JPH06275859A - Condensing device for solar cell - Google Patents

Condensing device for solar cell

Info

Publication number
JPH06275859A
JPH06275859A JP5087773A JP8777393A JPH06275859A JP H06275859 A JPH06275859 A JP H06275859A JP 5087773 A JP5087773 A JP 5087773A JP 8777393 A JP8777393 A JP 8777393A JP H06275859 A JPH06275859 A JP H06275859A
Authority
JP
Japan
Prior art keywords
prism
light
solar cell
angle
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5087773A
Other languages
Japanese (ja)
Inventor
Ikuo Minamino
郁夫 南野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP5087773A priority Critical patent/JPH06275859A/en
Publication of JPH06275859A publication Critical patent/JPH06275859A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Photovoltaic Devices (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

PURPOSE:To provide a condensing device wherein a beam of incident light can be condensed on a solar cell irrespective of the position of the sun and a movement means such as a tracking device or the like is not required as well as the efficiency and the cost of power generation are enhanced. CONSTITUTION:A triangle-shaped prism (refractive index: 1.5) 1 is used, and a solar cell (refractive index: 3.5) 3 is attached and bonded to one of the sides (a condensing face) 1a of the sides enclosing right angle via a matching member 2. A mirror 4 is formed on an oblique side 1c on the other side of a triangle, The refractive index of the matching member 2 is set within a range of 1.5 to 3.5 so that a critical angle is not caused at boundary faces at the individual members 1, 2, 3. In addition, since a critical angle to the air from the side of the prism at a light-receiving face 1b is at 41.8 deg., a prism angle theta0 is set at 21 deg., and an angle of incidence thetan with reference to the light-receiving face of a beam of light which is reflected totally by the mirror and proceeds at the inside of the prism is set to be always larger than the critical angle. Thereby, at whichever angle an angle of incidence thetai on the prism is, the beam of light incident on the inside is reflected properly and repeatedly between the mirror and the light-receiving face and reaches the condensing face.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、太陽電池用集光装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a concentrating device for solar cells.

【0002】[0002]

【従来の技術】太陽光発電の発電効率を向上させるため
の重要な要素の一つとして、できるだけ多くの太陽光線
を単位面積あたりの太陽電池に集める必要があり、その
ように太陽光線を集めるために集光装置が用いられる。
そして、従来の集光装置としては、太陽電池の前面に凸
レンズや集光鏡等の光収束部材を配置し、その収束部材
で太陽光線を収束させて太陽電池に照射するようにして
いる。
2. Description of the Related Art As one of the important factors for improving the power generation efficiency of solar power generation, it is necessary to collect as many sun rays as possible in a solar cell per unit area. A light concentrator is used for.
Then, as a conventional light concentrating device, a light converging member such as a convex lens or a converging mirror is arranged on the front surface of the solar cell, and the converging member converges the sun rays to irradiate the solar cell.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記した従来
の集光装置の場合には、以下に示す問題を有している。
すなわち、太陽電池に対して効率よく集光するために
は、集光装置(太陽電池)の正面を常に太陽の方向に向
ける必要があるため、結局太陽の移動に追従して集光装
置の向きを回転する装置が必要となり、しかも、その回
転方向も季節に応じて太陽の高さが異なるために、より
正確に追従させるためには3次元的に回転させる必要が
ある。よって、移動させる追尾装置並びにその制御が複
雑大型化するばかりでなく、係る装置を駆動するために
要する電力や、追尾装置などの寿命・故障による保守を
要し、発電コストの低減を疎外することになる。
However, the above-mentioned conventional condensing device has the following problems.
That is, in order to efficiently collect light on the solar cell, it is necessary to always face the front surface of the light collector (solar cell) to the direction of the sun. A device for rotating is necessary, and since the direction of rotation of the sun also varies with the height of the sun depending on the season, it is necessary to rotate it three-dimensionally in order to follow it more accurately. Therefore, not only the tracking device to be moved and its control become complicated and large, but also the power required to drive the device, maintenance due to the life and failure of the tracking device, etc. are required, and the reduction of power generation cost is excluded. become.

【0004】さらに、太陽電池の前面に凸レンズ等を配
置すると、受光面は凸レンズのために凹凸が生じ、隣接
する凸レンズ間(凹部)にごみなどが付着し、係る付着
したごみは、自然の雨・風程度では流れ落ちないので、
透過率が低下して発電効率の低下の原因となる。
Further, when a convex lens or the like is arranged on the front surface of the solar cell, the light-receiving surface becomes uneven due to the convex lens, and dust or the like adheres between adjacent convex lenses (recesses).・ Because the wind doesn't flow down,
This lowers the transmittance and causes a decrease in power generation efficiency.

【0005】本発明は、上記した背景に鑑みてなされた
もので、その目的とするところは、太陽の方向(位置)
に関係なくほとんどの入射光(太陽光線)を太陽電池に
集光でき、追尾装置等の移動手段等を不要とし、しか
も、使用する太陽電池の面積も受光面に比べて小さくす
ることができて発電効率・コストの向上を図ることので
きる太陽電池用集光装置を提供することにある。
The present invention has been made in view of the above background, and its object is to determine the direction (position) of the sun.
Most of the incident light (sun rays) can be focused on the solar cell regardless of the position, and no moving means such as a tracking device is required, and the area of the solar cell used can be made smaller than the light receiving surface. An object of the present invention is to provide a concentrating device for a solar cell, which can improve power generation efficiency and cost.

【0006】[0006]

【課題を解決するための手段】上記した目的を達成する
ために、本発明に係る太陽電池用集光装置では、所定の
1面を受光面としたプリズムを基本構成とし、前記受光
面を介して前記プリズム内に入射された光の多くが最初
に当たる前記プリズムの他の面に反射部材を設けた。そ
して前記反射部材と、前記受光面の内側との間で所定回
数反射を行い到達する前記プリズムのさらに他の面を集
光面とし、その集光面から出射される光を太陽電池に供
給するようにした。
In order to achieve the above-mentioned object, in a solar cell light concentrating device according to the present invention, a prism having a predetermined one surface as a light receiving surface is a basic structure, and the light receiving surface is interposed. A reflection member is provided on the other surface of the prism where most of the light incident on the prism first strikes. Then, the other surface of the prism, which reaches after reflecting a predetermined number of times between the reflecting member and the inside of the light receiving surface, is a condensing surface, and the light emitted from the converging surface is supplied to the solar cell. I did it.

【0007】[0007]

【作用】太陽光線が受光面を介してプリズム内に入射す
る。すると、その光のある部分(集光面に近い側)はそ
のまま集光面に至る(反射回数0回)。また、残りの光
は、プリズムの他の面に至り、反射部材により全反射さ
れてその進路が変換されて、その一部は集光面に至り
(反射回数1回)、残りは、前記受光面の内側に至り、
そこにおいて再度反射される。このようにして、適宜反
射を行った後、集光面に集まり、外部の太陽電池に照射
される。そして、太陽光線のプリズムへの入射角が変動
しても反射回数は変わるものの透過率(集光面に至る光
エネルギー)はあまり大きく変動しないため、追尾装置
などにより太陽電池(集光装置)を太陽の移動に追動さ
せる必要がない。すなわち、本発明の集光装置並びに太
陽電池を所定の位置に固定設置した状態のままで、所定
の発電量が得られる。
[Operation] Sun rays enter the prism through the light receiving surface. Then, the part of the light (the side close to the light collecting surface) reaches the light collecting surface as it is (0 times of reflection). Further, the remaining light reaches the other surface of the prism, is totally reflected by the reflecting member and the course of the light is changed, and a part of the light reaches the light condensing surface (reflection is once), and the rest is the light receiving light. Reaching the inside of the surface,
It is reflected there again. In this way, after appropriately reflecting light, the light gathers on the light collecting surface and is radiated to an external solar cell. Even if the incident angle of the sun rays on the prism changes, the number of reflections changes, but the transmittance (light energy reaching the condensing surface) does not change so much. There is no need to follow the movement of the sun. That is, a predetermined amount of power generation can be obtained with the light concentrating device and the solar cell of the present invention fixedly installed at a predetermined position.

【0008】[0008]

【実施例】以下、本発明に係る太陽電池用集光装置の好
適な実施例を添付図面を参照にして詳述する。図1は本
発明に係る太陽電池用集光装置の第1実施例を示してい
る。同図に示すように、本例では、所定のプリズム角θ
0 を有する直角三角形状のプリズム1を用い、そのプリ
ズム1の一方(短辺側)の斜辺(集光面となる)1aに
整合部材2を介して太陽電池3を装着している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the solar cell light concentrating device according to the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 shows a first embodiment of a solar cell light collector according to the present invention. As shown in the figure, in this example, a predetermined prism angle θ
A prism 1 in the shape of a right triangle having 0 is used, and the solar cell 3 is attached to one oblique side (which serves as a light collecting surface) 1a of the prism 1 (short side) via a matching member 2.

【0009】そして、プリズム1はガラス製で、その三
角形の底辺(図中では、上側に位置する)を太陽光線の
受光面1bとし、さらに、その三角形の他の斜辺(以
下、「底面」と称する)1cには、その全面に反射部材
たるミラー4を形成している。このミラー4としては、
別途形成した通常のミラーをその底面1cに接着固定し
ても良く、また、底面1cに金属を蒸着したり、薄膜を
張り付けるなど種々の構成をとることができ、要は、底
面1cで全反射できるようになっていれば良い。
The prism 1 is made of glass, and the base of the triangle (which is located on the upper side in the figure) is the light receiving surface 1b for the sun rays, and the other hypotenuse of the triangle (hereinafter referred to as "bottom"). A mirror 4 as a reflecting member is formed on the entire surface of the (referred to) 1c. For this mirror 4,
A separately formed normal mirror may be adhered and fixed to the bottom surface 1c, and various configurations such as metal deposition or thin film attachment to the bottom surface 1c may be employed. It only needs to be able to reflect.

【0010】ところで、プリズム1の受光面1bにおけ
るプリズム1と空気との境界面では、屈折率の大きなプ
リズム1から空気に向けて透過しようとした時に、所定
の臨界角が生じ、プリズム1の屈折率np を1.5とす
ると、臨界角θc は、 sin θc =1/np より、41.8度となる。
At the boundary surface between the prism 1 and the air in the light receiving surface 1b of the prism 1, a predetermined critical angle is generated when the prism 1 having a large refractive index is transmitted toward the air, and the prism 1 refracts. When the rate np is 1.5, the critical angle θc is 41.8 degrees from sin θc = 1 / np.

【0011】よって、本例では、受光面1bにおいても
全反射させるために、上記底面1cで全反射されてプリ
ズム1内を進む太陽光線の受光面1bに対する入射角θ
n が、上記臨界角θc よりも大きくなるように、上記プ
リズム角θ0 や、プリズム1の設置位置を調整してい
る。
Therefore, in this example, since the light receiving surface 1b is also totally reflected, the incident angle θ of the sun ray which is totally reflected by the bottom surface 1c and advances in the prism 1 with respect to the light receiving surface 1b.
The prism angle θ0 and the installation position of the prism 1 are adjusted so that n becomes larger than the critical angle θc.

【0012】すなわち、図2(A)に示すように、太陽
光線が受光面1bに対して入射角θi でプリズム1内に
入ると、その境界面にて屈折してその出射角はθg (0
≦θg <θi )となる。よって、係る光がミラー4で全
反射された後の受光面1bへの1回目の入射角θ1 は、 θ1 =2θ0 +θg となり、同2回目の入射角θ2 は、 θ2 =4θ0 +θg となり、同n回目の入射角θn は、 θn =2nθ0 +θg となる。すなわち、反射回数が多くなるほど、受光面1
bへの入射角θn は大きくなることがわかる。したがっ
て、1回目の入射角θ1 が、常に臨界角θc よりも大き
ければ良いため、次式が成り立てば良い。
That is, as shown in FIG. 2 (A), when sunlight enters the prism 1 at an incident angle θi with respect to the light receiving surface 1b, it is refracted at its boundary surface and its exit angle is θg (0
≤ θg <θi). Therefore, the first incident angle θ1 on the light receiving surface 1b after the light is totally reflected by the mirror 4 becomes θ1 = 2θ0 + θg, and the second incident angle θ2 becomes θ2 = 4θ0 + θg, and the same n The incident angle θn for the second time is θn = 2nθ0 + θg. That is, as the number of reflections increases, the light receiving surface 1
It can be seen that the incident angle θn on b becomes large. Therefore, it is sufficient that the first incident angle θ1 is always larger than the critical angle θc, and therefore the following equation is established.

【0013】 2θ0 +θg ≧θc θ0 ≧(θc −θg )/2 (1) そして、上記式(1)中、θc は定数であり、θg は入
射角θi の関数であるが、太陽光線のプリズム1への入
射角θi を同図(B)に示すように、 0度≦θi ≦90度 の範囲内とおくと、θg の範囲も0度以上90度未満と
なる。よって係る範囲内のすべての入射角θi で上記の
式(1)を満たすためには、右辺が最も大きくなるθi
=θg =0の時に、式(1)を満たすようにθ0 を設定
することである。
2θ0 + θg ≧ θc θ0 ≧ (θc−θg) / 2 (1) Then, in the above formula (1), θc is a constant and θg is a function of the incident angle θi, but As shown in FIG. 7B, when the incident angle θi is 0 ° ≦ θi ≦ 90 °, the range of θg is 0 ° or more and less than 90 °. Therefore, in order to satisfy the above equation (1) for all incident angles θi within this range, the right side becomes the largest θi
= Θ g = 0, θ 0 is set so as to satisfy the equation (1).

【0014】よって、 θ0 ≧(θc −0)/2 ≧θc /2 ≧41.8/2 (2) となる。Therefore, θ0 ≧ (θc−0) /2≧θc/2≧41.8/2 (2).

【0015】一方、太陽電池の使用量をできるだけ少な
くするためには、プリズム1の集光面1aの長さをでき
るだけ短く設定するのが好ましく、必然的にθ0 も小さ
い値とするのが良い。そこで、本例では、θ0 =21度
とした。なお、θ0 が大きくなるにつれ、入射角θi が
マイナス側の角度となってもよくなる。換言すれば、入
射角度θi の範囲をマイナス側まで許容する場合には、
その負側の角度に応じてθ0 も大きいものを用いる必要
がある。
On the other hand, in order to reduce the use amount of the solar cell as much as possible, it is preferable to set the length of the light collecting surface 1a of the prism 1 as short as possible, and it is inevitable that θ0 is also a small value. Therefore, in this example, θ0 = 21 degrees. Note that the incident angle θi may become a negative angle as θ0 increases. In other words, when the range of the incident angle θi is allowed to the minus side,
It is necessary to use a large θ 0 according to the negative angle.

【0016】これにより、0度〜90度の入射角でもっ
て受光面1bに照射されてプリズム1内に入射されたす
べての太陽光線が、直接或いは受光面1bや底面1c
(ミラー4)にて所定回数反射を繰り返した後に集光面
1aに至ることになる。
As a result, all the sun rays that have been incident on the light receiving surface 1b at an incident angle of 0 to 90 degrees and have entered the prism 1 are directly or on the light receiving surface 1b or the bottom surface 1c.
After the light is repeatedly reflected by the (mirror 4) a predetermined number of times, it reaches the light collecting surface 1a.

【0017】さらに本例では、上記整合部材2を所定の
樹脂で形成した平板状の部材から構成し、使用する樹脂
としては、太陽電池3(シリコン)の屈折率(例えばn
s =3.5)と、プリズム1の屈折率(例えばnp =
1.5)の間の屈折率を有するものを用いる。さらに、
整合部材2の両面は、それぞれプリズム1の集光面1a
と、太陽電池3の表面に密着させ、両者1,3を接着一
体化するとともに、それらプリズム1と太陽電池3との
間に空気層の介在することを抑止している。
Further, in this embodiment, the matching member 2 is formed of a flat plate member made of a predetermined resin, and the resin used is a refractive index (for example, n) of the solar cell 3 (silicon).
s = 3.5) and the refractive index of the prism 1 (for example, np =
A material having a refractive index between 1.5) is used. further,
Both surfaces of the matching member 2 have a light collecting surface 1a of the prism 1, respectively.
Then, the solar cell 3 is brought into close contact with the surface of the solar cell 3 and the both 1 and 3 are adhered and integrated, and an air layer is prevented from intervening between the prism 1 and the solar cell 3.

【0018】すなわち、それぞれ別途形成されたプリズ
ム1と太陽電池3とを面接触させようとすると、両者間
には所定の間隙(空気層)が形成されてしまう。する
と、プリズム1の屈折率より空気層の屈折率(1.0)
の方が小さいために、その境界面に臨界角が発生する。
したがって、プリズム1の集光面1aへの入射角が臨界
角より大きい場合には、そこにおいて反射してしまい太
陽電池3へ入射させることができなくなる。しかし、本
例では上記のような空気層がなく、しかもプリズム1,
整合部材2,太陽電池3の屈折率を順に大きくしたた
め、各境界面で臨界角が発生せず、あらゆる角度で入射
しても、その光が透過し、効率が良くなる。なお、所定
の屈折率からなる接着剤を用いてプリズム1と太陽電池
3を前面接着すれば、整合部材2を設けなくても同様の
効果が発揮する。、次に、上記した構成の集光装置にお
ける光透過率(発電効率に対応)を求めると、以下のよ
うになる。まず、太陽電池3に入力される光エネルギー
P[W]は、太陽光線がプリズム1に入射する時の透過
率Tg ,ミラー4における反射率Rm ,プリズム内部の
受光面1bにおける反射率Tr ,プリズム角θ0
[度],プリズム1の受光面1bの長さx0 [m],同
幅(奥行き)w[m],プリズム1の屈折率np ,太陽
光線の入射角θi [度],プリズム1から太陽電池3へ
の透過率Ts の関数で表される。
That is, when the separately formed prism 1 and the solar cell 3 are to be brought into surface contact with each other, a predetermined gap (air layer) is formed between them. Then, the refractive index of the air layer is more than the refractive index of the prism 1 (1.0).
Is smaller, a critical angle occurs at the interface.
Therefore, when the incident angle of the prism 1 on the light collecting surface 1a is larger than the critical angle, it is reflected there and cannot be incident on the solar cell 3. However, in this example, there is no air layer as described above, and the prism 1,
Since the refractive indexes of the matching member 2 and the solar cell 3 are increased in order, a critical angle does not occur at each boundary surface, and even if incident at any angle, the light is transmitted and efficiency is improved. If the prism 1 and the solar cell 3 are bonded to the front surface using an adhesive having a predetermined refractive index, the same effect can be obtained without providing the matching member 2. Then, the light transmittance (corresponding to the power generation efficiency) of the light collecting device having the above-described configuration is calculated as follows. First, the light energy P [W] input to the solar cell 3 is the transmittance Tg when sunlight is incident on the prism 1, the reflectance Rm on the mirror 4, the reflectance Tr on the light receiving surface 1b inside the prism, the prism. Angle θ0
[Degree], length x0 [m] of the light-receiving surface 1b of the prism 1, same width (depth) w [m], refractive index np of the prism 1, incident angle θi [degree] of sunlight, [degree], prism 1 to solar cell It is expressed as a function of the transmittance Ts to 3.

【0019】[0019]

【数1】P=f(Tg ,Rm ,Rr ,θ0 ,x0 ,w,
np ,Ts ) 一方、上記したごとく最終的に太陽電池3に入射される
光は、図3に示すようにプリズム1内を通過して直接入
射する光や、1回または多重反射して入射する光の合成
光としてとらえることができ、各反射回数(0〜n)に
おける光エネルギーをそれぞれP0 ,P1 ,P2 ,…,
Pn とすると、太陽電池3に入力される光エネルギーP
は、 P=P0 +P1 +P2 +…+Pn となる。
## EQU1 ## P = f (Tg, Rm, Rr, .theta.0, x0, w,
np, Ts) On the other hand, as described above, the light that finally enters the solar cell 3 passes through the prism 1 as shown in FIG. It can be regarded as a synthetic light of light, and the light energy at each reflection number (0 to n) is P0, P1, P2, ...
Let Pn be the light energy P input to the solar cell 3.
Becomes P = P0 + P1 + P2 + ... + Pn.

【0020】ここで、n回反射する光線の光エネルギー
Pn について考える。係るn回反射する光線の束のプリ
ズム1への入射幅をΔxn とすると、Pn は、次式で表
される。
Here, the light energy Pn of the light ray reflected n times will be considered. When the incident width of the bundle of light rays reflected n times on the prism 1 is Δxn, Pn is expressed by the following equation.

【0021】[0021]

【数2】 そして、上記式(3)中、Rm とRr は、上述したごと
く本実施例では各境界面でともに全反射するため、それ
ぞれ1となる。また、プリズム1から太陽電池3への透
過率Ts は、以下のようになる。
[Equation 2] Then, in the above formula (3), Rm and Rr are 1 because they are totally reflected at each boundary surface in this embodiment as described above. Further, the transmittance Ts from the prism 1 to the solar cell 3 is as follows.

【0022】すなわち、まず太陽電池3への入射角θs
は、図4に示すように、0回反射波並びに1回反射波の
場合には、太陽電池3への入射角θs は、 θs =90−θ0 −θg となり、また、2回反射波並びに3回反射波の場合に
は、 θs =90−3θ0 −θg となる。そして、(2n−2)回反射波並びに(2n−
1)回反射波の場合には(但しn>0の整数)、 θs =90−(2n−1)θ0 −θg となる。
That is, first, the incident angle θs on the solar cell 3 is
As shown in FIG. 4, in the case of the 0-time reflected wave and the 1-time reflected wave, the incident angle θs on the solar cell 3 becomes θs = 90−θ0−θg, and the twice-reflected wave and 3 In the case of a reflected wave, θs = 90−3θ0−θg. Then, (2n−2) times reflected wave and (2n−)
1) In the case of a reflected wave (where n> 0 is an integer), θs = 90− (2n−1) θ0−θg.

【0023】よって、θs の範囲は、 0≦θs ≦90−θ0 −θg となり、0≦θg <θc より、θs の取り得る最大範囲
は、 0≦θs ≦90−θ0 となる。そして、本例ではθ0 =21[度]であるた
め、具体的には、 0≦θs ≦69 [度] となる。
Therefore, the range of θs is 0 ≦ θs ≦ 90−θ0−θg, and the maximum range of θs is 0 ≦ θs ≦ 90−θ0 from 0 ≦ θg <θc. Further, in this example, θ 0 = 21 [degrees], so that specifically, 0 ≦ θs ≦ 69 [degrees].

【0024】したがって、透過率Ts (θs )は、下記
式で表せるため、θs =0[度],69[度]を代入す
ると、本例における透過率Ts の範囲は、0.74以上
0.86以下となる(図5)。すなわち、整合部材2を
プリズム1と同じ屈折率(1.5)の樹脂を用いて形成
し、さらに太陽電池3の屈折率が3.5を用いると、か
かる透過率は最低でも0.74となる。
Therefore, the transmittance Ts (θs) can be expressed by the following equation. Therefore, when θs = 0 [degrees] and 69 [degrees] are substituted, the range of the transmittance Ts in this example is 0.74 or more and 0. It is less than 86 (Fig. 5). That is, if the matching member 2 is made of a resin having the same refractive index (1.5) as the prism 1, and the solar cell 3 has a refractive index of 3.5, the transmittance is at least 0.74. Become.

【0025】[0025]

【数3】 なお、プリズム1に入射する時の透過率Tg (θi )
は、公知のように空気の屈折率を1、プリズム1のそれ
を1.5とすると、図6に示すような関数で表され、垂
直入射(θi =0)の時の透過率Tg は0.96とな
る。
[Equation 3] The transmittance Tg (θi) when the light enters the prism 1.
Is expressed by a function as shown in FIG. 6 where the refractive index of air is 1 and that of the prism 1 is 1.5 as is known, and the transmittance Tg at the time of normal incidence (θi = 0) is 0. It becomes 0.96.

【0026】したがって、n回反射の光エネルギーPn
は、式(3)の各変数に上記した各結果を代入すること
により、下記のようになる。そして下記式(4)より明
らかなように、反射回数nに関係するのは、対応する入
射光の幅Δxn だけとなる。
Therefore, the light energy Pn of n reflections
Is as follows by substituting each of the above results into each variable of equation (3). As is clear from the following equation (4), the number of reflections n is related only to the width Δxn of the corresponding incident light.

【0027】[0027]

【数4】 よって、太陽電池3に入射する光エネルギーの総和は、
下記式のようになる。
[Equation 4] Therefore, the total amount of light energy incident on the solar cell 3 is
It becomes like the following formula.

【0028】[0028]

【数5】 そして、上記式(5)中、Tg (θi )とTsは、それ
ぞれ図6,図5に示すような特性となっているため、そ
れに基づいて算出すると、垂直入射時の光透過率は0.
71〜0.81となり、入射角度に対する全体の透過率
は図7(A)に示すような特性となる。
[Equation 5] Further, in the above formula (5), Tg (θi) and Ts have the characteristics as shown in FIGS. 6 and 5, respectively. Therefore, when calculated based on them, the light transmittance at the time of vertical incidence is 0.
71 to 0.81 and the overall transmittance with respect to the incident angle has a characteristic as shown in FIG.

【0029】また、太陽電池の使用量を考えると、プリ
ズム1の受光面1bの面積(従来の太陽電池の設置面
積)を100%とおくと、sin θ0 より、約35.8%
となる。よって、垂直入射時の単位太陽電池当たりのエ
ネルギー量は、2.0I0 〜2.3I0となる。
Considering the usage of the solar cell, if the area of the light receiving surface 1b of the prism 1 (the installation area of the conventional solar cell) is set to 100%, then about 35.8% from sin θ0.
Becomes Therefore, the amount of energy per unit solar cell at the time of vertical incidence is 2.0I0 to 2.3I0.

【0030】一方、従来の太陽電池の表面にカバーガラ
スを配置した構成(集光装置はない)における透過率
は、垂直入射時に0.64程度であり(図7(B)参
照)、太陽電池の面積は、太陽に正対させる必要から1
00%必要であるため、単位太陽電池当たりのエネルギ
ー量は、0.64I0 となる。したがって、本発明品で
は、単位太陽電池当たりの発電効率が、3.1〜3.6
倍に向上することがわかる。
On the other hand, the transmittance of the conventional solar cell in which the cover glass is arranged on the surface (there is no light concentrator) is about 0.64 at the time of vertical incidence (see FIG. 7B). The area of is necessary to face the sun 1
Since 100% is required, the amount of energy per unit solar cell is 0.64I0. Therefore, in the product of the present invention, the power generation efficiency per unit solar cell is 3.1 to 3.6.
It can be seen that it will be doubled.

【0031】また、従来のレンズ等を用いた集光装置の
場合には、学会等の発表によれば、発電効率は上記従来
のものに対し1.8倍程度となることが報告されている
が、本発明は係る従来の集光装置に対しても発電効率が
充分高くなるといえる。
Further, in the case of a conventional condensing device using a lens or the like, it has been reported according to the announcement of academic societies that the power generation efficiency is about 1.8 times that of the conventional one. However, according to the present invention, it can be said that the power generation efficiency is sufficiently higher than that of the conventional condensing device.

【0032】さらに所望の発電量を得るに必要な太陽電
池3の面積が大きくなった場合には、上記プリズム1の
幅wや長さx0 を適宜大きくすることにより対応すれば
良いが、長さx0 をあまり大きくすると、それにともな
い集光面1aも長くなり、集光装置の高さ(厚さ)が大
きくなる。そこで、高さに一定の制限があるような場合
には、上記構成(1つのプリズム1に太陽電池3等を装
着)の装置を複数設け、それを適宜配置、すなわち、プ
リズム1の受光面1bが略同一平面状に位置するように
配置し、そのプリズム1に装着された太陽電池3を適宜
直並列接続すれば良い。
Further, when the area of the solar cell 3 required to obtain a desired amount of power generation becomes large, it can be dealt with by appropriately increasing the width w or the length x0 of the prism 1. If x0 is made too large, the light collecting surface 1a also becomes long accordingly, and the height (thickness) of the light collecting device becomes large. Therefore, in the case where there is a certain limit to the height, a plurality of devices having the above-described configuration (where one solar cell 3 and the like are mounted on one prism 1) are provided and appropriately arranged, that is, the light receiving surface 1b of the prism 1 is provided. Are arranged so as to be substantially in the same plane, and the solar cells 3 mounted on the prism 1 may be connected in series and in parallel.

【0033】図8は、本発明に係る太陽電池用集光装置
の第2実施例を示している。本実施例では、上記した実
施例と相違して、プリズム1′と太陽電池3′との間に
整合部材を設けず、両者の対向面1′a,3′aをそれ
ぞれテキスチャ構造にしている。これにより、第1実施
例のように整合部材を設けなくても、反射による損失が
低減される。なお、その他の構成並びに作用・効果は上
記した第1実施例と同様であるためその説明を省略す
る。
FIG. 8 shows a second embodiment of the concentrating device for solar cells according to the present invention. In this embodiment, unlike the above-mentioned embodiment, no matching member is provided between the prism 1'and the solar cell 3 ', and the opposing surfaces 1'a and 3'a of the both have a texture structure. . As a result, the loss due to reflection is reduced without providing the matching member as in the first embodiment. The rest of the configuration, operation, and effects are the same as in the first embodiment described above, so a description thereof will be omitted.

【0034】なお、具体的な図示を省略するが、このよ
うにテキスチャ構造にしなくても、両者の対向面に反射
防止膜を塗布するようにしても良い。さらに、上記テキ
スチャ構造の表面に反射防止膜を塗布すると、上記効果
がより向上する。さらにまた、それら反射防止膜やテキ
スチャ構造を形成する面として、上記した各例では、い
ずれもプリズム1′と太陽電池3′の対向面の両方に形
成したが、少なくとも一方に形成すれば良い。
Although not specifically shown, an antireflection film may be applied to the opposing surfaces of both without having such a texture structure. Further, when an antireflection film is applied to the surface of the texture structure, the above effect is further improved. Furthermore, as the surface on which the antireflection film and the texture structure are formed, in each of the above-mentioned examples, both are formed on both the opposing surface of the prism 1'and the solar cell 3 ', but it may be formed on at least one of them.

【0035】なおまた、具体的な図示を省略するが、プ
リズム1を樹脂で形成するようにし、樹脂成型する際の
型枠内等に太陽電池3を配置してプリズム1の形成と同
時にそのプリズム1と太陽電池3との接着一体化を図る
ようにしても良い。かかる構成にすることにより、両者
1,3間に空気層が存在せず、整合部材2を設けなくて
も反射による損失が生じない。
Although not specifically shown, the prism 1 is made of resin, and the solar cell 3 is placed in a mold or the like when molding the resin to form the prism 1 and the prism 1 at the same time. 1 and the solar cell 3 may be bonded and integrated. With such a configuration, there is no air layer between the both 1 and 3, and the loss due to reflection does not occur even if the matching member 2 is not provided.

【0036】図9は、本発明に係る太陽電池用集光装置
の第3実施例を示しており、(A)は、その全体斜視
図、(B)はプリズムの平面図、(C)は同側面図であ
る。同図に示すように本実施例では、プリズム1の両側
面1dにも反射部材たるミラー5を設け、そこに反射し
た光も全反射するようにしている。なお、このミラー5
は、上述したプリズム1の底面1cに設けたミラー4と
同様のものを用いることができるが、必ずしも両者を同
一材料を形成する必要はない。
FIG. 9 shows a third embodiment of the solar cell light concentrating device according to the present invention. (A) is an overall perspective view thereof, (B) is a plan view of a prism, and (C) is It is the same side view. As shown in the figure, in this embodiment, a mirror 5 as a reflecting member is also provided on both side surfaces 1d of the prism 1 so that the light reflected there is also totally reflected. In addition, this mirror 5
Can be the same as the mirror 4 provided on the bottom surface 1c of the prism 1 described above, but it is not always necessary to form the same material for both.

【0037】すなわち、同図(B)中二点鎖線で示すよ
うに、例えば正午の時に太陽光線がプリズム1に対して
垂直に入射するように設定されているとすると、朝晩等
の太陽光線は、同図(B)中実線で示すように、平面的
に見て斜め方向からプリズム1に入射することになる。
したがって、プリズム1の受光面1bのうち、両側面近
傍の地点(例えば地点Q)から入射した光は、プリズム
1の側面1dに到達する。すると、通常その様な光は、
側面1dへの入射角は臨界角より小さいため、そのまま
ではプリズム1の外に出射されてしまうが、本例では係
る位置にミラー5を配置しているため、その入射角度に
関係なく全反射される。
That is, as shown by the chain double-dashed line in the same figure (B), if the sun rays are set to enter the prism 1 perpendicularly at noon, the sun rays in the morning and evening will be As shown by the solid line in FIG. 3B, the light enters the prism 1 from an oblique direction when seen in a plan view.
Therefore, on the light-receiving surface 1b of the prism 1, the light incident from points (eg, point Q) near both side surfaces reaches the side surface 1d of the prism 1. Then, normally, such light is
Since the incident angle on the side surface 1d is smaller than the critical angle, it is emitted out of the prism 1 as it is, but in this example, since the mirror 5 is arranged at such a position, it is totally reflected regardless of the incident angle. It

【0038】その結果、同図(B),(C)に示すよう
に、プリズム1の受光面1b,底面1c並びに側面1d
(ミラー4,5)にて適宜全反射を繰り返して集光面1
aに至り、入射した太陽光線のほぼすべてを太陽電池3
に供給できるようになる。そして、本実施例の構造(プ
リズムの側面にもミラーを設ける)を用いるのは、特
に、幅wの短いプリズムの場合に有用(設置の有無によ
る効果の差が大きい)である。
As a result, as shown in FIGS. 3B and 3C, the light receiving surface 1b, the bottom surface 1c and the side surface 1d of the prism 1 are formed.
The total reflection is appropriately repeated by the (mirrors 4 and 5) and the light collecting surface 1
reaching a, almost all of the incident sun rays are generated by the solar cell 3
Can be supplied to. The use of the structure of the present embodiment (providing a mirror also on the side surface of the prism) is particularly useful in the case of a prism having a short width w (the effect of the presence or absence of installation is large).

【0039】図10は、本発明に係る太陽電池用集光装
置の第4実施例を示している。本実施例では、上記した
実施例と相違して、プリズム1″の内部所定位置に空洞
部6を設けている。そして、この空洞部6の設置位置に
ついて説明すると、略直方体状の空洞部6を、プリズム
1″のミラー4を設置した底面1″cと平行に配置す
る。そして、係る空洞部6の前記底面1cと平行な2つ
の内壁面6aには、蒸着,薄膜塗布等種々の方法により
全反射面を形成し、前記底面1″cと直交する内壁面6
b,6cは、無反射コーティング等を施すことにより無
反射面を形成する。
FIG. 10 shows a fourth embodiment of the concentrating device for solar cells according to the present invention. In the present embodiment, unlike the above-described embodiment, the cavity 6 is provided at a predetermined position inside the prism 1 ″. Then, the installation position of the cavity 6 will be described. The cavity 6 having a substantially rectangular parallelepiped shape. Are arranged parallel to the bottom surface 1 "c of the prism 1" on which the mirror 4 is installed. Then, various methods such as vapor deposition and thin film coating are applied to the two inner wall surfaces 6a of the cavity 6 parallel to the bottom surface 1c. To form a total reflection surface, and the inner wall surface 6 orthogonal to the bottom surface 1 ″ c
b and 6c form an antireflection surface by applying an antireflection coating or the like.

【0040】これにより、空洞部6の反射面に向かって
入射した光線は、その反射面6aと、受光面1″bと
の間で反射を繰り返して集光面1″aに至る。また、プ
リズム1″の底面1″c(ミラー4)に向かって入射し
た光線は、一度底面1″cで反射後空洞部6の無反射
面6bを通って空洞部6内に入り、空洞部6内の反射面
6aで反射後、反対側の無反射面6cを介してプリズム
1″の集光面1″aに至る。
As a result, the light beam incident on the reflecting surface of the cavity 6 is repeatedly reflected between the reflecting surface 6a and the light receiving surface 1 "b and reaches the light collecting surface 1" a. Further, the light beam incident on the bottom surface 1 ″ c (mirror 4) of the prism 1 ″ once enters the cavity 6 through the non-reflective surface 6b of the cavity 6 after being reflected by the bottom surface 1 ″ c. After the light is reflected by the reflection surface 6a inside 6, the light reaches the condensing surface 1 ″ a of the prism 1 ″ through the non-reflection surface 6c on the opposite side.

【0041】このように、受光面1″bから入射したほ
ぼすべての太陽光線は、所定の経路を経て集光面1″a
に至り、図外の太陽電池に入射されることになる。そし
て、各反射時の損失について考えると、反射面6aでは
全反射されるため損失はなく、また、無反射面6b,6
cで少量発生する可能性があるが無視できる程度であ
り、結局、上記した各実施例と同様の効果が得られる。
As described above, almost all the sun rays incident from the light receiving surface 1 "b pass through the predetermined path and are converged on the light collecting surface 1" a.
Then, it will be incident on the solar cell (not shown). Considering the loss at each reflection, there is no loss because the reflection surface 6a is totally reflected, and the non-reflection surfaces 6b, 6
There is a possibility that a small amount will occur in c, but this is negligible, and after all, the same effects as the above-mentioned respective embodiments can be obtained.

【0042】そしてこれにより、集光装置の軽量化が図
れる。なお、具体的な図示は省略するが、係るプリズム
1″の集光面1″aには、上記各実施例或いは変形例に
示す構成により太陽電池が対向配置される。また、その
他の構成並びに作用・効果は上記した各実施例等と同様
であるためその説明を省略する。
As a result, the weight of the light collecting device can be reduced. Although not specifically shown in the drawing, a solar cell is arranged on the light collecting surface 1 ″ a of the prism 1 ″ so as to face the condensing surface 1 ″ a according to the above-described embodiments or modifications. Further, other configurations, operations, and effects are the same as those of the above-described embodiments and the like, and therefore description thereof will be omitted.

【0043】図11は、本発明に係る太陽電池用集光装
置の第5実施例を示している。すなわち、上記した各実
施例では、単一のプリズムに太陽電池をそれぞれ装着す
るようにしたが、本実施例では、複数のプリズム7を同
時に形成し(例えば樹脂成型等で)、各プリズム7の所
定箇所(集光面7a)に太陽電池3を装着している。な
お、図示省略するが、集光面7aと太陽電池3とは、上
記各実施例に示したように整合部材を介在させたり、テ
キスチャ構造,反射防止膜を形成して対向される。
FIG. 11 shows a fifth embodiment of the concentrating device for solar cells according to the present invention. That is, in each of the above-described embodiments, the solar cell is mounted on a single prism, but in the present embodiment, a plurality of prisms 7 are simultaneously formed (for example, by resin molding) and each of the prisms 7 is formed. The solar cell 3 is attached to a predetermined location (light collecting surface 7a). Although not shown, the condensing surface 7a and the solar cell 3 are opposed to each other by interposing a matching member or forming a texture structure and an antireflection film as shown in each of the above embodiments.

【0044】そして、係る構成にすることにより、各プ
リズム7の受光面7bが面一で一体となっているため、
実際の設置に際し角度調整(例えば、θi が0〜90度
の範囲で、高効率を図るために昼時に入射角が0度とな
るように調整する)が容易(1回の調整作業で済む)と
なる。そして、かかる角度調整を行ったなら、受光面7
bは、水平面から所定角度(例えば30度)で傾斜配置
され、しかも各プリズム7間の接合も不要で継ぎ目がな
いので、たとえ受光面7bにごみや汚れの付着があった
としても、係るごみ等はその後の雨や風により自然と流
れされたり、吹き飛ばされたりして綺麗な状態が保たれ
る。また、仮に清掃を行おうとしても、平端面であるた
め非常に簡単に行えるという種々の効果を発揮する。な
お、その他の構成並びに作用効果は上記した各実施例同
様であるため、説明を省略する。
With this structure, the light receiving surfaces 7b of the prisms 7 are flush and integrated,
It is easy to adjust the angle during actual installation (for example, adjust θi in the range of 0 to 90 degrees so that the incident angle becomes 0 degrees at daytime for high efficiency) (one adjustment is required). Becomes Then, if such angle adjustment is performed, the light receiving surface 7
b is inclined at a predetermined angle (for example, 30 degrees) from the horizontal plane, and since there is no joint between the prisms 7 and there is no seam, even if dust or dirt adheres to the light receiving surface 7b, After that, they are naturally washed by the rain and wind, or blown away, so that they are kept in a beautiful condition. Further, even if the cleaning is to be carried out, the flat end face provides various effects that the cleaning can be performed very easily. Since the other configurations, functions and effects are the same as those in the above-described embodiments, the description thereof will be omitted.

【0045】図12は、本発明に係る太陽電池用集光装
置の第6実施例を示している。本実施例では、上記した
実施例と相違して、プリズムと太陽電池とを光ファイバ
を用いて接続している。すなわち、各プリズム8の集光
面8aに光ファイバ9の一端を接続(光結合)し、その
光ファイバ9の他端を太陽電池10に接続している。こ
れにより、プリズム8内を適宜反射して集光面8aに到
達した太陽光線を光ファイバ9を介して太陽電池10に
照射することができる。
FIG. 12 shows a sixth embodiment of the concentrating device for a solar cell according to the present invention. In this embodiment, unlike the above-described embodiment, the prism and the solar cell are connected using an optical fiber. That is, one end of the optical fiber 9 is connected (optically coupled) to the light collecting surface 8 a of each prism 8, and the other end of the optical fiber 9 is connected to the solar cell 10. As a result, it is possible to irradiate the solar cell 10 via the optical fiber 9 with the sun rays that have appropriately reflected inside the prism 8 and have reached the light collecting surface 8a.

【0046】係る構成にすることにより、太陽電池を小
さく切るとともに各集光面8aに張り付ける作業が不要
となり、標準サイズの太陽電池をそのまま用いることが
できる。さらに、各プリズム8の形状(特に長さx0 )
を小さくすることができ、それに伴う薄型・軽量化が図
れる。
With such a structure, the solar cell is cut into small pieces, and the work of sticking the light collecting surface 8a to each condensing surface 8a becomes unnecessary, and the standard size solar cell can be used as it is. Furthermore, the shape of each prism 8 (especially the length x0)
Can be made smaller, and accordingly, thinning and weight reduction can be achieved.

【0047】[0047]

【発明の効果】以上のように、本発明に係る太陽電池用
集光装置では、太陽光線の入射角に関係なく、入射され
た光の大部分をプリズムの集光面に集めることができる
ため、係る集光面に対向するようにして太陽電池を配置
すれば、太陽電池を太陽の方向に向ける追尾装置が不要
となり、装置の小型化並びに発電効率の向上が図れる。
また、太陽光線の集光比率が約3倍で、高価な太陽電池
の必要面積を1/3に抑えることができる。しかも、上
述したように透過率も比較的高くすることができるの
で、太陽電池の単位面積当たりの発電効率を向上するこ
とができる。さらに高価な太陽電池の使用量を削減でき
ることから設備越すとも約1/3程度に低減することが
可能となる。さらにまた、プリズムの側面に反射部材を
設けたり、プリズム内を進行する光の受光面側への入射
角を常に臨界角以上とするようにした場合には、より発
電効率が向上する。また、プリズム内部に空洞部を設け
た場合には、軽量化を図ることができる。
As described above, in the concentrating device for a solar cell according to the present invention, most of the incident light can be collected on the converging surface of the prism regardless of the incident angle of sunlight. By arranging the solar cell so as to face the light collecting surface, a tracking device for directing the solar cell in the direction of the sun becomes unnecessary, and the device can be downsized and power generation efficiency can be improved.
Further, the concentration ratio of sunlight is about 3 times, and the required area of an expensive solar cell can be suppressed to 1/3. Moreover, since the transmittance can be made relatively high as described above, the power generation efficiency per unit area of the solar cell can be improved. Furthermore, since the amount of expensive solar cells used can be reduced, it can be reduced to about 1/3 of the total even if the equipment is used. Furthermore, when a reflecting member is provided on the side surface of the prism or the incident angle of the light traveling in the prism on the light receiving surface side is always greater than or equal to the critical angle, the power generation efficiency is further improved. Further, when the cavity is provided inside the prism, the weight can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る太陽電池用集光装置の第1実施例
を示す図である。
FIG. 1 is a diagram showing a first embodiment of a concentrating device for a solar cell according to the present invention.

【図2】その原理を説明する図である。FIG. 2 is a diagram illustrating the principle.

【図3】その原理を説明する図である。FIG. 3 is a diagram illustrating the principle.

【図4】その原理を説明する図である。FIG. 4 is a diagram illustrating the principle.

【図5】プリズムから太陽電池への透過率を示すグラフ
である。
FIG. 5 is a graph showing transmittance from a prism to a solar cell.

【図6】空中からプリズムへの透過率を示すグラフであ
る。
FIG. 6 is a graph showing the transmittance from the air to the prism.

【図7】(A)は、本実施例の装置全体の透過率を示す
グラフである。(B)は、従来例の装置全体の透過率を
示すグラフである。
FIG. 7A is a graph showing the transmittance of the entire device of this example. (B) is a graph showing the transmittance of the entire conventional device.

【図8】本発明に係る太陽電池用集光装置の第2実施例
を示す図である。
FIG. 8 is a diagram showing a second embodiment of the solar cell light-collecting device according to the present invention.

【図9】本発明に係る太陽電池用集光装置の第3実施例
を示す図である。
FIG. 9 is a diagram showing a third embodiment of the solar cell light concentrating device according to the present invention.

【図10】本発明に係る太陽電池用集光装置の第4実施
例を示す図である。
FIG. 10 is a view showing a fourth embodiment of the solar cell light-collecting device according to the present invention.

【図11】本発明に係る太陽電池用集光装置の第5実施
例を示す図である。
FIG. 11 is a view showing a fifth embodiment of the solar cell light collecting device according to the present invention.

【図12】本発明に係る太陽電池用集光装置の第6実施
例を示す図である。
FIG. 12 is a view showing a sixth embodiment of the solar cell light collecting device according to the present invention.

【符号の説明】[Explanation of symbols]

1,1′,1″,7,8 プリズム 1a,1a′,1a″,7a,8a 集光面 1b,1b′,1b″ 受光面 1c,1c′,1c″ 底面 2 整合部材 3,10 太陽電池 4,5 ミラー 6 空洞部 1, 1 ', 1 ", 7, 8 Prism 1a, 1a', 1a", 7a, 8a Condensing surface 1b, 1b ', 1b "Light receiving surface 1c, 1c', 1c" Bottom surface 2 Matching member 3, 10 Sun Battery 4, 5 Mirror 6 Cavity

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 所定の1面を受光面としたプリズムと、 前記受光面を介して前記プリズム内に入射された光の多
くが最初に当たる前記プリズムの他の面に設けた反射部
材とを備え、 その反射部材と、前記受光面の内側との間で所定回数反
射を行い到達する前記プリズムのさらに他の面を集光面
とし、その集光面から出射される光を太陽電池に供給す
るようにした太陽電池用集光装置。
1. A prism having a predetermined one surface as a light receiving surface, and a reflecting member provided on the other surface of the prism where most of the light incident into the prism through the light receiving surface first strikes. , The other surface of the prism, which reaches after reflecting by a predetermined number of times between the reflecting member and the inside of the light receiving surface, is used as a light collecting surface, and the light emitted from the light collecting surface is supplied to the solar cell. Concentrator for solar cells.
【請求項2】 前記プリズムの前記受光面と前記反射部
材とのなす角を、前記反射部材で反射されて前記受光面
に至る光の入射角が、臨界角以上となるように設定した
ことを特徴とする請求項1に記載の太陽電池用集光装
置。
2. An angle formed by the light receiving surface of the prism and the reflecting member is set so that an incident angle of light reflected by the reflecting member and reaching the light receiving surface is a critical angle or more. The concentrating device for a solar cell according to claim 1.
【請求項3】 前記プリズムの側面に、反射部材を設け
たことを特徴とする請求項1または2に記載の太陽電池
用集光装置。
3. The concentrating device for a solar cell according to claim 1, wherein a reflecting member is provided on a side surface of the prism.
【請求項4】 前記プリズムの内部に、所定の空洞部を
設けたことを特徴とする請求項1〜3のいずれか1項に
記載の太陽電池用集光装置。
4. The concentrating device for a solar cell according to claim 1, wherein a predetermined cavity is provided inside the prism.
【請求項5】 前記受光面を面一上に配置した複数の前
記プリズムを一体成型により形成してなることを特徴と
する請求項1〜3のいずれか1項に記載の太陽電池用集
光装置。
5. The solar cell light condensing unit according to claim 1, wherein a plurality of the prisms having the light receiving surfaces arranged flush with each other are formed by integral molding. apparatus.
JP5087773A 1993-03-24 1993-03-24 Condensing device for solar cell Withdrawn JPH06275859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5087773A JPH06275859A (en) 1993-03-24 1993-03-24 Condensing device for solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5087773A JPH06275859A (en) 1993-03-24 1993-03-24 Condensing device for solar cell

Publications (1)

Publication Number Publication Date
JPH06275859A true JPH06275859A (en) 1994-09-30

Family

ID=13924304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5087773A Withdrawn JPH06275859A (en) 1993-03-24 1993-03-24 Condensing device for solar cell

Country Status (1)

Country Link
JP (1) JPH06275859A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5977478A (en) * 1996-12-05 1999-11-02 Toyota Jidosha Kabushiki Kaisha Solar module
WO2000077458A1 (en) * 1999-06-10 2000-12-21 3M Innovative Properties Company Panel-like structure for collecting radiant energy
JP2001189487A (en) * 2000-01-05 2001-07-10 Hitachi Maxell Ltd Condenser, and condensation-type solar battery module
US6294723B2 (en) 1998-02-26 2001-09-25 Hitachi, Ltd. Photovoltaic device, photovoltaic module and establishing method of photovoltaic system
WO2006035698A1 (en) * 2004-09-27 2006-04-06 Dueller Corporation Sheet-like concentrator and solar cell sheet employing it
JP2010525582A (en) * 2007-05-01 2010-07-22 モーガン ソーラー インコーポレーテッド Light guiding solar panel and manufacturing method thereof
WO2013058381A1 (en) * 2011-10-19 2013-04-25 株式会社ニコン Optical condenser device, optical power generation device and photothermal conversion device
JP2014192265A (en) * 2013-03-26 2014-10-06 Lintec Corp Prism member for solar battery and solar battery module
JP2014192266A (en) * 2013-03-26 2014-10-06 Lintec Corp Solar battery module
JP2019095536A (en) * 2017-11-21 2019-06-20 日本電気硝子株式会社 Prism and light-emitting device
WO2019131087A1 (en) * 2017-12-26 2019-07-04 矢崎エナジーシステム株式会社 Solar energy using apparatus
CN111512014A (en) * 2017-12-26 2020-08-07 矢崎能源***公司 Dehumidifying fitting
CN111936894A (en) * 2018-03-27 2020-11-13 矢崎能源***公司 Multi-stage prism window

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100286858B1 (en) * 1996-12-05 2001-04-16 와다 아끼히로 Solar module
US5977478A (en) * 1996-12-05 1999-11-02 Toyota Jidosha Kabushiki Kaisha Solar module
US6294723B2 (en) 1998-02-26 2001-09-25 Hitachi, Ltd. Photovoltaic device, photovoltaic module and establishing method of photovoltaic system
WO2000077458A1 (en) * 1999-06-10 2000-12-21 3M Innovative Properties Company Panel-like structure for collecting radiant energy
JP2001189487A (en) * 2000-01-05 2001-07-10 Hitachi Maxell Ltd Condenser, and condensation-type solar battery module
WO2006035698A1 (en) * 2004-09-27 2006-04-06 Dueller Corporation Sheet-like concentrator and solar cell sheet employing it
JP2010525582A (en) * 2007-05-01 2010-07-22 モーガン ソーラー インコーポレーテッド Light guiding solar panel and manufacturing method thereof
JP2014160824A (en) * 2007-05-01 2014-09-04 Morgan Solar Inc Light guide solar panel and method of fabrication thereof
US9046279B2 (en) 2011-10-19 2015-06-02 Nikon Corporation Light condensing device, photovoltaic power generation device and photo-thermal conversion device
WO2013058381A1 (en) * 2011-10-19 2013-04-25 株式会社ニコン Optical condenser device, optical power generation device and photothermal conversion device
TWI574043B (en) * 2011-10-19 2017-03-11 尼康股份有限公司 A light collecting device, a photovoltaic device and a light and heat conversion device
JP2014192266A (en) * 2013-03-26 2014-10-06 Lintec Corp Solar battery module
JP2014192265A (en) * 2013-03-26 2014-10-06 Lintec Corp Prism member for solar battery and solar battery module
JP2019095536A (en) * 2017-11-21 2019-06-20 日本電気硝子株式会社 Prism and light-emitting device
WO2019131087A1 (en) * 2017-12-26 2019-07-04 矢崎エナジーシステム株式会社 Solar energy using apparatus
CN111512014A (en) * 2017-12-26 2020-08-07 矢崎能源***公司 Dehumidifying fitting
CN111566416A (en) * 2017-12-26 2020-08-21 矢崎能源***公司 Solar energy utilization device
CN111512014B (en) * 2017-12-26 2021-11-12 矢崎能源***公司 Dehumidifying fitting
US11936336B2 (en) 2017-12-26 2024-03-19 Yazaki Energy System Corporation Solar energy utilization device
CN111936894A (en) * 2018-03-27 2020-11-13 矢崎能源***公司 Multi-stage prism window

Similar Documents

Publication Publication Date Title
JP3259692B2 (en) Concentrating photovoltaic module, method of manufacturing the same, and concentrating photovoltaic system
EP1251366B1 (en) Design procedure for a device for concentrating or collimating radiant energy
US8101855B2 (en) Optical concentrator, especially for solar photovoltaics
US5959787A (en) Concentrating coverglass for photovoltaic cells
US8119905B2 (en) Combination non-imaging concentrator
US5288337A (en) Photovoltaic module with specular reflector
JP2000147262A (en) Converging device and photovoltaic power generation system utilizing the device
US20160043259A1 (en) Non-Imaging Light Concentrator
JPH06275859A (en) Condensing device for solar cell
JP2001516149A (en) Reflective solar cell assembly
JP2013061149A (en) Thin film solar concentrator/collector
WO2009063416A2 (en) Thin and efficient collecting optics for solar system
US20080185032A1 (en) Discrete secondary reflector for solid concentrator
CN102122061A (en) Non-tracked low concentration solar concentrator, solar concentrator array and waveguide concentrator
MX2008012901A (en) Device for converting solar energy.
US20120006384A1 (en) Optical layer for light control type solar photovoltaic module, light control type solar photovoltaic module, and light control type solar photovoltaic panel
WO2013010496A1 (en) Light concentration system
US6840636B1 (en) Solar diffusion loss compensator and collimator
CN104143954B (en) It is a kind of suitable for photovoltaic and the non-track type concentrator of photo-thermal
KR20190096370A (en) Solar energy condenser
JP5258805B2 (en) Photovoltaic power generation apparatus and method for manufacturing solar power generation apparatus
JPH0637344A (en) Light-condensing type solar cell module
TWM502813U (en) Solar light-gathering device
JP4505914B2 (en) Concentrator and concentrating solar cell module
CN202662648U (en) Concentration type solar energy double-generating assembly

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000530