 25 100 378 278 0.79 実施例3 4.3 wt% 80 43 375 332 4.36 実施例4 6.0 wt% 25 118 307 189 0.27 実施例5 7.0 wt% 25 88 524 436 6.22 実施例6 5.1 wt% 25 92 353 261 0.71 比較例1 0 wt% 25 63 測定不能 - - 1000以上 比較例2 0 wt% 25 337 337 0 0 比較例2 0 wt% 70 99 99 0 0 比較例3 0.98 wt% 25 71 116 45 0 比較例3 0.98 wt% 100 16 77 61 2.4 Electro-Viscosity Effect Measuring Fluid Measuring Temperature in Powder T 0 T TT 0 Current Density C Content ℃ (g · cm) (g · cm) (g · cm) (μA / cm 2 ) Example 1 5.3 wt% 25 59 408 349 0.71 Example 1 5.3 wt% 70 48 293 245 1.70 Example 2 3.6 wt% 25 65 318 253 0.16 Example 2 3.6 wt% 70 30 271 241 0.55 Example 3 4.3 wt% 25 100 378 278 0.79 Example 3 4.3 wt% 80 43 375 332 4.36 Example 4 6.0 wt% 25 118 307 189 0.27 Example 5 7.0 wt% 25 88 524 436 6.22 Example 6 5.1 wt% 25 92 353 261 0.71 Comparative Example 1 0 wt% 25 63 Unmeasurable--1000 or more Comparative example 2 0 wt% 25 337 337 0 0 Comparative example 2 0 wt% 70 99 99 0 0 Comparative example 3 0.98 wt% 25 71 116 45 0 Comparative example 3 0.98 wt% 100 16 77 61 2.4

【0044】上記の測定結果から明らかなように、実施
例1〜6で得られたカーボン/層状粘土鉱物複合粉体を
分散相とする各電気粘性流体は室温(25℃)で大きな
電気粘性効果(T−To)を示し、かつ消費電力(電流
密度)が小さい。また、高温での電気粘性効果を評価し
た実施例1〜3の各電気粘性流体は、高温でも安定した
電気粘性効果を示し、消費電力は僅かに上昇しているだ
けである。
As is clear from the above measurement results, the electrorheological fluids containing the carbon / layered clay mineral composite powders obtained in Examples 1 to 6 as the dispersed phase have a large electrorheological effect at room temperature (25 ° C.). (T-To) and low power consumption (current density). Further, the electrorheological fluids of Examples 1 to 3 which evaluated the electrorheological effect at high temperature show a stable electrorheological effect even at high temperature, and the power consumption is only slightly increased.

【0045】これに対して、層間にカーボンを含まない
比較例1の層状粘土鉱物粉体を分散相として用いた電気
粘性流体は、層間の交換性陽イオンに配位した水による
導電性が大きく、電流が低電圧で測定装置の限界をオー
バーしたため2kV/mmの電圧を印可することはでき
なかった。これは消費電力が大きい点で電気粘性流体と
しては不利である。このため乾燥することによって層間
の水を除去した比較例2の層状粘土鉱物粉体を分散相と
して用いた電気粘性流体は、室温でも高温(70℃)で
も全く電気粘性効果を示さなかった。また層間カーボン
含有量が少ない(1%以下)比較例3のカーボン/層状
粘土鉱物複合粉体を分散相として用いた電気粘性流体
は、電気粘性効果が各実施例の複合粉体を分散相として
用いた電気粘性流体の数分の1であった。
On the other hand, the electrorheological fluid using the layered clay mineral powder of Comparative Example 1 containing no carbon between layers as the dispersed phase has a large conductivity due to water coordinated with the exchangeable cations between the layers. However, since the current was low and exceeded the limit of the measuring device, a voltage of 2 kV / mm could not be applied. This is disadvantageous as an electrorheological fluid in that it consumes a large amount of power. For this reason, the electrorheological fluid using the layered clay mineral powder of Comparative Example 2 in which water between layers was removed by drying as the dispersed phase did not show any electrorheological effect at room temperature or high temperature (70 ° C.). Further, the electrorheological fluid using the carbon / layered clay mineral composite powder of Comparative Example 3 having a small inter-layer carbon content (1% or less) as the dispersed phase has the electrorheological effect as the dispersed phase of the composite powder of each example. It was a fraction of the electrorheological fluid used.

【0046】[0046]

【発明の効果】高温で高い電気粘性効果を示し且つ電力
消費が少ない電気粘性流体を得るための分散相固体粒子
として優れた特性を示すほか、高分子化合物への電気特
性付与やゴム弾性改良のための充填剤、触媒、耐熱材
料、電極材料等の導電材、ファインセラミックス粉体合
成のための前駆体としての用途が期待されるカーボン/
層状粘土鉱物複合粉体が得られ、また該粉体の特性を利
用して優れた性能を有する電気粘性流体が得られる。
EFFECTS OF THE INVENTION In addition to exhibiting excellent properties as a dispersed phase solid particle for obtaining an electrorheological fluid having high electrorheological effect at high temperature and low power consumption, it is possible to impart electrical properties to polymer compounds and improve rubber elasticity. For use as fillers, catalysts, heat-resistant materials, conductive materials such as electrode materials, and precursors for fine ceramic powder synthesis
A layered clay mineral composite powder is obtained, and an electrorheological fluid having excellent performance is obtained by utilizing the characteristics of the powder.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C10N 30:02 40:14 Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display area C10N 30:02 40:14

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 層状粘土鉱物の粉体粒子の層間にカーボ
ンを2〜20重量%含有していることを特徴とするカー
ボン/層状粘土鉱物複合粉体。
1. A carbon / layered clay mineral composite powder comprising 2 to 20% by weight of carbon between layers of layered clay mineral powder particles.
【請求項2】 層状粘土鉱物の粉体粒子の層間にカーボ
ンを2〜20重量%含有しており且つ平均粒径0.01
〜100ミクロンのカーボン/層状粘土鉱物複合粉体1
〜60重量%よりなる分散相と、室温における粘度0.
65〜1000センチストークス(cSt)の電気絶縁
油40〜99重量%よりなる液相とから構成されている
ことを特徴とする電気粘性流体。
2. A layered clay mineral powder particle containing 2 to 20% by weight of carbon between layers and having an average particle size of 0.01.
~ 100 micron carbon / layered clay mineral composite powder 1
.About.60 wt.
An electrorheological fluid comprising a liquid phase consisting of 40 to 99% by weight of electrical insulating oil of 65 to 1000 centistokes (cSt).
JP4058091A 1991-02-13 1991-02-13 Composite powder and electroviscous fluid containing same powder as dispersing phase Pending JPH06279018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4058091A JPH06279018A (en) 1991-02-13 1991-02-13 Composite powder and electroviscous fluid containing same powder as dispersing phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4058091A JPH06279018A (en) 1991-02-13 1991-02-13 Composite powder and electroviscous fluid containing same powder as dispersing phase

Publications (1)

Publication Number Publication Date
JPH06279018A true JPH06279018A (en) 1994-10-04

Family

ID=12584431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4058091A Pending JPH06279018A (en) 1991-02-13 1991-02-13 Composite powder and electroviscous fluid containing same powder as dispersing phase

Country Status (1)

Country Link
JP (1) JPH06279018A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101408025B1 (en) * 2012-12-06 2014-06-18 관동대학교산학협력단 A composition of organic sericite carbon electrode
JP2015017032A (en) * 2013-06-12 2015-01-29 日立化成株式会社 Aluminum silicate complex

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101408025B1 (en) * 2012-12-06 2014-06-18 관동대학교산학협력단 A composition of organic sericite carbon electrode
JP2015017032A (en) * 2013-06-12 2015-01-29 日立化成株式会社 Aluminum silicate complex

Similar Documents

Publication Publication Date Title
US5087382A (en) Electroviscous fluid
US6797202B2 (en) Particles for electro-rheological fluid
US5290821A (en) Electro-responsive elastomeric material
EP0313351A2 (en) Electric field dependent fluids
EP0445594A1 (en) An electrorheological fluid
JPS63185812A (en) Electric field reactive fluid
EP0455362B1 (en) Powder and electrorheological fluid
JPH07103392B2 (en) Electrorheological fluid
JPH06185565A (en) Electric rheology device
US2583603A (en) Substituted thickener lubricating grease
JPH06279018A (en) Composite powder and electroviscous fluid containing same powder as dispersing phase
Kim et al. Physical and electroresponsive characteristics of the intercalated styrene‐acrylonitrile copolymer/clay nanocomposite under applied electric fields
JP2855354B2 (en) Electrorheological fluid
JPH04348192A (en) Electro-viscous fluid
JPH04211499A (en) Electrically viscous fluid
JP2617959B2 (en) Electrorheological fluid
JPH03181597A (en) Electric viscous fluid
JPH07150187A (en) Carbonaceous powder for electroviscous fluid disperse phase and electroviscous fluid
EP0424840B1 (en) An electrorheological fluid
EP0393831A1 (en) Electrorheological fluids
US5252239A (en) ER fluids having chemically defoliated vermiculite treated with an alkyl ammonium halide and methods of making and using the same
JPH03139598A (en) Electroviscous fluid
EP0396237A1 (en) Electrorheological fluids
JP3572111B2 (en) Oily medium for electrorheological fluid and electrorheological fluid using the same
JPH06122885A (en) Electroviscous fluid